Using Taylor Models in Exact Real Arithmetic

  • Franz Brauße
  • Margarita Korovina
  • Norbert Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)

Abstract

Software libraries for Exact Real Arithmetic implement the theory of computability on non-denumerable sets. Usually they are based on interval arithmetic. We discuss enhancements where the interval arithmetic is augmented by versions of Taylor models. Although this has no effect on the abstract notion of computability, the efficiency of implementations can be improved dramatically.

Keywords

Arithmetic Operation Interval Arithmetic Double Sequence Taylor Model Point Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bauer, A., Kavkler, I.: Implementing real numbers with RZ. Electr. Notes Theor. Comput. Sci. 202, 365–384 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Blanck, J.: Efficient exact computation of iterated maps. J. Log. Algebr. Program. 64(1), 41–59 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. New Computational Paradigms: Changing Conceptions of What is Computable, pp. 425–491. Springer, New York (2008)Google Scholar
  4. 4.
    Brauße, F., Korovina, M., Müller, N.T.: Towards using exact real arithmetic for initial value problems. In: PSI: 10th Ershov Informatics Conference, 25–27, Innopolis, Kazan, Russia, to appear in Lecture Notes in Computer Science (2015)Google Scholar
  5. 5.
    De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numerical Algorithms 37(1–4), 147–158 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Duracz, J., Farjudian, A., Konečný, M., Taha, W.: Function Interval Arithmetic. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 677–684. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Ershov, Y.: Handbook of Computability Theory, chapter Theory of numberings, pp. 473–503. North-Holland, Amsterdam (1999)Google Scholar
  8. 8.
    Hansen, E.R.: A generalized interval arithmetic. In: Interval Mathemantics: Proceedings of the International Symposium, Karlsruhe, West Germany, May 20–24, pp. 7–18 (1975)Google Scholar
  9. 9.
    Khanh, T.V., Ogawa, M.: rasat: SMT for polynomial inequality. Technical Report Research Report IS-RR–003, JAIST (2013)Google Scholar
  10. 10.
    Ko, K.-I.: Complexity theory of real functions. Birkhauser Boston Inc., Cambridge, MA, USA (1991)CrossRefMATHGoogle Scholar
  11. 11.
    Makino, K., Berz, M.: Higher order verified inclusions of multidimensional systems by taylor models. Nonlinear Analysis: Theory, Methods & Applications, 47(5), 3503–3514, Proceedings of the Third World Congress of Nonlinear Analysts (2001)Google Scholar
  12. 12.
    Müller, N.T.: The iRRAM: Exact arithmetic in C++. Lecture notes in computer science, 2991:222–252 (2001)Google Scholar
  13. 13.
    Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)MathSciNetMATHGoogle Scholar
  14. 14.
    Spandl, C.: Computational complexity of iterated maps on the interval (extended abstract). In: Proceedings Seventh International Conference on Computability and Complexity in Analysis, CCA 2010, Zhenjiang, China, 21–25th , pp. 139–150, 2010 June 2010Google Scholar
  15. 15.
    Tupper, J.A.: Graphing equations with generalized interval arithmetic. Master’s thesis, University of Toronto (1996)Google Scholar
  16. 16.
    Weihrauch, K.: Computable analysis: an introduction. Springer-Verlag New York Inc, Secaucus, NJ, USA (2000)CrossRefMATHGoogle Scholar
  17. 17.
    Zimmermann, P.: Reliable Computing with GNU MPFR. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 42–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Franz Brauße
    • 1
  • Margarita Korovina
    • 2
  • Norbert Müller
    • 1
  1. 1.Abteilung InformatikwissenschaftenUniversität TrierTrierGermany
  2. 2.A.P. Ershov Institute of Informatics SystemsNovosibirskRussia

Personalised recommendations