Advertisement

Linear Programs and Convex Hulls Over Fields of Puiseux Fractions

  • Michael JoswigEmail author
  • Georg LohoEmail author
  • Benjamin LorenzEmail author
  • Benjamin SchröterEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)

Abstract

We describe the implementation of a subfield of the field of formal Puiseux series in polymake. This is employed for solving linear programs and computing convex hulls depending on a real parameter. Moreover, this approach is also useful for computations in tropical geometry.

Keywords

Linear programming over ordered fields Convex hull computation over ordered fields Rational functions Puiseux series Tropical convex hull computation 

Notes

Acknowledgments

We thank Thomas Opfer for contributing to and maintaining within the polymake project his implementation of the dual simplex method, originally written for his Master’s Thesis [25].

References

  1. 1.
    Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Long and winding central paths, preprint (2014). arXiv:1405.4161
  2. 2.
    Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Tropicalizing the simplex algorithm. SIAM J. Discrete Math. 29(2), 751–795 (2015). http://dx.doi.org/10.1137/130936464 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Allamigeon, X., Gaubert, S., Goubault, É.: The tropical double description method. In: STACS 2010: 27th International Symposium on Theoretical Aspects of Computer Science, LIPIcs. Leibniz International Proceedings in Informatics, vol. 5, pp. 47–58. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2010)Google Scholar
  4. 4.
    Allamigeon, X., Gaubert, S., Goubault, É.: Computing the vertices of tropical polyhedra using directed hypergraphs. Discrete Comput. Geom. 49(2), 247–279 (2013). http://dx.doi.org/10.1007/s00454-012-9469-6 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Benchimol, P.: Tropical aspects of linear programming. Theses, École Polytechnique, December 2014. https://hal-polytechnique.archives-ouvertes.fr/tel-01198482
  6. 6.
    Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). http://dx.doi.org/10.1006/jsco.1996.0125 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Charnes, A., Kortanek, K.O.: On classes of convex and preemptive nuclei for \(n\)-person games. In: Proceedings of the Princeton Symposium on Mathematical Programming (Princeton University, 1967). pp. 377–390. Princeton University Press, Princeton (1970)Google Scholar
  8. 8.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton, N.J. (1963)zbMATHGoogle Scholar
  9. 9.
    Develin, M., Yu, J.: Tropical polytopes and cellular resolutions. Experiment. Math. 16(3), 277–291 (2007). http://projecteuclid.org/euclid.em/1204928529 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Deza, A., Terlaky, T., Zinchenko, Y.: Central path curvature and iteration-complexity for redundant Klee-Minty cubes. In: Gao, D.Y., Sherali, H.D. (eds.) Advances in Applied Mathematics and Global Optimization. Adv. Mech. Math., vol. 17, pp. 223–256. Springer, New York (2009). http://dx.doi.org/10.1007/978-0-387-75714-8_7 CrossRefGoogle Scholar
  11. 11.
    Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science, vol. 10. Springer-Verlag, Berlin (1987). http://dx.doi.org/10.1007/978-3-642-61568-9 CrossRefzbMATHGoogle Scholar
  12. 12.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  13. 13.
    Gaubert, S., Katz, R.D.: Minimal half-spaces and external representation of tropical polyhedra. J. Algebraic Combin. 33(3), 325–348 (2011). http://dx.doi.org/10.1007/s10801-010-0246-4 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes–combinatorics and computation (Oberwolfach, 1997). DMV Sem., pp. 43–73. Birkhäuser, Basel (2000)Google Scholar
  15. 15.
    Goldfarb, D., Sit, W.Y.: Worst case behavior of the steepest edge simplex method. Discrete Appl. Math. 1(4), 277–285 (1979). http://dx.doi.org/10.1016/0166-218X(79)90004-0 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jeroslow, R.G.: Asymptotic linear programming. Oper. Res. 21(5), 1128–1141 (1973). http://dx.doi.org/10.1287/opre.21.5.1128 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: On polyhedral projection and parametric programming. J. Optim. Theor. Appl. 138(2), 207–220 (2008). http://dx.doi.org/10.1007/s10957-008-9384-4 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Joswig, M.: Beneath-and-beyond revisited. In: Joswig, M., Takayama, N. (eds.) Algebra, Geometry, and Software Systems, pp. 1–21. Springer, Berlin (2003)CrossRefGoogle Scholar
  19. 19.
    Joswig, M.: Tropical convex hull computations. In: Litvinov, G.L., Sergeev, S.N. (eds.) Tropical and Idempotent Mathematics, Contemporary Mathematics, vol. 495, pp. 193–212. American Mathematical Society, Providence (2009)CrossRefGoogle Scholar
  20. 20.
    Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Inequalities, III (Proceedings of Third Symposium, University of California, Los Angeles, California, 1969; dedicated to the memory of Theodore S. Motzkin), pp. 159–175. Academic Press, New York (1972)Google Scholar
  21. 21.
    Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161. American Mathematical Society, Providence, RI (2015)zbMATHGoogle Scholar
  22. 22.
    Mannaa, B., Coquand, T.: Dynamic Newton-Puiseux theorem. J. Log. Anal. 5, 22 (2013). Paper 5MathSciNetzbMATHGoogle Scholar
  23. 23.
    Markwig, T.: A field of generalised Puiseux series for tropical geometry. Rend. Semin. Mat. Univ. Politec. Torino 68(1), 79–92 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Maslov, V.P.: On a new superposition principle for optimization problem. In: Séminaire sur les équations aux dérivées partielles, pp. 1985–1986, Exp. No. XXIV, 14. École Polytech., Palaiseau (1986)Google Scholar
  25. 25.
    Opfer, T.: Entwicklung eines exakten rationalen dualen Simplex-Lösers. Master’s thesis, TU Darmstadt (2011)Google Scholar
  26. 26.
    Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, vol. 26. The University Press, Clarendon Press, Oxford (2002)Google Scholar
  27. 27.
    Salzmann, H., Grundhöfer, T., Hähl, H., Löwen, R.: The classical fields, Encyclopedia of Mathematics and its Applications, vol. 112. Cambridge University Press, Cambridge (2007). http://dx.doi.org/10.1017/CBO9780511721502 zbMATHGoogle Scholar
  28. 28.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica, California (1948)zbMATHGoogle Scholar
  29. 29.
    The MathWorks Inc.: MATLAB, version 8.4.0.150421 (R2014b). Natick, Massachusetts (2014)Google Scholar
  30. 30.
    van der Waerden, B.L.: Algebra II. Unter Benutzung von Vorlesungen von E. Artin und E. Noether, 6th edn. Springer, Berlin (1993). Mit einem Geleitwort von Jürgen NeukirchzbMATHGoogle Scholar
  31. 31.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer-Verlag, New York (1995)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für Mathematik, TU BerlinBerlinGermany

Personalised recommendations