Advertisement

On the Optimality of Differential Fault Analyses on CLEFIA

  • Ágnes KissEmail author
  • Juliane Krämer
  • Anke Stüber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)

Abstract

In 2012, several Differential Fault Analyses on the AES cipher were analyzed from an information-theoretic perspective. This analysis exposed whether or not the leaked information was fully exploited. We apply the same approach to all existing Differential Fault Analyses on the CLEFIA cipher. We show that only some of these attacks are already optimal. We improve those analyses which did not exploit all information. With one exception, all attacks against CLEFIA-128 reach the theoretical limit after our improvement. Our improvement of an attack against CLEFIA-192 and CLEFIA-256 reduces the number of fault injections to the lowest possible number reached so far.

Keywords

CLEFIA Differential fault analysis Fault attack 

References

  1. 1.
    Ali, S., Mukhopadhyay, D.: Protecting last four rounds of CLEFIA is not enough against differential fault analysis. IACR Cryptology ePrint Archive, p. 286 (2012)Google Scholar
  2. 2.
    Ali, S., Mukhopadhyay, D.: Improved differential fault analysis of CLEFIA. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2013), pp. 60–70. IEEE (2013)Google Scholar
  3. 3.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Chen, H., Wu, W., Feng, D.: Differential fault analysis on CLEFIA. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley, New York (1968)zbMATHGoogle Scholar
  6. 6.
    Fischer, W., Reuter, C.A.: Differential fault analysis on Grøstl. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2012), pp. 44–54. IEEE (2012)Google Scholar
  7. 7.
    Karmakar, S., Chowdhury, D.R.: Differential fault analysis of MICKEY-128 2.0. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2013), pp. 52–59. IEEE (2013)Google Scholar
  8. 8.
    Krämer, J., Stüber, A., Kiss, Á.: On the optimality of differential fault analyses on CLEFIA. IACR Cryptology ePrint Archive 2014, p. 572 (2014)Google Scholar
  9. 9.
    Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN structures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Rebeiro, C., Poddar, R., Datta, A., Mukhopadhyay, D.: An enhanced differential cache attack on CLEFIA for large cache Lines. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 58–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Sakiyama, K., Li, Y., Iwamoto, M., Ohta, K.: Information-theoretic approach to optimal differential fault analysis. IEEE Trans. Inf. Forensics Secur. 7, 109–120 (2012)CrossRefGoogle Scholar
  12. 12.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Takahashi, J., Fukunaga, T.: Improved differential fault analysis on CLEFIA. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2008), pp. 25–34. IEEE (2008)Google Scholar
  15. 15.
    Takahashi, J., Fukunaga, T.: Differential fault analysis on CLEFIA with 128, 192, and 256-bit keys. IEICE Trans. 93–A, 136–143 (2010)CrossRefGoogle Scholar
  16. 16.
    Tezcan, C.: The improbable differential attack: cryptanalysis of reduced round CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 197–209. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossible differential cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 398–411. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Zhao, X., Wang, T., Gao, J.: Multiple bytes differential fault analysis on CLEFIA. IACR Cryptology ePrint Archive, p. 78 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.TU DarmstadtDarmstadtGermany
  2. 2.TU BerlinBerlinGermany

Personalised recommendations