Advertisement

On a Discrete Number Operator Associated with the 5D Discrete Fourier Transform

  • M. K. Atakishiyeva
  • N. M. AtakishiyevEmail author
  • J. Méndez Franco
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 164)

Abstract

We construct an explicit form of a difference analogue of the quantum number operator in terms of the raising and lowering operators that govern eigenvectors of the 5D discrete (finite) Fourier transform. Eigenvalues of this difference operator are represented by distinct non-negative numbers so that it can be used to systematically classify, in complete analogy with the case of the continuous classical Fourier transform, eigenvectors of the 5D discrete Fourier transform, thus resolving the ambiguity caused by the well-known degeneracy of the eigenvalues of the discrete Fourier transform.

Keywords

Discrete Fourier transform Raising and lowering operators 5D eigenvectors 

Notes

Acknowledgements

We are grateful to Vladimir Matveev, Timothy Gendron and Ívan Area for illuminating discussions and thank Fernando González for graphical support of our results and the computation of the eigenvalues (24)–(27) and eigenvectors (28)–(32) with the aid of Mathematica. The participation of MKA in this work has been partially supported by the SEP-CONACyT project 168104 ‘Operadores integrales y pseudodiferenciales en problemas de fisíca matemática’, and NMA has been partially supported by the UNAM–DGAPA project IN101115 ‘ Óptica matemática’.

References

  1. 1.
    Carlitz, L.: Some cyclotomic matrices. Acta Arith. 5, 293–308 (1959)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Auslander, L., Tolimieri, R.: Is computing with the finite Fourier transform pure or applied mathematics? Bull. Am. Math. Soc. 1, 847–897 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dickinson, B.W., Steiglitz, K.: Eigenvectors and functions of the discrete Fourier transform. IEEE Trans. Acoust. Speech 30, 25–31 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grünbaum, F. A.: The eigenvectors of the discrete Fourier transform: a version of the Hermite functions. J. Math. Anal. Appl. 88, 355–363 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mehta, M.L.: Eigenvalues and eigenvectors of the finite Fourier transform. J. Math. Phys. 28, 781–785 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Mugler, D.H., Clary, S.: Discrete Hermite functions. In: Proceedings of the International Conference on Scientific Computing and Mathematical Modeling, Milwaukee WI, pp. 318–321 (2000)Google Scholar
  8. 8.
    Mugler, D.H., Clary, S.: Discrete Hermite functions and the fractional Fourier transform. In: Proceedings of the International Conference on Sampling Theory and Applications, Orlando FL, pp. 303–308 (2001)Google Scholar
  9. 9.
    Clary, S., Mugler, D.H.: Shifted Fourier matrices and their tridiagonal commutators. SIAM J. Math. Anal. Appl. 24, 809–821 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Matveev, V.B.: Intertwining relations between the Fourier transform and discrete Fourier transform, the related functional identities and beyond. Inverse Prob. 17, 633–657 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Atakishiyev, N.M.: On q-extensions of Mehta’s eigenvectors of the finite Fourier transform. Int. J. Mod. Phys. A 21 4993–5006 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Atakishiyeva, M.K., Atakishiyev, N.M.: On the raising and lowering difference operators for eigenvectors of the finite Fourier transform. J. Phys. Conf. Ser. 597, 012012 (2015)CrossRefGoogle Scholar
  13. 13.
    Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York ( 2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dunlap, R.A.: The Golden Ratio and Fibonacci Numbers. World Scientific, Singapore (2006)zbMATHGoogle Scholar
  15. 15.
    Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic, Orlando, FL (1985)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. K. Atakishiyeva
    • 1
  • N. M. Atakishiyev
    • 2
    Email author
  • J. Méndez Franco
    • 2
  1. 1.Facultad de CienciasUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  2. 2.Instituto de MatemáticasUnidad Cuernavaca Universidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations