Advertisement

Artifact-Centric Activity Theory—A Framework for the Analysis of the Design and Use of Virtual Manipulatives

  • Silke Ladel
  • Ulrich Kortenkamp
Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 7)

Abstract

It is a challenge to analyze the design and the use of Virtual Manipulatives due to their high complexity. As it is possible to create entirely new virtual worlds that can host objects that behave differently than any real objects, allowing for new and unprecedented actions in learning processes, we are in need of tools that enable us to focus on those aspects that are important for our analyses. In this chapter we show how ACAT, Artifact-Centric Activity Theory , can be used to analyze the design and use of a virtual manipulative place value chart.

References

  1. Aebli, H. (1983). Zwölf Grundformen des Lehrens. Eine Allgemeine Didaktik auf psychologischer Grundlage. Medien und Inhalte didaktischer Kommunikation, der Lernzyklus. 13. Auflage, 2006. Stuttgart: Klett-Cotta.Google Scholar
  2. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.CrossRefGoogle Scholar
  3. Bartolini, M. B. (2011). Artefacts and utilization schemes in mathematics teacher education: place value in early childhood education. Journal of Mathematics Teacher Education, 14, 93–112.CrossRefGoogle Scholar
  4. Bruner, J. S., Oliver, R., & Greenfield, P. (1971). Studien zur kognitiven Entwicklung: eine cooperative Untersuchung am “Center for Cognitive Studies” der Harvard-Universität. Stuttgart: Klett.Google Scholar
  5. Carroll, J. M., Kellogg, W. A., & Rosson, M. B. (1991). The task-artifact cycle. In J. M. Carroll (Ed.), Designing Interaction: Psychology at the Human-Computer Interface. Cambridge, UK: Cambridge University Press.Google Scholar
  6. Clements, D. H. (1999). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in Early childhood, 1(1), 45–60.CrossRefGoogle Scholar
  7. Drijvers, P., Doorman, M., Boon, P., & van Gisbergen, S. (2011). Instrumental orchestration: Theory and practice. In: Durand-Guerrier, V., Soury-Lavergne, S., Arzarello, F. (Eds.), Proceedings of the congress of the European Society for Research in Mathematcis Education (Vol. 6, pp. 1349–1358), January 28–February 1, 2009, Lyon (France).Google Scholar
  8. Giest, H., & Lompscher, J. (2004). Tätigkeitstheoretische Überlegungen zu einer neuen Lernkultur. Sitzungsberichte der Leibniz-Sozietät, 72, 101–123.Google Scholar
  9. Kaptelinin, V. (2014). Activity theory. In: M. Soegaard & R. F. Dam (Eds.), The encyclopedia of human-computer interaction (2nd Ed.). Aarhus, Denmark: The Interaction Design Foundation. Available online at https://www.interaction-design.org/encyclopedia/activity_theory.html
  10. Kortenkamp, U. (2015). Place value chart. Available in the iTunes-Store: https://itunes.apple.com/de/app/stellenwerttafel/id568750442?mt=8. Last opened on September 3, 2015.
  11. Kortenkamp, U. & Ladel, S. (2013). Designing a technology based learning environment for place value using artifact-centric Activity Theory. Research Forum Activity Theoretical approaches to mathematics classroom practices with the use of technology. In Proceedings of PME 37. Kiel.Google Scholar
  12. Ladel, S. (2009). Multiple externe Repräsentationen (MERs) und deren Verknüpfung durch Computereinsatz. Zur Bedeutung für das Mathematiklernen im Anfangsunterricht. Didaktik in Forschung und Praxis, Bd. 48. Hamburg: Verlag Dr. Kovac.Google Scholar
  13. Ladel, S. (2013). Garantierter Lernerfolg “oder” Digitale Demenz? Zum frühen Lernen von Mathematik mit digitalen Medien. In G. Greefrath, F. Käpnick, & M. Stein (Eds.), Beiträge zum Mathematikunterricht (pp. 54–61). Münster.Google Scholar
  14. Ladel, S., & Kortenkamp, U. (2013). An activity-theoretic approach to multi-touch tools in early maths learning. In The International Journal for Technology in Mathematics Education, 20(1), 3–8. Plymouth.Google Scholar
  15. Ladel, S., & Kortenkamp, U. (2014). Handlungsorientiert zu einem flexiblen Verständnis von Stellenwerten - ein Ansatz aus Sicht der Artifact-Centric Activity Theory. In S. Ladel & C. Schreiber (Hrsg.), Von A udiopodcast bis Z ahlensinn. Band 2 der Reihe Lernen, Lehren und Forschen mit digitalen Medien in der Primarstufe (pp. 151–176). Münster: WTM-Verlag.Google Scholar
  16. Ladel, S., & Kortenkamp, U. (2015a). Development of a flexible understanding of place value. In O. Helenius, M. Johansson, T. Lange, T. Meaney, & A. Wernberg (Eds.), Early mathematics learning. Selected papers of the POEM 2014 conference. New York: Springer.Google Scholar
  17. Ladel, S., & Kortenkamp, U. (2015b). Dezimalbrüche und Stellenwerttafeln. In Beiträge zum Mathematikunterricht. Münster: WTM-Verlag.Google Scholar
  18. Leontiev, A. N. (1978). Activity, consciousness and personality. Englewood Cliffs: Prentice Hall.Google Scholar
  19. Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372–377.Google Scholar
  20. Rabardel, P. (2002). People and technology: A cognitive approach to contemporary instruments.Google Scholar
  21. Ross, S. (1989). Parts, wholes, and place value: A developmental view. Arithmetic Teacher, 36(6), 47–51.Google Scholar
  22. Sarama, J. & Clements, D. H. (2009). “Concrete” computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145–150.Google Scholar
  23. Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning envirionments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.CrossRefGoogle Scholar
  24. Van Oers, B., Wardekker, W., Elbers, E., & van der Veer, R. (Eds.). (2008). The transformation of learning: Advances in cultural-historical activity theory. New York: Cambridge University Press.Google Scholar
  25. Verillion, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1).Google Scholar
  26. Vom Hofe, R. (1995). Grundvorstellungen mathematischer Inhalte. Heidelberg: Spektrum.Google Scholar
  27. Vygotsky, L. S. (1997). The instrumental method in psychology. In R. W. Rieber & J. Wollock (Eds.), The collected works of L.S. Vygotsky. Vol. 3: Problems of the theory and history of psychology (pp. 85–90). New York: Plenum Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of SaarlandSaarbrückenGermany
  2. 2.Institute of MathematicsUniversity of PotsdamPotsdam OT GolmGermany

Personalised recommendations