From Microscopic Compartmentalization to Hydrodynamic Patterns: New Pathways for Information Transport

  • Marcello A. Budroni
  • Jorge Carballido-Landeira
  • Adriano Intiso
  • Lorena Lemaigre
  • Anne De Wit
  • Federico Rossi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 587)


Can we exploit hydrodynamic instabilities to trigger an efficient, selective and spontaneous flow of encapsulated chemical information? One possible answer to this question is presented in this paper where cross-diffusion, which commonly characterizes compartmentalized dispersed systems, is shown to initiate buoyancy-driven hydrodynamic instabilities. A general theoretical framework allows us to predict and classify cross-diffusion-induced convection in two-layer stratifications under the action of the gravitational field. The related nonlinear dynamics is described by a cross-diffusion-convection (CDC) model where fickian diffusion is coupled to the Stokes equations. We identify two types of hydrodynamic modes (the negative cross-diffusion-driven convection, NCC, and the positive cross-diffusion-driven convection, PCC) corresponding to the sign of the cross-diffusion term dominating the system dynamics. We finally show how AOT water-in-oil reverse microemulsions are an ideal model system to confirm the general theory and to approach experimentally cross-diffusion-induced hydrodynamic scenarios.


Transport of chemical information Compartmentalization Water-in-oil reverse microemulsions Buoyancy-driven instabilities Cross-diffusion Multi-components systems 



F.R. was supported by the grant ORSA149477 funded by the University of Salerno (FARB ex 60 %) and gratefully acknowledges the support through the COST Action CM1304 (Emergence and Evolution of Complex Chemical Systems). M.A.B. gratefully acknowledges Regione Sardegna for financial support in the framework of “Asse IV Capitale Umano, Obiettivo Operativo l.3 Linea di Attività l.3.1 del P.O.R. Sardegna F.S.E. 2007/2013 - Progetti in forma associata e/o partenariale C.U.P. E85E12000060009” and the European Space Agency (ESA) Topical Team on “Chemo-Hydrodynamic Pattern Formation at Interfaces”.


  1. 1.
    Budroni, M.A.: Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: general classification and nonlinear simulations. Phys. Rev. E 92(6), 063007 (2015)CrossRefGoogle Scholar
  2. 2.
    Budroni, M.A., Carballido-Landeira, J., Intiso, A., De Wit, A., Rossi, F.: Interfacial hydrodynamic instabilities driven by cross-diffusion in reverse microemulsions. Chaos Interdisc. J. Nonlinear Sci. 25(6), 064502 (2015)CrossRefGoogle Scholar
  3. 3.
    Budroni, M.A., Lemaigre, L., De Wit, A., Rossi, F.: Cross-diffusion-induced convective patterns in microemulsion systems. Phys. Chem. Chem. Phys. 17(3), 1593–1600 (2015)CrossRefGoogle Scholar
  4. 4.
    Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)CrossRefGoogle Scholar
  5. 5.
    Carballido-Landeira, J., Trevelyan, P.M.J., Almarcha, C., De Wit, A.: Mixed-mode instability of a miscible interface due to coupling between Rayleigh-Taylor and double-diffusive convective modes. Phys. Fluids 25(2), 024107 (2013)CrossRefGoogle Scholar
  6. 6.
    Epstein, I.R.: Coupled chemical oscillators and emergent system properties. Chem. Commun. 50(74), 10758–10767 (2014)CrossRefGoogle Scholar
  7. 7.
    Epstein, I.R., Vanag, V.K., Balazs, A.C., Kuksenok, O., Dayal, P., Bhattacharya, A.: Chemical oscillators in structured media. Acc. Chem. Res. 45(12), 2160–2168 (2011)CrossRefGoogle Scholar
  8. 8.
    Ganguli, A.K., Ganguly, A., Vaidya, S.: Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 39(2), 474–485 (2010)CrossRefGoogle Scholar
  9. 9.
    Leaist, D.G.: Relating multicomponent mutual diffusion and intradiffusion for massociating solutes. Application to coupled diffusion in water-in-oil microemulsions. Phys. Chem. Chem. Phys. 4(19), 4732–4739 (2002)CrossRefGoogle Scholar
  10. 10.
    Leaist, D., Hao, L.: Size distribution model for chemical interdiffusion in water AOT Heptane water-in-oil microemulsions. J. Phys. Chem. 99(34), 12896–12901 (1995)CrossRefGoogle Scholar
  11. 11.
    Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J.: Segmented waves in a reaction-diffusion-convection system. Chaos Interdisc. J. Nonlinear Sci. 22(3), 037109 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rossi, F., Liveri, M.L.T.: Chemical self-organization in self-assembling biomimetic systems. Ecol. Model. 220(16), 1857–1864 (2009)CrossRefGoogle Scholar
  13. 13.
    Rossi, F., Ristori, S., Marchettini, N., Pantani, O.L.: Functionalized clay microparticles as catalysts for chemical oscillators. J. Phys. Chem. C 118(42), 24389–24396 (2014)CrossRefGoogle Scholar
  14. 14.
    Rossi, F., Vanag, V.K., Epstein, I.R.: Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction. Chem. Eur. J. 17(7), 2138–2145 (2011)CrossRefGoogle Scholar
  15. 15.
    Rossi, F., Vanag, V.K., Tiezzi, E., Epstein, I.R.: Quaternary cross-diffusion in water-in-oil microemulsions loaded with a component of the Belousov-Zhabotinsky reaction. J. Phys. Chem. B 114(24), 8140–8146 (2010)CrossRefGoogle Scholar
  16. 16.
    Rossi, F., Zenati, A., Ristori, S., Noel, J.M., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Activatory coupling among oscillating droplets produced in microfluidic based devices. Int. J. Unconventional Comput. 11(1), 23–36 (2015)Google Scholar
  17. 17.
    Settles, G.S.: Schlieren and Shadowgraph Techniques. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Shi, Y., Eckert, K.: A novel Hele-Shaw cell design for the analysis of hydrodynamic instabilities in liquid systems. Chem. Eng. Sci. 63(13), 3560–3563 (2008)CrossRefGoogle Scholar
  19. 19.
    Taylor, A.F., Tinsley, M.R., Wang, F., Huang, Z., Showalter, K.: Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 323(5914), 614–617 (2009)CrossRefGoogle Scholar
  20. 20.
    Tomasi, R., Noel, J.M., Zenati, A., Ristori, S., Rossi, F., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem. Sci. 5(5), 1854–1859 (2014)CrossRefGoogle Scholar
  21. 21.
    Tompkins, N., Li, N., Girabawe, C., Heymann, M., Ermentrout, G.B., Epstein, I.R., Fraden, S.: Testing Turings theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. 111(12), 4397–4402 (2014)CrossRefGoogle Scholar
  22. 22.
    Torbensen, K., Rossi, F., Pantani, O.L., Ristori, S., Abou-Hassan, A.: Interaction of the Belousov-Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)CrossRefGoogle Scholar
  23. 23.
    Trevelyan, P.M.J., Almarcha, C., De Wit, A.: Buoyancy-driven instabilities of miscible two-layer stratifications in porous media and Hele-Shaw cells. J. Fluid Mech. 670, 38–65 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vanag, V.K.: Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions. Physics-Uspekhi 47(9), 923–941 (2004)CrossRefGoogle Scholar
  25. 25.
    Vanag, V.K., Epstein, I.R.: Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87(22), 228301–228304 (2001)CrossRefGoogle Scholar
  26. 26.
    Vanag, V.K., Epstein, I.R.: Cross-diffusion and pattern formation in reaction-diffusion systems. Phys. Chem. Chem. Phys. 11(6), 897–912 (2009)CrossRefGoogle Scholar
  27. 27.
    Zemskov, E.P., Kassner, K., Hauser, M.J.B., Horsthemke, W.: Turing space in reaction-diffusion systems with density-dependent cross diffusion. Phys. Rev. E 87(3), 032906 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marcello A. Budroni
    • 1
  • Jorge Carballido-Landeira
    • 2
  • Adriano Intiso
    • 3
  • Lorena Lemaigre
    • 2
  • Anne De Wit
    • 2
  • Federico Rossi
    • 3
  1. 1.Department of Chemistry and PharmacyUniversity of SassariSassariItaly
  2. 2.Nonlinear Physical Chemistry Unit, Service de Chimie Physique et Biologie ThéoriqueUniversité libre de BruxellesBrusselsBelgium
  3. 3.Department of Chemistry and BiologyUniversity of SalernoFiscianoItaly

Personalised recommendations