Needmining: Towards Analytical Support for Service Design
Conference paper
First Online:
- 5 Citations
- 3 Mentions
- 1.8k Downloads
Abstract
The identification of customer needs is an important task for Service Design. The paper proposes an approach for automatically detecting customer needs from micro blog data (e.g. Twitter). It shows first results on identification models and lays the foundation for future research in this field.
Keywords
Service design Need elicitation Customer requirement analysis Machine learning Method evaluationNotes
Acknowledgments
The author would like to thank Lisa Schmittecker for her support in the field of need elicitation, Jan Scheurenbrand for his support in implementing the Needmining tool, Marc Goutier for his support with first clustering attempts as well as Gerhard Satzger for his general support.
References
- 1.Goldstein, S.M., Johnston, R., Duffy, J., Rao, J.: The service concept: the missing link in service design research? J. Oper. Manage. 20(2), 121–134 (2002)CrossRefGoogle Scholar
- 2.Herrmann, A., Huber, F., Braunstein, C.: Market-driven product and service design: bridging the gap between customer needs, quality management, and customer satisfaction. Int. J. Prod. Econ. 66(1), 77–96 (2000)CrossRefGoogle Scholar
- 3.Teare, R.E.: Interpreting and responding to customer needs. J. Workplace Learn. 10(2), 76–94 (1998)CrossRefGoogle Scholar
- 4.Brown, T., et al.: Design thinking. Harvard Bus. Rev. 86(6), 84 (2008)Google Scholar
- 5.Victorino, L., Verma, R., Plaschka, G., Dev, C.: Service innovation and customer choices in the hospitality industry. Managing Serv. Qual.: Int. J. 15(6), 555–576 (2005)CrossRefGoogle Scholar
- 6.Reynolds, T.J., Gutman, J.: Laddering theory, method, analysis, and interpretation. J. Advertising Res. 28(1), 11–31 (1988)Google Scholar
- 7.Driscoll, D.L.: Introduction to primary research: observations, surveys, and interviews. Writ. Spaces: Read. Writ. 2, 153–174 (2011)Google Scholar
- 8.Kärkkäinen, H., Elfvengren, K.: Role of careful customer need assessment in product innovation management? empirical analysis. Int. J. Prod. Econ. 80(1), 85–103 (2002)CrossRefGoogle Scholar
- 9.Line, M.B.: Draft definitions: information and library needs, wants, demands and uses. In: Aslib Proceedings, vol. 26, p. 87. MCB UP Ltd (1974)Google Scholar
- 10.Arndt, J.: How broad should the marketing concept be? J. Mark. 42(1), 101–103 (1978)MathSciNetCrossRefGoogle Scholar
- 11.Armstrong, G., Adam, S., Denize, S., Kotler, P.: Principles of Marketing. Pearson Australia, Sydney (2014)Google Scholar
- 12.Bullinger, H.J., Scheer, A.W.: Service engineering - Entwicklung und Gestaltung innovativer Dienstleistungen. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 13.Cowell, D.W.: New service development. J. Mark. Manage. 3(3), 296–312 (1988)MathSciNetCrossRefGoogle Scholar
- 14.Dieste, O., Juristo, N., Shull, F.: Understanding the customer: what do we know about requirements elicitation? IEEE Softw. 25(2), 11–13 (2008)CrossRefGoogle Scholar
- 15.van Horn, D., Olewnik, A., Lewis, K.: Design analytics: capturing, understanding, and meeting customer needs using big data. In: Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1–13 (2012)Google Scholar
- 16.Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
- 17.Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
- 18.Zhou, F., Jiao, R.: Latent customer needs elicitation for big-data analysis of online product reviews. In: 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1850–1854. IEEE (2015)Google Scholar
- 19.Jiao, J.R., Chen, C.H.: Customer requirement management in product development: a review of research issues. Concurrent Eng. 14(3), 173–185 (2006)CrossRefGoogle Scholar
- 20.Misopoulos, F., Mitic, M., Kapoulas, A., Karapiperis, C.: Uncovering customer service experiences with twitter: the case of airline industry. Manage. Decis. 52(4), 705–723 (2014)CrossRefGoogle Scholar
- 21.Statista.com: Leading social networks worldwide as of January 2016, ranked by number of active users (in millions). www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/. Last Accessed on 16 February 2016
- 22.Wilson, R.E., Gosling, S.D., Graham, L.T.: A review of facebook research in the social sciences. Perspect. Psychol. Sci. 7(3), 203–220 (2012)CrossRefGoogle Scholar
- 23.Twitter: About the company. https://about.twitter.com/company. Last Accessed on 15 December 2015
- 24.Bifet, A., Frank, E.: Sentiment knowledge discovery in twitter streaming data. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol. 6332, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 25.Miller, Z., Dickinson, B., Hu, W.: Gender prediction on twitter using stream algorithms with n-gram character features. Int. J. Intell. Sci. 2(4A), 143–148 (2012)CrossRefGoogle Scholar
- 26.Nguyen, D., Smith, N.A., Rosé, C.P.: Author age prediction from text using linear regression. In: Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pp. 115–123. LaTeCH 2011, Association for Computational Linguistics, Stroudsburg (2011)Google Scholar
- 27.Compton, R., Jurgens, D., Allen, D.: Geotagging one hundred million twitter accounts with total variation minimization. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 393–401. IEEE (2014)Google Scholar
- 28.Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, London (2012)Google Scholar
- 29.Egger, M., Lang, A., Schoder, D.: Who are we listening to? detecting user-generated content (ugc) on the web. In: ECIS 2015 Proceedings (2015)Google Scholar
- 30.Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intelligencer 27(2), 83–85 (2005)Google Scholar
- 31.van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)zbMATHGoogle Scholar
- 32.Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering algorithms and validity measures. In: Thirteenth International Conference on Scientific and Statistical Database Management, SSDBM 2001. Proceedings, pp. 3–22. IEEE (2001)Google Scholar
- 33.Brocke, V., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: Proceedings of the 17th European Conference On Information Systems, Verona, pp. 2206–2217 (2009)Google Scholar
- 34.Griffin, A., Hauser, J.R.: The voice of the customer. Mark. Sci. 12(1), 1–27 (1993)CrossRefGoogle Scholar
- 35.Von Hippel, E.: Lead users: a source of novel product concepts. Manage. Sci. 32(7), 791–805 (1986)CrossRefGoogle Scholar
- 36.Töpfer, A., Silbermann, S.: Einsatz von kunden-fokusgruppen. In: Handbuch Kundenmanagement, pp. 267–279. Springer (2008)Google Scholar
- 37.Leonard, D., Rayport, J.F.: Spark innovation through empathic design. Harvard Bus. Rev. 75, 102–115 (1997)Google Scholar
- 38.Nagamachi, M.: Kansei engineering: a new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergonomics 15(1), 3–11 (1995)MathSciNetCrossRefGoogle Scholar
- 39.Herstatt, C., Verworn, B.: Management der frühen Innovationsphasen. Springer (2007)Google Scholar
- 40.Sauerwein, E., Bailom, F., Matzler, K., Hinterhuber, H.H.: The kano model: how to delight your customers. In: International Working Seminar on Production Economics, vol. 1, pp. 313–327. Innsbruck (1996)Google Scholar
- 41.Pirola, F., Pezzotta, G., Andreini, D., Galmozzi, C., Savoia, A., Pinto, R.: Understanding customer needs to engineer product-service systems. Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World. IFIP Advances in Information and Communication Technology, vol. 439, pp. 683–690. Springer, Heidelberg (2014)Google Scholar
- 42.Green, P.E., Krieger, A.M., Wind, Y.: Thirty years of conjoint analysis: reflections and prospects. Interfaces 31(3-supplement), S56–S73 (2001)CrossRefGoogle Scholar
- 43.Polaine, A., Løvlie, L., Reason, B.: Service Design. From Implementation to Practice. Reosenfeld Media, New York (2013)Google Scholar
- 44.Edvardsson, B., Kristensson, P., Magnusson, P., Sundström, E.: Customer integration within service development a review of methods and an analysis of insitu and exsitu contributions. Technovation 32(7), 419–429 (2012)CrossRefGoogle Scholar
- 45.Cooper, R.G., Kleinschmidt, E.J.: Success factors in product innovation. Ind. Mark. Manage. 16(3), 215–223 (1987)CrossRefGoogle Scholar
- 46.Hanski, J., Reunanen, M., Kunttu, S., Karppi, E., Lintala, M., Nieminen, H.: Customer observation as a source of latent customer needs and radical new ideas for product-service systems. In: Engineering Asset Management 2011, pp. 395–407. Springer (2014)Google Scholar
- 47.Bryman, A., Bell, E.: Business Research Methods. Oxford University Press, USA (2015)Google Scholar
- 48.Kuehl, N., Scheurenbrand, J., Satzger, G.: “needs from tweets”: towards deriving customer needs from micro blog data. Multikonferenz Wirtschaftsinformatik (MKWI) 2016 (2016)Google Scholar
- 49.Kuehl, N., Scheurenbrand, J., Satzger, G.: Needmining: identifying customer needs in micro blog data: karlsruhe Institute of Technology. Karlsruhe Service Research Institute, Discussion Paper (2015)Google Scholar
- 50.Scheurenbrand, J., Engel, C., Peters, F., Kuehl, N.: Holistically defining e-Mobility: a modern approach to systematic literature reviews. In: 5th Karlsruhe Service Summit, Karlsruhe, Germany, pp. 17–27 (2015)Google Scholar
- 51.Pfahl, S., Jochem, P., Fichtner, W.: When will electric vehicles capture the german market? and why?. In: Electric Vehicle Symposium and Exhibition (EVS27), 2013 World, pp. 1–12. IEEE (2013)Google Scholar
- 52.Sierzchula, W., Bakker, S., Maat, K., Van Wee, B.: The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy 68, 183–194 (2014)CrossRefGoogle Scholar
- 53.Stryja, C., Fromm, H., Ried, S., Jochem, P., Fichtner, W.: On the necessity and nature of e-mobility services? towards a service description framework. Exploring Services Science. Lecture Notes in Business Information Processing, vol. 201, pp. 109–122. Springer International Publishing, Switzerland (2015)Google Scholar
- 54.Hinz, O., Schlereth, C., Zhou, W.: Fostering the adoption of electric vehicles by providing complementary mobility services: a two-step approach using best-worst scaling and dual response. J. Bus. Econ. 85(8), 921–951 (2015)CrossRefGoogle Scholar
- 55.Twitter: Twitter streaming api. https://twittercommunity.com/t/best-solution-for-fetching-tweets-mentioning-hundreds-of-terms/28294. Accessed on 18 December 2015
- 56.Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)zbMATHGoogle Scholar
- 57.Su, J., Zhang, H., Ling, C.X., Matwin, S.: Discriminative parameter learning for bayesian networks. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, NY, USA, pp. 1016–1023. ACM, New York (2008)Google Scholar
- 58.Cooper, G., Herskovits, E.: A Bayesian method for constructing Bayesian belief networks from databases. In: Proceedings of the Conference on Uncertainty in AI, pp. 86–94 (1990)Google Scholar
- 59.John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)Google Scholar
- 60.Breiman, L.: Random Forrest. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
- 61.Platt, J.C.: Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Advances in kernel methods, pp. 185–208. MIT Press, Cambridge (1998)Google Scholar
- 62.Shalev-Shwartz, S., Srebro, Y.S., N.: Pegasos: primal estimated sub-grAdient sOlver for SVM. In: 24th International Conference on Machine Learning, pp. 807–814 (2007)Google Scholar
Copyright information
© Springer International Publishing Switzerland 2016