Skip to main content

Landslide Type and Pattern in Moldavian Plateau, NE Romania

  • Chapter
  • First Online:
Landform Dynamics and Evolution in Romania

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

This study proposes a regional scale approach of landslide typology and patterns for the Moldavian Plateau, one of the Romanian regions most affected by mass movement processes. A regional historical landslide inventory was carried out, using remote sensing imagery, resulting a number of 24,263 polygons, which cover 18.3 % of the whole study area (24,803 km2). Preconditioning, preparatory, and triggering factors were revised and the following types of landslides were identified and attributed in the inventory: rotational, translational, lateral spread, flows, and complex landslides. The statistic interpretations of the geomorphometric variables of the polygons that define the areas affected by landslides, reveal a strong relation between the landslide phenomenon and the lithology, the morphostructure and the topography. The general pattern of landslide distribution emphasizes a repetitive model along cuesta scarp slopes; this is mainly related to the lithology dominated by limestones, sandstones, and volcanic consolidated tuffs at the upper part of the slopes, with friable clayey and sandy strata intercalations. The landslide inventory and the revealed types and patterns of landslides are an essential step for a better understanding of landslide phenomenon, landslide risk assessment, and landslide management in the Moldavian Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott PL (2004) Natural disasters. McGraw-Hill Companies Inc., New York

    Google Scholar 

  • Agostinelli C, Lund U (2013) R package ‘circular’: circular statistics (version 0.4-7). https://r-forge.r-project.org/projects/circular/

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data. Nat Hazards Earth Syst Sci 7:637–650

    Article  Google Scholar 

  • Băcăuanu V (1968) Campia Moldovei. Studiu geomorfologic. Editura Academiei (in Romanian)

    Google Scholar 

  • Băcăuanu V, Barbu N, Pantazică M, Ungureanu A, Chiriac D (1980) Podișul Moldovei. Natură, om, economie. Editura științifică și enciclopedică, București (in Romanian)

    Google Scholar 

  • Bălteanu D, Chendeş V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 124:102–112

    Article  Google Scholar 

  • Bălteanu D, Jurchescu M, Surdeanu V, Ioniţă I, Goran C, Urdea P, Rădoane M, Rădoane N, Sima M (2012) Recent landform evolution in the Romanian Carpathians and Pericarpathian Region. In: Loczy D, Stankoviansky M, Kotarba A (eds) Recent Landform Evolution, pp 249–286

    Google Scholar 

  • Böhner J, Selige T (2006) Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In: Böhner J, McCloy KR, Strobl J (eds) SAGA—analysis and modelling applications. Göttinger Geographische Abhandlungen, p 115

    Google Scholar 

  • Broothaerts N, Kissi E, Poesen J, Van Rompaey A, Getahun K, Van Ranst E, Diels J (2012) Spatial patterns, causes and consequences of landslides in the Gilgel Gibe catchment, SW Ethiopia. Catena 97:127–136

    Article  Google Scholar 

  • Bucknam RC, Coe JA, Chavarria MM, Godt JW, Tarr AC, Bradley L-A, Rafferty S, Hancock D, Dart RL, Johnson ML (2001) Landslides triggered by Hurricane Mitch in Guatemala—inventory and discussion. US Geological Survey Open File Report 01–443

    Google Scholar 

  • Capecchi V, Perna M, Crisci A (2015) Statistical modeling of rainfall-induced shallow landsliding using static predictors and numerical weather predictions: preliminary results. Nat Hazards Earth Syst Sci 15:75–95

    Article  Google Scholar 

  • Ciampalini A, Raspini F, Bianchini S, Frodella W, Bardi F, Lagomarsino D, Di Traglia F, Moretti S, Proietti C, Pagliara P, Onori R, Corazza A, Duro A, Basile G, Casagli N (2015) Remote sensing as tool for development of landslide database: the case of the Messina Province (Italy) geodatabase. Geomorphology. doi:10.1016/j.geomorph.2015.01.029

    Google Scholar 

  • Conforti M, Muto F, Rago V, Critelli S (2014) Landslide inventory map for north-eastern Calabria (South Italy). J Maps 10:90–102

    Article  Google Scholar 

  • Corine Land Cover 2006 seamless vector data v. 17 (2013) http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3

  • Croitoru AE, Minea I (2014) The impact of climate changes on rivers discharge in Eastern Romania. Theor Appl Climatol. doi:10.1007/s00704-014-1194-z

    Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bull Internat Assoc Eng Geol 43:27–29

    Article  Google Scholar 

  • Cruden DM (2011) The working classification of landslides: material matters. In: 2011 Pan-Am CGS geotechnical conference

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation research board, US National Council, Special Report 247, Washington, DC, Chapter 3:36–75

    Google Scholar 

  • Damm B, Terhorst B (2010) A model slope formation related to landslide activity in the Eastern Prealps, Austria. Geomorphology 122:338–350

    Article  Google Scholar 

  • Densmore AL, Hovius N (2000) A fingerprints of bedrock landslides. Geology 28:371–374

    Article  Google Scholar 

  • Dikau R, Schmidt K-H (2001) Mass movements in South, West and Central Germany—objectives and main results of the MABIS project. Z Geomorphol Suppl 125:1–12

    Google Scholar 

  • Donnarumma A, Revellino P, Guerriero L, Grelle G, Guadagno FM (2013) Failure analysis of shallow landslides using a three parameter Weibull distribution of slope angle. Rend Online Soc Geol It 24:110–112

    Google Scholar 

  • Dutang C, Goulet V, Pigeon M (2008) Actuar: an R package for actuarial science. J Stat Softw 25:1–37

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WY (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:99–111

    Article  Google Scholar 

  • Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena 51:297–314

    Article  Google Scholar 

  • Goetz JN, Bell R, Brenning A (2014) Could surface roughness be a poor proxy for landslide age? Results from the Swabian Alb, Germany. Earth Surf Proc Landf 39(12):1697–1704

    Google Scholar 

  • Grozavu A, Mărgărint MC, Patriche CV (2012) Landslide susceptibility assessment in the Brăieşti-Sineşti sector of Iaşi cuesta. Carpath J Earth Environ Sci 7:39–46

    Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P (1996) The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geosci 2:531–555

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Austria 31:181–216

    Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Galli M, Reichenbach P, Rossi M (2008) Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology 96:105–122

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory map: New tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Haase D, Fink J, Haase G, Ruske R, Pécsi M, Richter H, Altermann M, Jäger K-D (2007) Loess in Europe–its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quatern Sci Rev 26:1301–1312

    Article  Google Scholar 

  • Haesaerts P, Borziak I, Chirica V, Damblon F, Koulakovska L, van der Plicht J (2003) The East Carpathian loess record: a reference for the middle and late pleniglacial stratigraphy in Central Europe. Quaternaire 14(3):163–188

    Article  Google Scholar 

  • Hovius N, Stark CP, Hao-Tsu C, Jiun-Chuan L (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range. Taiwan. J Geol 108:73–89

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Institutul Geologic al României (1968) Harta geologică a României, scara 1:200 000, foile și notele explicative: 1 (Dărăbani), 5 (Rădăuţi), 6 (Suceava), 7 (Ştefăneşti), 13 (Piatra Neamţ), 14 (Iaşi), 22 (Bârlad), 30 (Focşani)

    Google Scholar 

  • International Commission on Stratigraphy (2014) International Chronostratigraphic Chart v. 2014/02. http://www.stratigraphy.org/index.php/ics-chart-timescale

  • Ionesi L (1994) Geologia unităților de platformă și a Orogenului Nord-Dobrogean. Editura Tehnică, București (in Romanian)

    Google Scholar 

  • Ionesi L, Ionesi B, Roşca V, Lungu A, Ionesi V (2005) Sarmațianul mediu și superior de pe Platforma Moldovenească. Editura Academiei Române, București (in Romanian)

    Google Scholar 

  • Ioniţă I (2000) Relieful de cueste din Podișul Moldovei. Corson, Iaşi (in Romanian)

    Google Scholar 

  • Iwahashi J, Watanabe S, Furuya T (2003) Mean slope-angle frequency distribution and size frequency distribution of landslide masses in Higashikubiki area. Jpn Geomorphol 50:349–364

    Article  Google Scholar 

  • Jäger D, Sandmeier C, Schwindt D, Terhorst B (2013) Geomorphological and geophysical analyses in a landslide area near Ebermannstadt, Northern Bavaria. Quatern Sci J 62:150–161

    Google Scholar 

  • Jeanreanud P (1971) Harta geologică a Moldovei Centrale dintre Siret și Prut. Analele Științifice ale Universității “Alex. I. Cuza” din Iaşi, sec. II, XVII:65–78 (in Romanian)

    Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2015) Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng Geol 192:101–112

    Article  Google Scholar 

  • Klimeš J (2008) Analysis of preparatory factors of landslides, VsetǐnskéVrchy Highland, Czech Republic. Acta Res Reports 17:47–53

    Google Scholar 

  • Komac M, Hribernik K (2015) Slovenian national landslide database as a basis for statistical assessment of landslide phenomena in Slovenia. Geomorphology. doi:10.1016/j.geomorph.2015.02.005

  • Korup O (2005a) Distribution of landslides in south-west New Zeeland. Landslides 2:43–51

    Article  Google Scholar 

  • Korup O (2005b) Geomorphic imprint of landslides on alpine rivers system, southwest New Zeeland. Earth Surf Proc Landf 30:783–800

    Article  Google Scholar 

  • Lin CW, Tseng CM, Tseng YH, Fei LY, Hsieh YC, Tarolli P (2013) Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography. J Asian Earth Sci 62:389–400

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004a) Landslides, earthquake, and erosion. Earth Planet Sci Lett 229:45–59

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004b) Landslide inventories and their statistical properties. Earth Surf Proc Landf 29:687–711

    Article  Google Scholar 

  • Massey CI, Petley DN, McSaveney M (2013) Patterns of movement in reactivated landslides. Eng Geol 159:1–19

    Article  Google Scholar 

  • Mațenco L, Bertotti G (2000) Tertiary tectonic evolution of the external East Carpathians (Romania). Tectonophysics 316:255–286

    Article  Google Scholar 

  • Maţenco L, Bertotti G, Leever K, Clouting S, Schmid SM, Tărăpoancă M, Dinu C (2007) Large-scale deformation in a locked collisional boundary: interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carphatian evolution. Tectonics 26, TC4011. doi:10.1029/2006TC001951

  • Mărgărint MC, Niculiţă M (2014) Comparison and validation of Logistic Regression and Analytic Hierarchy Process models of landslide susceptibility assessment in monoclinic regions. A case study in Moldavian Plateau, N-E Romania. Geophys Research Abstracts 16, EGU 2014–6371

    Google Scholar 

  • Mărgărint MC, Grozavu A, Condorachi D, Pleşcan S, Boamfă I (2010) Geomorphometric features of the built areas of the localities along Iaşi cuesta. Geographia Technica 2:79–89

    Google Scholar 

  • Mărgărint MC, Grozavu A, Patriche CV (2013a) Assessing the spatial variability of coefficients of landslide predictors in different regions of Romania using logistic regression. Nat Hazards Earth Syst Sci 13:3339–3355

    Article  Google Scholar 

  • Mărgărint MC, Juravle DT, Grozavu A, Patriche CV, Pohrib M, Stângă IC (2013b) Large landslide risk assessment in hilly areas. A case study of Huşi town region. It J Eng Geol Environ Book Series 6:275–286

    Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351

    Article  Google Scholar 

  • Meunier P, Uchida T, Hovius N (2013) Landslide patterns reveal the sources of large earthquakes. Earth Planet Sci Lett 363:27–33

    Article  Google Scholar 

  • Micu M (2011) Landslide assessment: from field mapping to risk management. A case-study in the Buzău Subcarpathians. Forum Geografic 10:70–77

    Article  Google Scholar 

  • Mihai B, Săvulescu I, Şandric I, Chiţu Z (2014) Integration of landslide susceptibility assessment in urban development: a case study in Predeal town, Romanian Carpathians. Area. doi:10.1111/area.12123

  • Minea I (2012) The Bahlui hydrographic basin. Hydrological study. “Alex. I. Cuza” Univ. Press, Iaşi (in Romanian)

    Google Scholar 

  • Mondini AC, Viero A, Cavalli M, Marchi L, Herrera G, Guzzetti F (2014) Comparison of event landslide inventories: the Poliaschina catchment test case, Italy. Nat Hazards Earth Syst Sci 14:1749–1759

    Article  Google Scholar 

  • Niculiţă M (2011) A landform classification schema for structural landforms of the Moldavian platform (Romania). In: Hengl T, Evans IS, Wilson JP, Gould M (eds) Geomorphometry 2011. Redlands, CA, pp 129–132

    Google Scholar 

  • Niculiță M (2015) Automatic extraction of landslide flow direction using geometric processing and DEMs. In: Jasiewicz J, Zwoliński Z, Mitasova H, Hengl T (eds) Geomorphometry for Geosciences. Poznań, Poland: Bogucki Wydawnictwo Naukowe, Adam Mickiewicz University in Poznań—Institute of Geoecology and Geoinformation, pp 201–203

    Google Scholar 

  • Niculiţă M, Mărgărint MC (2014) Landslide inventory for the Moldavian Plateau. In: Proceedings of international conference analysis and management of changing risks for natural hazards, 18–19 Nov 2014, Padua, Italy. http://www.changes-itn.eu/Portals/0/Content/2014/Final%20conference/ abstracts/AP3_Abstract_Niculita.pdf

  • Ohmori H, Sugai T (1995) Toward geomorphometric models for estimating landslide dynamics and forecasting landslide occurrence in Japanese mountains. Z Geomorphology Suppl.-Bd. 101:149–164

    Google Scholar 

  • Pătruţ I, Dăneţ T (1987) Le Pre-cambrien (Vendien) et le Cambrien dans la Plate-forme Moldave, Analele Științifice ale Universității “Alex. I. Cuza” din Iaşi (Serie Nouă), s. II-b, XXXIII:26–30

    Google Scholar 

  • Petley DN, Bulmer MH, Murphy W (2002) Patterns of movement in rotational and translational landslides. Geology 30:719–722

    Article  Google Scholar 

  • Pohrib MD, Juravle DT, Niacşu L, Ursu A, Stanciu A, Plătică D (2012) Paleogeography of the chersonian to meotian in the north of Fălciu Hills (Moldavian Platform) based on sedimentological data. Carpath J Earth Environ Sci 7:23–26

    Google Scholar 

  • Poiraud A, Defive E (2011) Morphology and geomorphological significance of relict landslides in the Tertiary basin of Puy-en-Velay (Massif Central, France). Géomorphologie: relief, processus, environnement 3:247–260

    Google Scholar 

  • Popescu ME (1994) A suggested method for reporting landslide causes. Bull IAEG 50:71–74

    Google Scholar 

  • Popescu ME (2002) Landslide causal factors and landslide remedial options, keynote lecture. In: Proceedings of the third international conference on landslides, slope stability and safety of infra-structures, Singapore 61–81

    Google Scholar 

  • Popovici EA, Bălteanu D, Kucsicsa Gh (2013) Assessment of changes in land-use and land-cover pattern in Romania using Corine Land Cover database. Carpath Journ Earth Env Sci 8:195–208

    Google Scholar 

  • Posea G (2005) Geomorfologia României: reliefuri, tipuri, geneză, evoluție, regionare. Editura Fundației “România de Mâine” (in Romanian)

    Google Scholar 

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM, Sezer EA, Goli Jirandeh A, Pradhan B (2014) Assessment of fractal dimension and geometric characteristics of the landslides identified in North of Tehran. Iran. Environ Earth Sci 71:3617–3626

    Article  Google Scholar 

  • Pujină D (2008) Alunecările de teren din Podișul Moldovei. Editura Performantica, Iaşi (in Romanian)

    Google Scholar 

  • Pujină D, Ioniţă I (1996) Present-day variability and intensity of the sliding processes in the Bârlad Tableland. Proc Internat Con Disaster Mitigation, Madras A4:35–40

    Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rotaru A, Oajdea D, Răileanu P (2007) Analysis of the landslide movements. Inter J Geol 1:70–79

    Google Scholar 

  • Schmidt J, Dikau R (2005) Preparatory and triggering factors for slope failure: analyses for two landslides in Bonn, Germany. Z Geomorph NF 49:121–138

    Google Scholar 

  • Selby MJ (1985) Earth’s changing surface: An Introduction to geomorphology. Claredon Press

    Google Scholar 

  • Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic Cartography and Geovisualization. Pearson Education Inc

    Google Scholar 

  • Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global (2014) https://lta.cr.usgs.gov/SRTM1Arc

  • Stângă IC (2012) Bazinul Tutovei. Riscurile naturale și vulnerabilitatea teritoriului, “Editura Universității “Alex. I. Cuza” din Iaşi (in Romanian)

    Google Scholar 

  • Şandric I, Chiţu Z (2009) Landslide inventory for the administrative area of Breaza, Curvature Subcarpathians. Romania. J Maps 7:75–86. doi:10.4113/jom.2009.1051

  • Talaei R (2014) Landslide risk assessment using a multi-method approach in Hashtchin region (NW of Iran). Acta Geod Geophys 49:381–401

    Article  Google Scholar 

  • Tarolli P, Sofia G, Dalla Fontana G (2012) Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Nat Hazards 61:65–83

    Article  Google Scholar 

  • Tonini M, Pedrazzini A, Penna I, Jaboyedoff M (2014) Spatial pattern of landslides in Swiss Rhone Valley. Nat Hazards 73:97–110

    Article  Google Scholar 

  • Travis MR, Elsner GH, Iverson WD, Johnson CG (1975) VIEWIT: computation of seen areas, slope and aspect for land-use planning. USDA F.S. Gen. Tech. Rep. PSW-11/1975, p 70, Berkeley, California, USA

    Google Scholar 

  • Trigila A, Iadanza C, Spizzichino D (2010) Quality assessment of the Italian Landslide Inventory using GIS processing. Landslides 7:455–470

    Article  Google Scholar 

  • Ungureanu A (1993) Geografia podișurilor și câmpiilor României. Editura Universității “Alex. I. Cuza” din Iaşi (in Romanian)

    Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Moyersons J, Nyssen J, Van Beek LPH (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67:351–363

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Govers G, Verstraeten G, Demoulin A (2007) Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256:588–603

    Article  Google Scholar 

  • Van Den Eeckhaut M, Reicchenbach P, Guzzetti F, Rossi M, Poesen J (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes Belgium. Nat Hazards Earth Syst Sci 9:507–521

    Article  Google Scholar 

  • Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessment in the Champagne-Ardenne region (France). Geomorphology 115:141–155

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: transportation research board. National Academy of Sciences, Washington, DC, pp 11–33

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Yin J, Chen J, Xu X, Wang X, Zheng Y (2010) The characteristics of the landslides triggered by the Wenchuan Ms 8.0 earthquake from Anxian to Beichuan. J Asian Earth Sci 37:452–459

    Article  Google Scholar 

  • Zhao C, Chen W, Wang Q, Wu Y, Yang B (2015) A comparative study of statistical index and certainty factor models in landslide susceptibility mapping: a case study for the Shangzhou District, Shaanxi Province, China. Arab J Geosci 11:9079–9088

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge partial support of Mihai Niculiţă by the European Social Fund in Romania, under the responsibility of the Managing Authority for the Sectoral Operational Program for Human Resources Development 2007–2013 [grant POSDRU/159/1.5/S/133391]. We are grateful to Prut–Bârlad Water Administration who provided us with the LIDAR data. We have used the computational facilities given by the infrastructure provided through the POSCCE-O 2.2.1, SMIS-CSNR 13984-901, No. 257/28.09.2010 Project, CERNESIM (L4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Ciprian Mărgărint .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mărgărint, M.C., Niculiţă, M. (2017). Landslide Type and Pattern in Moldavian Plateau, NE Romania. In: Radoane, M., Vespremeanu-Stroe, A. (eds) Landform Dynamics and Evolution in Romania. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-32589-7_12

Download citation

Publish with us

Policies and ethics