Real-Time Strategy Synthesis for Timed-Arc Petri Net Games via Discretization

  • Peter Gjøl JensenEmail author
  • Kim Guldstrand Larsen
  • Jiří Srba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9641)


Automatic strategy synthesis for a given control objective can be used to generate correct-by-construction controllers of reactive systems. The existing symbolic approach for continuous timed games is a computationally hard task and current tools like UPPAAL TiGa often scale poorly with the model complexity. We suggest an explicit approach for strategy synthesis in the discrete-time setting and show that even for systems with closed guards, the existence of a safety discrete-time strategy does not imply the existence of a safety continuous-time strategy and vice versa. Nevertheless, we prove that the answers to the existence of discrete-time and continuous-time safety strategies coincide on a practically motivated subclass of urgent controllers that either react immediately after receiving an environmental input or wait with the decision until a next event is triggered by the environment. We then develop an on-the-fly synthesis algorithm for discrete timed-arc Petri net games. The algorithm is implemented in our tool TAPAAL and based on the experimental evidence, we discuss the advantages of our approach compared to the symbolic continuous-time techniques.



The research leading to these results has received funding from the EU FP7 FET projects CASSTING and SENSATION, the project DiCyPS funded by the Innovation Fund Denmark, the Sino Danish Research Center IDEA4CPS and the ERC Advanced Grant LASSO. The third author is partially affiliated with FI MU, Brno, Czech Republic.


  1. 1.
    SYNT 2015. Electronic Proceedings in Theoretical Computer Science (2015).
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andersen, M., Larsen, H.G., Srba, J., Sørensen, M.G., Haahr Taankvist, J.: Verification of liveness properties on closed timed-arc Petri nets. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS, vol. 7721, pp. 69–81. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-TiGa: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W., Hendriks, M.: UPPAAL 4.0. In: Third International Conference on Quantitative Evaluation of Systems, pp. 125–126 (2006)Google Scholar
  6. 6.
    Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Third International Conference on Quantitative Evaluation of Systems, pp. 123–124. IEEE Computer Society (2006)Google Scholar
  7. 7.
    Birch, S.V., Jacobsen, T.S., Jensen, J.J., Moesgaard, C., Nørgaard Samuelsen, N., Srba, J.: Interval abstraction refinement for model checking of timed-arc Petri nets. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 237–251. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS. In: Proceedings of the IFIP WG6.1 Tenth International Symposium on Protocol Specification, Testing and Verification X, North-Holland, pp. 395–408 (1990)Google Scholar
  9. 9.
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Church, A.: Application of recursive arithmetic to the problem of circuit synthesis. J. Symbolic Logic 28(4), 289–290 (1963)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians (Stockholm, 1962), pp. 23–35. Institute Mittag-Leffler (1963)Google Scholar
  14. 14.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Third Edition, 3rd edn. The MIT Press (2009). ISBN: 0262033844 9780262033848Google Scholar
  15. 15.
    David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.: TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  17. 17.
    Finkbeiner, B.: Bounded synthesis for Petri games. In: Meyer, R., et al. (eds.) Olderog-Festschrift. LNCS, vol. 9360, pp. 223–237. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Finkbeiner, B., Olderog, E.: Petri games: synthesis of distributed systems with causal memory. In: Proceedings Fifth International Symposium on Games, Automata, Logics and Formal Verification, vol. 161 of EPTCS, pp. 217–230 (2014)Google Scholar
  19. 19.
    Finkbeiner, B., Peter, H.-J.: Template-based controller synthesis for timed systems. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 392–406. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Contributions to the Theory of Games. Annals of Mathematics Studies, no. 28, vol. 2, pp. 245–266. Princeton University Press, Princeton, N.J (1953)Google Scholar
  21. 21.
    Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time Petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 418–423. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Gurevich, Y.: Games people play. In: Lane, S.M., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 517–524. Springer, Berlin (1990)Google Scholar
  23. 23.
    Hanisch, H.-M.: Analysis of place/transition nets with timed arcs and its application to batch process control. In: Marsan, M.A. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 282–299. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  24. 24.
    Jensen, P.G., Larsen, K.G., Srba, J., Sørensen, M.G., Taankvist, J.H.: Memory efficient data structures for explicit verification of timed systems. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 307–312. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Jørgensen, K.Y., Larsen, K.G., Srba, J.: Time-darts: a data structure for verification of closed timed automata. In: Proceedings Seventh Conference on Systems Software Verification, vol. 102 of EPTCS, pp. 141–155. Open Publishing Association (2012)Google Scholar
  26. 26.
    Kempf, J.-F., Bozga, M., Maler, O.: As soon as probable: optimal scheduling under stochastic uncertainty. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 385–400. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Larsen, K.G., Wang, Y.: Time-abstracted bisimulation: implicit specifications and decidability. Inf. Comput. 134(2), 75–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points (extended abstract). In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 53–66. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. 29.
    Maler, O., Larsen, K.G., Krogh, B.H.: On zone-based analysis of duration probabilistic automata. In: Proceedings 12th International Workshop on Verification of Infinite-State Systems, vol.39 of EPTCS, pp. 33–46 (2010)Google Scholar
  30. 30.
    Mateo, J.A., Srba, J., Sørensen, M.G.: Soundness of timed-arc workflow nets in discrete and continuous-time semantics. Fundamenta Informaticase 140(1), 89–121 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Peter, H.: Component-based abstraction refinement for timed controller synthesis. In: IEEE, pp. 364–374. IEEE Computer Society (2009)Google Scholar
  32. 32.
    Peter, H.-J., Ehlers, R., Mattmüller, R.: Synthia: verification and synthesis for timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 649–655. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Pnueli, A., Asarin, E., Maler, O., Sifakis, J.: Controller synthesis for timed automata. System Structure and Control. Citeseer, Elsevier (1998)Google Scholar
  34. 34.
    Raskin, J.F., Samuelides, M., Begin, L.V.: Petri games are monotone but difficult to decide. Technical report, Université Libre De Bruxelles (2003)Google Scholar
  35. 35.
    Ruiz, V.V., Cuartero Gomez, F., de Frutos Escrig, D.: On non-decidability of reachability for timed-arc Petri nets. In: Proceedings of the 8th International Workshop on Petri Nets and Performance Models, pp. 188–196 (1999)Google Scholar
  36. 36.
    Zhou, Q., Wang, M., Dutta, S.P.: Generation of optimal control policy for flexible manufacturing cells: a Petri net approach. Int. J. Adv. Manuf. Technol. 10(1), 59–65 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter Gjøl Jensen
    • 1
    Email author
  • Kim Guldstrand Larsen
    • 1
  • Jiří Srba
    • 1
  1. 1.Department of Computer ScienceAalborg UniversityAalborg EastDenmark

Personalised recommendations