Force Control

Abstract

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

6-D

six-dimensional

DOF

degree of freedom

PD

proportional–derivative

PI

proportional–integral

RCC

remote center of compliance

References

  1. 9.1
    T.L. De Fazio, D.S. Seltzer, D.E. Whitney: The instrumented remote center of compliance, Ind. Robot 11(4), 238–242 (1984)Google Scholar
  2. 9.2
    J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robotics Res. 7(4), 18–33 (1988)CrossRefGoogle Scholar
  3. 9.3
    I. Nevins, D.E. Whitney: The force vector assembler concept, Proc. 1 CISM-IFToMM Symp. Theory Pract. Robotics Manip., Udine (1973)Google Scholar
  4. 9.4
    M.T. Mason, J.K. Salisbury: Robot Hands and Mechanics of Manipulation (MIT Press, Cambridge 1985)Google Scholar
  5. 9.5
    J.Y.S. Luh, W.D. Fisher, R.P.C. Paul: Joint torque control by direct feedback for industrial robots, IEEE Trans. Autom. Control 28, 153–161 (1983)CrossRefMATHGoogle Scholar
  6. 9.6
    G. Hirzinger, N. Sporer, A. Albu-Schäffer, M. Hähnle, R. Krenn, A. Pascucci, R. Schedl: DLR's torque-controlled light weight robot III – Are we reaching the technological limits now?, Proc. IEEE Int. Conf. Robotics Autom., Washington (2002) pp. 1710–1716Google Scholar
  7. 9.7
    N. Hogan: Impedance control: An approach to manipulation: Parts I–III, ASME J. Dyn. Syst. Meas. Control 107, 1–24 (1985)CrossRefMATHGoogle Scholar
  8. 9.8
    H. Kazerooni, T.B. Sheridan, P.K. Houpt: Robust compliant motion for manipulators. Part I: The fundamental concepts of compliant motion, IEEE J. Robotics Autom. 2, 83–92 (1986)CrossRefGoogle Scholar
  9. 9.9
    J.K. Salisbury: Active stiffness control of a manipulator in Cartesian coordinates, 19th IEEE Conf. Decis. Control, Albuquerque (1980) pp. 95–100Google Scholar
  10. 9.10
    D.E. Whitney: Force feedback control of manipulator fine motions, ASME J. Dyn. Syst. Meas. Control 99, 91–97 (1977)CrossRefGoogle Scholar
  11. 9.11
    M.T. Mason: Compliance and force control for computer controlled manipulators, IEEE Trans. Syst. Man Cybern. 11, 418–432 (1981)CrossRefGoogle Scholar
  12. 9.12
    J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robotics Res. 7(4), 3–17 (1988)CrossRefGoogle Scholar
  13. 9.13
    M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, ASME J. Dyn. Syst. Meas. Control 103, 126–133 (1981)CrossRefGoogle Scholar
  14. 9.14
    T. Yoshikawa: Dynamic hybrid position/force control of robot manipulators – Description of hand constraints and calculation of joint driving force, IEEE J. Robotics Autom. 3, 386–392 (1987)CrossRefGoogle Scholar
  15. 9.15
    N.H. McClamroch, D. Wang: Feedback stabilization and tracking of constrained robots, IEEE Trans. Autom. Control 33, 419–426 (1988)MathSciNetCrossRefMATHGoogle Scholar
  16. 9.16
    J.K. Mills, A.A. Goldenberg: Force and position control of manipulators during constrained motion tasks, IEEE Trans. Robotics Autom. 5, 30–46 (1989)CrossRefGoogle Scholar
  17. 9.17
    O. Khatib: A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE J. Robotics Autom. 3, 43–53 (1987)CrossRefGoogle Scholar
  18. 9.18
    L. Villani, C. Canudas de Wit, B. Brogliato: An exponentially stable adaptive control for force and position tracking of robot manipulators, IEEE Trans. Autom. Control 44, 798–802 (1983)MathSciNetCrossRefMATHGoogle Scholar
  19. 9.19
    S. Chiaverini, L. Sciavicco: The parallel approach to force/position control of robotic manipulators, IEEE Trans. Robotics Autom. 9, 361–373 (1993)CrossRefGoogle Scholar
  20. 9.20
    D.E. Whitney: Historical perspective and state of the art in robot force control, Int. J. Robotics Res. 6(1), 3–14 (1987)CrossRefGoogle Scholar
  21. 9.21
    M. Vukobratović, Y. Nakamura: Force and contact control in robotic systems, Proc. IEEE Int. Conf. Robotics Autom., Atlanta (1993)Google Scholar
  22. 9.22
    J. De Schutter, H. Bruyninckx, W.H. Zhu, M.W. Spong: Force control: A bird's eye view. In: Control Problems in Robotics and Automation, ed. by K.P. Valavanis, B. Siciliano (Springer, London 1998) pp. 1–17Google Scholar
  23. 9.23
    D.M. Gorinevski, A.M. Formalsky, A.Y. Schneider: Force Control of Robotics Systems (CRC, Boca Raton 1997)MATHGoogle Scholar
  24. 9.24
    B. Siciliano, L. Villani: Robot Force Control (Kluwer, Boston 1999)CrossRefMATHGoogle Scholar
  25. 9.25
    D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Control 104, 65–77 (1982)CrossRefMATHGoogle Scholar
  26. 9.26
    N. Hogan: On the stability of manipulators performing contact tasks, IEEE J. Robotics Autom. 4, 677–686 (1988)CrossRefGoogle Scholar
  27. 9.27
    H. Kazerooni: Contact instability of the direct drive robot when constrained by a rigid environment, IEEE Trans. Autom. Control 35, 710–714 (1990)CrossRefMATHGoogle Scholar
  28. 9.28
    R. Kelly, R. Carelli, M. Amestegui, R. Ortega: Adaptive impedance control of robot manipulators, IASTED Int. J. Robotics Autom. 4(3), 134–141 (1989)Google Scholar
  29. 9.29
    R. Colbaugh, H. Seraji, K. Glass: Direct adaptive impedance control of robot manipulators, J. Robotics Syst. 10, 217–248 (1993)CrossRefMATHGoogle Scholar
  30. 9.30
    Z. Van Lu, A.A. Goldenberg: Robust impedance control and force regulation: Theory and experiments, Int. J. Robotics Res. 14, 225–254 (1995)CrossRefGoogle Scholar
  31. 9.31
    R.J. Anderson, M.W. Spong: Hybrid impedance control of robotic manipulators, IEEE J. Robotics Autom. 4, 549–556 (1986)CrossRefGoogle Scholar
  32. 9.32
    J. Lončarić: Normal forms of stiffness and compliance matrices, IEEE J. Robotics Autom. 3, 567–572 (1987)CrossRefGoogle Scholar
  33. 9.33
    T. Patterson, H. Lipkin: Structure of robot compliance, ASME J. Mech. Design 115, 576–580 (1993)CrossRefGoogle Scholar
  34. 9.34
    E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: Part I – General theory and geometric potential function method, ASME J. Dyn. Syst. Meas. Control 120, 496–500 (1998)CrossRefGoogle Scholar
  35. 9.35
    E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: Part II – Exponential and generalized coordinate method, ASME J. Dyn. Syst. Meas. Control 120, 501–506 (1998)CrossRefGoogle Scholar
  36. 9.36
    R.L. Hollis, S.E. Salcudean, A.P. Allan: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: Design, modeling and control, IEEE Trans. Robotics Autom. 7, 320–333 (1991)CrossRefGoogle Scholar
  37. 9.37
    M.A. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robotics Autom. 6, 473–482 (1990)CrossRefGoogle Scholar
  38. 9.38
    J.M. Shimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robotics Autom. 8, 213–227 (1992)CrossRefGoogle Scholar
  39. 9.39
    E.D. Fasse, J.F. Broenink: A spatial impedance controller for robotic manipulation, IEEE Trans. Robotics Autom. 13, 546–556 (1997)CrossRefGoogle Scholar
  40. 9.40
    F. Caccavale, C. Natale, B. Siciliano, L. Villani: Six-DOF impedance control based on angle/axis representations, IEEE Trans. Robotics Autom. 15, 289–300 (1999)CrossRefGoogle Scholar
  41. 9.41
    F. Caccavale, C. Natale, B. Siciliano, L. Villani: Robot impedance control with nondiagonal stiffness, IEEE Trans. Autom. Control 44, 1943–1946 (1999)MathSciNetCrossRefMATHGoogle Scholar
  42. 9.42
    S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems – A Coordinate Free Approach (Springer, London 2001)MATHGoogle Scholar
  43. 9.43
    C. Ott: Cartesian Impedance Control of Redundant and Flexible-Joint Robots, Springer Tracts in Advanced Robotics (STAR) (Springer, Berlin, Heidelberg 2008)Google Scholar
  44. 9.44
    C. Ott, A. Albu-Schäffer, A. Kugi, G. Hirzinger: On the passivity based impedance control of flexible joint robots, IEEE Trans. Robotics 24, 416–429 (2008)CrossRefGoogle Scholar
  45. 9.45
    H. Bruyninckx, J. De Schutter: Specification of Force-controlled actions in the task frame formalism – A synthesis, IEEE Trans. Robotics Autom. 12, 581–589 (1996)CrossRefGoogle Scholar
  46. 9.46
    H. Lipkin, J. Duffy: Hybrid twist and wrench control for a robotic manipulator, ASME J. Mech. Design 110, 138–144 (1988)Google Scholar
  47. 9.47
    J. Duffy: The fallacy of modern hybrid control theory that is based on orthogonal complements of twist and wrench spaces, J. Robotics Syst. 7, 139–144 (1990)CrossRefGoogle Scholar
  48. 9.48
    K.L. Doty, C. Melchiorri, C. Bonivento: A theory of generalized inverses applied to robotics, Int. J. Robotics Res. 12, 1–19 (1993)CrossRefGoogle Scholar
  49. 9.49
    T. Patterson, H. Lipkin: Duality of constrained elastic manipulation, Proc. IEEE Conf. Robotics Autom., Sacramento (1991) pp. 2820–2825Google Scholar
  50. 9.50
    J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimation first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robotics Res. 18(12), 1161–1184 (1999)CrossRefGoogle Scholar
  51. 9.51
    T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyedral contact formation identification for auntonomous compliant motion, IEEE Trans. Robotics Autom. 19, 26–41 (2007)CrossRefGoogle Scholar
  52. 9.52
    J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aerbeliën, K. Claes, H. Bruyninckx: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty, Int. J. Robotics Res. 26(5), 433–455 (2007)CrossRefGoogle Scholar
  53. 9.53
    A. De Luca, C. Manes: Modeling robots in contact with a dynamic environment, IEEE Trans. Robotics Autom. 10, 542–548 (1994)CrossRefGoogle Scholar
  54. 9.54
    T. Yoshikawa, T. Sugie, N. Tanaka: Dynamic hybrid position/force control of robot manipulators – Controller design and experiment, IEEE J. Robotics Autom. 4, 699–705 (1988)CrossRefGoogle Scholar
  55. 9.55
    J. De Schutter, D. Torfs, H. Bruyninckx, S. Dutré: Invariant hybrid force/position control of a velocity controlled robot with compliant end effector using modal decoupling, Int. J. Robotics Res. 16(3), 340–356 (1997)CrossRefGoogle Scholar
  56. 9.56
    R. Lozano, B. Brogliato: Adaptive hybrid force-position control for redundant manipulators, IEEE Trans. Autom. Control 37, 1501–1505 (1992)MathSciNetCrossRefMATHGoogle Scholar
  57. 9.57
    L.L. Whitcomb, S. Arimoto, T. Naniwa, F. Ozaki: Adaptive model-based hybrid control if geometrically constrained robots, IEEE Trans. Robotics Autom. 13, 105–116 (1997)CrossRefGoogle Scholar
  58. 9.58
    B. Yao, S.P. Chan, D. Wang: Unified formulation of variable structure control schemes for robot manipulators, IEEE Trans. Autom. Control 39, 371–376 (1992)MathSciNetMATHGoogle Scholar
  59. 9.59
    S. Chiaverini, B. Siciliano, L. Villani: Force/position regulation of compliant robot manipulators, IEEE Trans. Autom. Control 39, 647–652 (1994)CrossRefMATHGoogle Scholar
  60. 9.60
    J.T.-Y. Wen, S. Murphy: Stability analysis of position and force control for robot arms, IEEE Trans. Autom. Control 36, 365–371 (1991)MathSciNetCrossRefMATHGoogle Scholar
  61. 9.61
    R. Volpe, P. Khosla: A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Trans. Autom. Control 38, 1634–1650 (1993)MathSciNetCrossRefGoogle Scholar
  62. 9.62
    L.S. Wilfinger, J.T. Wen, S.H. Murphy: Integral force control with robustness enhancement, IEEE Control Syst. Mag. 14(1), 31–40 (1994)CrossRefGoogle Scholar
  63. 9.63
    S. Katsura, Y. Matsumoto, K. Ohnishi: Modeling of force sensing and validation of disturbance observer for force control, IEEE Trans. Ind. Electron. 54, 530–538 (2007)CrossRefGoogle Scholar
  64. 9.64
    A. Stolt, M. Linderoth, A. Robertsson, R. Johansson: Force controlled robotic assembly without a force sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1538–1543Google Scholar
  65. 9.65
    S.D. Eppinger, W.P. Seering: Introduction to dynamic models for robot force control, IEEE Control Syst. Mag. 7(2), 48–52 (1987)CrossRefGoogle Scholar
  66. 9.66
    C.H. An, J.M. Hollerbach: The role of dynamic models in Cartesian force control of manipulators, Int. J. Robotics Res. 8(4), 51–72 (1989)CrossRefGoogle Scholar
  67. 9.67
    R. Volpe, P. Khosla: A theoretical and experimental investigation of impact control for manipulators, Int. J. Robotics Res. 12, 351–365 (1993)CrossRefGoogle Scholar
  68. 9.68
    J.K. Mills, D.M. Lokhorst: Control of robotic manipulators during general task execution: A discontinuous control approach, Int. J. Robotics Res. 12, 146–163 (1993)CrossRefGoogle Scholar
  69. 9.69
    T.-J. Tarn, Y. Wu, N. Xi, A. Isidori: Force regulation and contact transition control, IEEE Control Syst. Mag. 16(1), 32–40 (1996)CrossRefGoogle Scholar
  70. 9.70
    B. Brogliato, S. Niculescu, P. Orhant: On the control of finite dimensional mechanical systems with unilateral constraints, IEEE Trans. Autom. Control 42, 200–215 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Mechanical EngineeringUniversity of Leuven (KU Leuven)Leuven-HeverleeBelgium

Personalised recommendations