Robotics for Education

  • David P. MillerEmail author
  • Illah Nourbakhsh
Part of the Springer Handbooks book series (SHB)


Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.


Autism Spectrum Disorder Mobile Robot Robot Controller Computational Thinking Robot Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Association for the Advancement of Artificial Intelligence


autism spectrum disorder


boosting engineering science and technology


Children’s Innovation Project


direct current


European Conference on Educational Robotics


For Inspiration and Recognition of Science and Technology


Global Conference on Educational Robotics


graphical user interface


human–computer interaction




information and communication technology


integrated development environment


Institute of Electrical and Electronics Engineers




KISS Institute for Practical Robotics


light-emitting diode


Micro robot maze contest


Monterey Bay Aquarium Research Institute


mechanical engeneering


International Symposium on Micro Mechatronics and Human Science


National Aeronautics and Space Agency


personal computer


polyvinyl chloride


random access memory


radio control


remotely operated vehicle


science, technology, engineering and mathematics


Trinity College’s Firefighting Robot Contest


universal serial bus


  1. 79.1
    KIPR: Botball robotics education, (2009)
  2. 79.2
    R. Manseur: Hardware competitions in engineering education, Front. Educ. Conf., Vol. 2 (2000), pp. F3C/5–F3C/8Google Scholar
  3. 79.3
    Robo Cup Junior: (2013)
  4. 79.4
    C. Stein: Botball: Autonomous students engineering autonomous robots, Comput. Educ. J. 13(2), 72–80 (2003)Google Scholar
  5. 79.5
    FIRST: FIRST, (2006)
  6. 79.6
    R. Siegwart: Grasping the interdisciplinarity of mechatronics, IEEE Robotics Autom. Mag. 8(2), 27–34 (2001)CrossRefGoogle Scholar
  7. 79.7
    R.D. Beer, H.J. Chiel, R.F. Drushel: Using autonomous robotics to teach science and engineering, Communication ACM 42(6), 85–92 (1999)CrossRefGoogle Scholar
  8. 79.8
    A. Billard: Robota, clever toy and educational tool, Robotics Auton. Syst. 42, 259–269 (2003)CrossRefzbMATHGoogle Scholar
  9. 79.9
    P. Coppin: Eventscope: A telescience interface for internet-based education, Proc. SPIE Telemanipulator Telepresence Technol., Vol. 8 (2002)Google Scholar
  10. 79.10
    B. Fagin: Ada/mindstorms 3.0, IEEE Robotics Autom. Mag. 10(2), 19–24 (2003)CrossRefGoogle Scholar
  11. 79.11
    R.S. Hobson: The changing face of classroom instructional methods: service learning and design in a robotics course, IEEE Front. Educ. Conf., Kansas City, Vol. 2 (2000), pp. F3C/20–F3C/25Google Scholar
  12. 79.12
    D. Kumar, L. Meeden: A robot laboratory for teaching artificial intelligence, ACM SIGCSE Bull. 30(1), 341–344 (1998)CrossRefGoogle Scholar
  13. 79.13
    J. Schumacher, D. Welch, D. Raymod: Teaching introductory programming, problem solving and information technology with robots at West Point, Proc. IEEE 31st Front. Educ. Conf., Vol. 2 (2001)Google Scholar
  14. 79.14
    E. Wang: Teaching freshmen design, creativity and programming with legos and labview, IEEE Front. Educ. Conf. (2001), pp. F3G–11–15Google Scholar
  15. 79.15
    U. Wolz: Teaching design and project management with lego RCX robots, ACM SIGCSE Bull. 33(1), 95–99 (2001)CrossRefGoogle Scholar
  16. 79.16
    J.K. Archibald, R.W. Beard: Goal! robot soccer for undergraduate students, IEEE Robotics Autom. Mag. 11(1), 70–75 (2004)CrossRefGoogle Scholar
  17. 79.17
    A. Gage, R.R. Murphy: Principles and experiences in using legos to teach behavioural robotics, IEEE 33rd Front. Educ. Conf., Sarasota, Vol. 2 (2003)Google Scholar
  18. 79.18
    E. Kolberg, N. Orlev: Robotics learning as a tool for integrating science technology curriculum in K-12 schools, IEEE Front. Educ. Conf., Vol. 1 (2001), pp. T2E–12–13Google Scholar
  19. 79.19
    B.A. Maxwell, L. Meeden: Integrating robotics research with undergraduate education, IEEE Intell. Syst. 15(6), 22–27 (2000)CrossRefGoogle Scholar
  20. 79.20
    A. Nagchaudhuri, G. Singh, M. Kaur, S. George: Lego robotics products boost student creativity in precollege programs at UMES, Front. Educ. Conf. (2002) p. 3,S4D–1–S4D–6Google Scholar
  21. 79.21
    C. Stein, K. Nickerson: Botball robotics and gender differences in middle school teams, Proc. ASEE Annu. Conf., Salt Lake City (2004)Google Scholar
  22. 79.22
    J.B. Weinberg, J.C. Pettibone, S.L. Thomas, M.L. Stephen, C. Stein: The impact of robot projects on girls’ attitudes toward science and engineering, Proc. RSS Robotics Educ. Workshop, Atlanta (2007)Google Scholar
  23. 79.23
    T. Fong, I. Nourbakhsh, K. Dautenhahn: A survey of socially interactive robots, Robotics Autom. Syst. 42(3), 143–166 (2003)CrossRefzbMATHGoogle Scholar
  24. 79.24
    F. Martin, B. Mikhak, M. Resnick, B. Silverman, R. Berg: To mindstorms and beyond: Evolution of a construction kit for magical machines. In: Robots for Kids, ed. by A. Druin, J. Hendler (Morgan Kaufmann, San Francisco 2000) pp. 10–32Google Scholar
  25. 79.25
    M. Cooper, D. Keating, W. Harwin, K. Dautenhahn: Robots in the Classroom – Tools for Accessible Education (IOS, Amsterdam 1999)Google Scholar
  26. 79.26
    C. Pomalaza-Raez, B.H. Groff: Retention 101: Where robots go … students follow, J. Eng. Educ. 92(1), 85–90 (2003)CrossRefGoogle Scholar
  27. 79.27
    KIPR: Open autonomous robotics game, (2013)
  28. 79.28
    R.R. Murphy: Using robot competitions to promote intellectual development, AI Magazine 21(1), 77–90 (2000)Google Scholar
  29. 79.29
    D.P. Miller, C. Stein: So that’s what Pi is for! And other Educational Epiphanies from Hands-on Robotics. In: Robots for Kids, ed. by A. Druin, J. Hendler (Morgan Kaufmann, San Francisco 2000) pp. 219–243Google Scholar
  30. 79.30
    I. Vernor, D. Ahlgren, D.P. Miller: Olympiads: A new means to integrate theory and practice in robotics, Proc. ASEE Natl. Conf. (2006)Google Scholar
  31. 79.31
    NASA Robotics Alliance Project: Education matrix, (2006)
  32. 79.32
    6.270 Organizers: The history of 6.270 – MIT’s autonomous robot design competition, (MIT, Cambridge 2005)
  33. 79.33
    BEST Robotics: Middle and high school robotics competition, (BEST Robotics Inc., Auburn 2006)
  34. 79.34
    D. Ahlgren: Trinity college fire fighting home robot contest, (Trinity College, Hartford 2006)
  35. 79.35
    Fuji Soft ABC, Inc.: Fsi-all japan robot-sumo tournament, (2006)
  36. 79.36
    IMRMC Organizers: International micro robot maze contest, (2012)
  37. 79.37
  38. 79.38
    RoboCup Federation:
  39. 79.39
    Robotics Education & Competition Foundation: (2012)
  40. 79.40
    D. Nardi, M. Riedmiller, C. Sammut, J. Santos-Victor (Eds.): RoboCup 2004: Robot Soccer World Cup VIII, Lecture Notes in Computer Science, Vol. 3276 (Springer, Berlin, Heidelberg 2005)Google Scholar
  41. 79.41
    R. Tucker: Balch, Holly A. Yanco: Ten years of the AAAI mobile robot competition and exhibition, AI Magazine 23(1), 13–22 (2002)Google Scholar
  42. 79.42
    Robot Challenge: (2013)
  43. 79.43
    KIPR: Global conference on educational robotics, (2013)
  44. 79.44
    D.P. Miller: Robot contests at GCER 2011, IEEE Robotics Autom. Mag. 18(4), 10–12 (2011)CrossRefGoogle Scholar
  45. 79.45
    PRIA: European conference on educational robotics, (2013)
  46. 79.46
    Honda: Asimo: The world’s most advanced humanoid robot,
  47. 79.47 An open source cognitive humanoid robotics platform,
  48. 79.48
  49. 79.49
    Parallax Inc.: The scribbler 2, (2012)
  50. 79.50
    LOGO Foundation: A logo primer or what’s with the turtle, (2000)
  51. 79.51
    V. Asper, W. Smith, C. Lee, J. Gobat, K. Heywood, B. Queste, M. Dinniman: Using gliders to study a phytoplankton bloom in the ross sea, antarctica, IEEE OCEANS (2011) pp. 1–7Google Scholar
  52. 79.52
    C.M. Clark, C.S. Olstad, K. Buhagiar, T. Gambin: Archaeology via underwater robots: Mapping and localization within maltese cistern systems, IEEE 10th Int. Conf. Control Autom. Robotics Vis. (ICARCV) (2008) pp. 662–667Google Scholar
  53. 79.53
    M. Theberge, G. Dudek: Gone swimmin' (seagoing robots), IEEE Spectrum 43(6), 38–43 (2006)CrossRefGoogle Scholar
  54. 79.54
    MBARI: Build your own ROV,
  55. 79.55
    S.W. Moore, H. Bohm, V. Jensen: Underwater Robotics: Science, Design & Fabrication (MATEU, Monterey 2010)Google Scholar
  56. 79.56
    Marine Tech: Marine tech – ROV competition, (2013)
  57. 79.57
    F. Gudaitis: The first days of RC, Model Airplane News, April (2011)Google Scholar
  58. 79.58
    AIAA: Student design-build-fly competition, (2013)
  59. 79.59
    Speedfest: (2013)
  60. 79.60
    R. Mahony, V. Kumar, P. Corke: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor, IEEE Robotics Autom. Mag. 19(3), 20–32 (2012)CrossRefGoogle Scholar
  61. 79.61
    S. Lupashin, A. Schöllig, M. Sherback, R. D’Andrea: A simple learning strategy for high-speed quadrocopter multi-flips, IEEE Int. Conf. Robotics Autom. (ICRA) (2010), pp 1642 –1648Google Scholar
  62. 79.62
    J. Meyer: A low cost, vision based micro helicopter system for education and control experiments, Master’s Thesis (Univ. of Oklahoma School of Aerospace & Mechanical Engineering, Norman 2014)Google Scholar
  63. 79.63
    J.L. Jones, A.M. Flynn: Mobile Robots: Inspiration to Implementation (Peters, Natick 1993)zbMATHGoogle Scholar
  64. 79.64
  65. 79.65
    J. Lahart: Taking an open-source approach to hardware, The Wall Street Journal, November 27 (2009)Google Scholar
  66. 79.66
  67. 79.67
  68. 79.68
    D.P. Miller, M. Oelke, M.J. Roman, J. Villatoro, C.N. Winton: The cbc: A linux-based low-cost mobile robot controller, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010)Google Scholar
  69. 79.69
    G. Mitsuoka: CBC v2 controller: Brings ease of use as well as speed, power and vision to small robots, Robot Mag. 29, 82–85 (2011)Google Scholar
  70. 79.70
    D. Shiffman: Interview with Casey Reas and Ben Fry, (2009)
  71. 79.71
    H. Barragán, B. Hagman, A. Brevig: Wiring, (2011)
  72. 79.72
    B.J. Duch, S.E. Groh, D.E. Allen: Why problem-based learning. In: The Power of Problem-Based Learning, ed. by B.J. Duch, S.E. Groh, D.E. Allen (Wiley, New York 2011) pp. 3–11Google Scholar
  73. 79.73
    H.A. Yanco, H.J. Kim, F. Martin, L. Silka: Artbotics: Combining art and robotics to broaden participation in computing, Proc. AAAI Spring Symp. Robots Robot Venues, Stanford (2007)Google Scholar
  74. 79.74
    F. Martin, G. Greher, J. Heines, J. Jeffers, H.J. Kim, S. Kuhn, K. Roehr, N. Selleck, L. Silka, H. Yanco: Joining computing and the arts at a mid-size university, J. Comput. Sci. Coll. 24(6), 87–94 (2009)Google Scholar
  75. 79.75
    E. Hamner, T. Lauwers, D. Bernstein, I. Nourbakhsh, C. DiSalvo: Robot diaries: Broadening participation in the computer science pipeline through social technical exploration, AAAI Spring Symp. Using AI to Motiv. Gt. Particip. Comput. Sci. (2008)Google Scholar
  76. 79.76
    A. Renkl: Worked-out examples: Instructional explanations support learning by self-explanations, Learn. Instr. 12(5), 529–556 (2002)CrossRefGoogle Scholar
  77. 79.77
    J.M. Wing: Computational thinking, Communication ACM 49(3), 33–35 (2006)CrossRefGoogle Scholar
  78. 79.78
    J. Countryman, A. Feldman, L. Kekelis, E. Spertus: Developing a hardware and programming curriculum for middle school girls, ACM SIGCSE Bull. 34(2), 44–47 (2002)CrossRefGoogle Scholar
  79. 79.79
    M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, Y. Kafai: Scratch: Programming for all, Communication ACM 52(11), 60–67 (2009)CrossRefGoogle Scholar
  80. 79.80
    J. Mönig, B. Harvey: Build your own blocks (Univ. of California, Berkeley 2010) Google Scholar
  81. 79.81
    W.P. Dann, S. Cooper, R. Pausch: Learning to Program with Alice (Prentice Hall, Upper Saddle River 2011)Google Scholar
  82. 79.82
    T. Lauwers, I. Nourbakhsh: Designing the finch: Creating a robot aligned to computer science concepts, AAAI 1st Symp. Educ. Adv. Artif. Intell. (2010)Google Scholar
  83. 79.83
    T. Lauwers, E. Hamner, I. Nourbakhsh: A strategy for collaborative outreach: Lessons from the csbots project, Proc. 41st ACM Tech. Symp. Comput. Sci. Educ. (2010) pp. 315–319Google Scholar
  84. 79.84
    E.A. Vandewater, V.J. Rideout, E.A. Wartella, X. Huang, J.H. Lee, M. Shim: Digital childhood: Electronic media and technology use among infants, toddlers, and preschoolers, Pediatrics 119(5), e1006–e1015 (2007)CrossRefGoogle Scholar
  85. 79.85
    C. Renaud, B. Wagoner: The gamification of learning, Princ. Leadersh. 12(1), 56–59 (2011)Google Scholar
  86. 79.86
    R. Zevenbergen: Digital natives come to preschool: Implications for early childhood practice, Contemp. Issues Early Child. 8(1), 19–29 (2007)CrossRefGoogle Scholar
  87. 79.87
    J. Nielsen: Heuristic evaluation, Usability Insp. Methods 24, 413 (1994)Google Scholar
  88. 79.88
    S.A. Cohen: Instructional alignment: Searching for a magic bullet, Educ. Res. 16(8), 16–20 (1987)CrossRefGoogle Scholar
  89. 79.89
    T. Lauwwers: Aligning Capabilities of Interactive Educational Tools to Learner Goals, Ph.D. Thesis (Carnegie Mellon Univ., Pittsburgh 2010)Google Scholar
  90. 79.90
    S. Allen: Looking for learning in visitor talk: A methodological exploration. In: Learning Conversations in Museums, ed. by G. Leinhardt, K. Crowley, K. Knutson (Lawrence Erlbaum, Mahwah 2002) pp. 59–303Google Scholar
  91. 79.91
    K. Crowley, M. Callanan: Describing and supporting collaborative scientific thinking in parent-child interactions, J. Mus. Educ. 23(1), 12–17 (1998)CrossRefGoogle Scholar
  92. 79.92
    K. Crowley, M.A. Callanan, J.L. Jipson, J. Galco, K. Topping, J. Shrager: Shared scientific thinking in everyday parent-child activity, Sci. Educ. 85(6), 712–732 (2001)CrossRefGoogle Scholar
  93. 79.93
    G. Leinhardt, K. Crowley: Objects of learning, objects of talk: Changing minds in museums. In: Perspectives on Object-Centered Learning in Museums, ed. by S.G. Paris (Lawrence Erlbaum, Mahwah 2002) pp. 301–324Google Scholar
  94. 79.94
    I. Nourbakhsh, E. Hamner, E. Ayoob, E. Porter, B. Dunlavey, D. Bernstein, K. Crowley, M. Lotter, S. Shelly, T. Hsiu, E. Porter, B. Dunlavey, D. Clancy: The personal exploration rover: Educational assessment of a robotic exhibit for informal learning venues, Int. J. Eng. Educ. 22(4), 777–791 (2006)Google Scholar
  95. 79.95
    M.U. Bers, A.B. Ettinger: Programming robots in kindergarten to express identity: An ethnographic analysis. In: Robots in K-12 Education, ed. by B.S. Barker (Information Science Refernce, Hershey 2012) p. 168CrossRefGoogle Scholar
  96. 79.96
    I.R. Nourbakhsh, K. Crowley, A. Bhave, E. Hamner, T. Hsiu, A. Perez-Bergquist, S. Richards, K. Wilkinson: The robotic autonomy mobile robotics course, Auton. Robots 18(1), 103–127 (2005)CrossRefGoogle Scholar
  97. 79.97
    A. Druin, J. Hendler (Eds.): Robots for Kids: Exploring New Technologies for Learning (Morgan Kaufmann, Boston 2000)Google Scholar
  98. 79.98
    F.G. Martin: Robotic Explorations: A Hands-on Introduction to Engineering (Prentice Hall, Upper Saddle River 2000)Google Scholar
  99. 79.99
    P. Dourish: Where the Action Is: The Foundations of Embodied Interaction (MIT Press, Cambridge 2004)Google Scholar
  100. 79.100
    B.J. Wadsworth: Piaget's theory of Cognitive and Affective Development: Foundations of Constructivism (Longman, New York 1996)Google Scholar
  101. 79.101
    B. Laurel: Computers as Theatre (Addison-Wesley, Reading 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Aerospace and Mechanical EngineeringUniversity of OklahomaNormanUSA
  2. 2.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations