Perceptual Robotics

  • Heinrich Bülthoff
  • Christian Wallraven
  • Martin A. Giese

Abstract

Robots that share their environment with humans need to be able to recognize and manipulate objects and users, perform complex navigation tasks, and interpret and react to human emotional and communicative gestures. In all of these perceptual capabilities, the human brain, however, is still far ahead of robotic systems. Hence, taking clues from the way the human brain solves such complex perceptual tasks will help to design better robots. Similarly, once a robot interacts with humans, its behaviors and reactions will be judged by humans – movements of the robot, for example, should be fluid and graceful, and it should not evoke an eerie feeling when interacting with a user. In this chapter, we present Perceptual Robotics as the field of robotics that takes inspiration from perception research and neuroscience to, first, build better perceptual capabilities into robotic systems and, second, to validate the perceptual impact of robotic systems on the user.

2-D

two-dimensional

3-D

three-dimensional

AIP

anterior interparietal area

AIT

anterior inferotemporal cortex

EBA

extrastriate body part area

fMRI

functional magnetic resonance imaging

GSD

geon structural description

IT

inferotemporal cortex

LGN

lateral geniculate nucleus

MT

medial temporal area

NAP

nonaccidental property

PFC

prefrontal cortex

PIT

posterior inferotemporal cortex

RBC

recognition by-component

RBF

radial basis function

RT

reaction time

STS

superior temporal sulcus

References

  1. 78.1
    D. Marr: Vision (Freeman, San Francisco 1982)Google Scholar
  2. 78.2
    J.A.S. Kelso: Dynamic Patterns: The Self-Organization of Brain and Behaviour (MIT, Cambridge 1995)Google Scholar
  3. 78.3
    G. Schöner, M. Dose, C. Engels: Dynamics of behavior: Theory and applications for autonomous robot architectures, Robotics Auton. Syst. 16, 213–245 (1997)CrossRefGoogle Scholar
  4. 78.4
    J. Tani, M. Ito: Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment, IEEE Trans. Syst. Man Cybern. A 33(4), 481–488 (2003)CrossRefGoogle Scholar
  5. 78.5
    W.H. Warren: The dynamics of perception and action, Psychol. Rev. 113, 358–389 (2006)CrossRefGoogle Scholar
  6. 78.6
    M. Mori: The uncanny valley, Energy 7(4), 33–35 (1970), in JapaneseGoogle Scholar
  7. 78.7
    D.W. Cunningham, C. Wallraven: Experimental Design: From User Studies to Psychophysics (CRC, Boca Raton 2011)CrossRefGoogle Scholar
  8. 78.8
    A. Field, G. Hole: How to Design and Report Experiments (Sage, London 2011)Google Scholar
  9. 78.9
    D. Marr, H. Nishihara: Representation and recognition of the spatial organization of three-dimensional shapes, Proc. R. Soc. B 200, 269–294 (1978)CrossRefGoogle Scholar
  10. 78.10
    I. Biederman: Recognition-by-components: A theory of human image understanding, Psychol. Rev. 94, 115–147 (1987)CrossRefGoogle Scholar
  11. 78.11
    D. Lowe: Perceptual Organization and Visual Recognition (Kluwer, Boston 1985)CrossRefGoogle Scholar
  12. 78.12
    S. Ullman: High-Level Vision. Object Recognition and Visual Cognition (MIT, Cambridge 1996)MATHGoogle Scholar
  13. 78.13
    M.A. Kurbat: Structural description theories: Is RBC/JIM a general-purpose theory of human entry-level object recognition?, Perception 23, 1339–1368 (1994)CrossRefGoogle Scholar
  14. 78.14
    S. Edelman: Representation and Recognition in Vision (MIT, Cambridge 1999)Google Scholar
  15. 78.15
    M. Graf, W. Schneider: Structural descriptions in HIT – A problematic commitment, Behav. Brain Sci. 24, 483–484 (2001)Google Scholar
  16. 78.16
    H.H. Bülthoff, S. Edelman: Psychophysical support for a two-dimensional view interpolation theory of object recognition, Proc. Natl. Acad. Sci. USA 89, 60–64 (1992)CrossRefGoogle Scholar
  17. 78.17
    M.J. Tarr, S. Pinker: Mental orientation and orientation-dependence in shape recognition, Cogn. Psychol. 21, 233–282 (1989)CrossRefGoogle Scholar
  18. 78.18
    W.G. Hayward, M.J. Tarr: Testing conditions for viewpoint invariance in object recognition, J. Exp. Psychol. 23, 1511–1521 (1997)Google Scholar
  19. 78.19
    S.E. Palmer, E. Rosch, P. Chase: Canonical perspective and the perception of objects. In: Attention and Performance IX, ed. by J. Long, A. Baddeley (Erlbaum, Hillsdale 1981) pp. 135–151Google Scholar
  20. 78.20
    H. Hill, P.G. Schyns, S. Akamatsu: Information and viewpoint dependence in face recognition, Cognition 62, 201–222 (1997)CrossRefGoogle Scholar
  21. 78.21
    C. Wallraven, A. Schwaninger, S. Schuhmacher, H.H. Bülthoff: View-based recognition of faces in man and machine: Re-visiting inter-extra-ortho, Lect. Notes Comput. Sci. 2525, 651–660 (2002)MATHCrossRefGoogle Scholar
  22. 78.22
    M.J. Tarr: Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects, Psychon. Bull. Rev. 2, 55–82 (1995)CrossRefGoogle Scholar
  23. 78.23
    R. Lawson, G.W. Humphreys: View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects, Percep. Psychophys. 60, 1052–1066 (1998)CrossRefGoogle Scholar
  24. 78.24
    E. Ashbridge, D.I. Perrett: Generalizing across object orientation and size. In: Perceptual Constancy. Why Things Look as They Do, ed. by V. Walsh, J. Kulikowski (Cambridge Univ. Press, Cambridge 1998) pp. 192–209Google Scholar
  25. 78.25
    M. Dill, S. Edelman: Imperfect invariance to object translation in the discrimination of complex shapes, Perception 30, 707–724 (2001)CrossRefGoogle Scholar
  26. 78.26
    K.R. Cave, S. Pinker, L. Giorgi, C.E. Thomas, L.M. Heller, J.M. Wolfe, H. Lin: The representation of location in visual images, Cogn. Psychol. 26, 1–32 (1994)CrossRefGoogle Scholar
  27. 78.27
    S. Ullman: Aligning pictorial descriptions: An approach to object recognition, Cognition 32, 193–254 (1989)CrossRefGoogle Scholar
  28. 78.28
    S. Ullman, R. Basri: Recognition by linear combinations of models, IEEE Trans. Pattern Anal. Mach. Intell. 13, 992–1006 (1991)CrossRefGoogle Scholar
  29. 78.29
    T. Poggio, S. Edelman: A network that learns to recognize three-dimensional objects, Nature 343, 263–266 (1990)CrossRefGoogle Scholar
  30. 78.30
    D. Perrett, W.M. Oram: Visual recognition based on temporal cortex cells: Viewer-centred processing of pattern configurations, Z. Naturforsch. C 53, 518–541 (1998)Google Scholar
  31. 78.31
    M. Riesenhuber, T. Poggio: Hierarchical models of object recognition in cortex, Nat. Neurosci. 2, 1019–1025 (1999)CrossRefGoogle Scholar
  32. 78.32
    E.T. Rolls, T. Milward: A model of invariant object recognition in the visual system: Learning rules, activation functions, lateral inhibition, and information-based performance measures, Neural Comput. 2(11), 2547–2572 (2000)CrossRefGoogle Scholar
  33. 78.33
    G. Wallis, H.H. Bülthoff: Learning to recognize objects, Trends Cogn. Sci. 3, 22–31 (1999)CrossRefGoogle Scholar
  34. 78.34
    D. Perrett, W.M. Oram, E. Ashbridge: Evidence accumulation in cell populations responsive to faces: An account of generalization of recognition without mental transformations, Cognition 67, 111–145 (1998)CrossRefGoogle Scholar
  35. 78.35
    D.H. Foster, S.J. Gilson: Recognizing novel three-dimensional objects by summing signals from parts and views, Proc. R. Soc. B 269, 1939–1947 (2002)CrossRefGoogle Scholar
  36. 78.36
    H. Sakata: The role of the parietal cortex in grasping, Adv. Neurol. 93, 121–139 (2003)Google Scholar
  37. 78.37
    D.H. Hubel, T.N. Wiesel: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (Lond.) 160, 106–154 (1962)CrossRefGoogle Scholar
  38. 78.38
    G. Wang, M. Tanifuji, K. Tanaka: Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging, Neurosci. Res. 32, 33–46 (1998)CrossRefGoogle Scholar
  39. 78.39
    K. Tanaka: Representation of visual feature objects in the inferotemporal cortex, Neural Netw. 9(8), 1459–1475 (1996)MATHCrossRefGoogle Scholar
  40. 78.40
    K. Grill-Spector, R. Malach: The human visual cortex, Annu. Rev. Neurosci. 27, 649–677 (2004)CrossRefGoogle Scholar
  41. 78.41
    N.K. Logothetis, J. Pauls, H.H. Bülthoff, T. Poggio: View-dependent object recognition by monkeys, Curr. Biol. 4, 401–414 (1994)CrossRefGoogle Scholar
  42. 78.42
    L. Roberts: Machine perception of three-dimensional solids. In: Optical and Electro-Optical Information Processing, ed. by J.T. Tippet (MIT, Cambridge 1965) pp. 159–197Google Scholar
  43. 78.43
    M. Swain, D. Ballard: Color indexing, Int. J. Comput. Vis. 7, 11–32 (1991)CrossRefGoogle Scholar
  44. 78.44
    C. Schmid, R. Mohr: Local greyvalue invariants for image retrieval, IEEE Trans. Pattern Mach. Intell. 19, 530–535 (1997)CrossRefGoogle Scholar
  45. 78.45
    D. Lowe: Distinctive image features from scale invariant keypoints, Int. J. Comput. Vis. 60(2), 90–110 (2004)CrossRefGoogle Scholar
  46. 78.46
    M. Kirby, L. Sirovich: Applications of the Karhunen-Loeve procedure for the characterization of human faces, IEEE Trans. Pattern Mach. Intell. 12, 103–108 (1990)CrossRefGoogle Scholar
  47. 78.47
    B. Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active in-hand object recognition on a humanoid robot, IEEE Trans. Robotics 30(5), 1260–1269 (2014)CrossRefGoogle Scholar
  48. 78.48
    A. Delorme, S. Thorpe: SpikeNET: An event-driven simulation package for modeling large networks of spiking neurons, Netw. Comput. Neural Syst. 14, 613–627 (2003)CrossRefGoogle Scholar
  49. 78.49
    Y. LeCun, F. Huang, L. Bottou: Learning methods for generic object recognition with invariance to pose and lighting, Proc. 2004 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. (2004)Google Scholar
  50. 78.50
    T. Serre, L. Wolf, T. Poggio: Object recognition with features inspired by visual cortex, Proc. 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. (2005)Google Scholar
  51. 78.51
    S. Thorpe, D. Fize, C. Marlot: Speed of processing in the human visual system, Nature 381(6582), 520–522 (1996)CrossRefGoogle Scholar
  52. 78.52
    J.J. DiCarlo, D. Zoccolan, N.C. Rust: How does the brain solve visual object recognition?, Neuron 73(3), 415–434 (2012)CrossRefGoogle Scholar
  53. 78.53
    E.T. Rolls: Invariant visual object and face recognition: Neural and computational bases, and a model, VisNet. Front. Comput. Neurosci. 6(35), (2012) Google Scholar
  54. 78.54
    N. Pinto, D. Cox: High-throughput-derived biologically-inspired features for unconstrained face recognition, Image Vis. Comput. 30(3), 159–168 (2012)CrossRefGoogle Scholar
  55. 78.55
    G. Wallis, H.H. Bülthoff: Effects of temporal association on recognition memory, Proc. Natl. Acad. Sci. USA 98, 4800–4804 (2001)CrossRefGoogle Scholar
  56. 78.56
    J.V. Stone: Object recognition using spatio-temporal signatures, Vis. Res. 38(7), 947–951 (1998)CrossRefGoogle Scholar
  57. 78.57
    J.V. Stone: Object recognition: View-specificity and motion-specificity, Vis. Res. 39(24), 4032–4044 (1999)CrossRefGoogle Scholar
  58. 78.58
    Q.C. Voung, M.J. Tarr: Rotation direction affects object recognition, Vis. Res. 44(14), 1717–1730 (2004)CrossRefGoogle Scholar
  59. 78.59
    C. Wallraven, H.H. Bülthoff: Automatic acquisition of exemplar-based representations for recognition from image sequences, CVPR 2001 – Workshop Models vs. Ex. (2001)Google Scholar
  60. 78.60
    C. Wallraven, H.H. Bülthoff: Object recognition in humans and machines. In: Object Recognition, Attention and Action, ed. by N. Osaka, I. Rentschler, I. Biederman (Springer, Tokyo 2007) pp. 89–104CrossRefGoogle Scholar
  61. 78.61
    C. Wallraven, B. Caputo, A.B.A. Graf: Recognition with local features: The kernel recipe, Proc. Int. Conf. Comput. Vis., Vol. 2 (2003) pp. 257–264Google Scholar
  62. 78.62
    T.C. Kietzmann, S. Lange, M. Riedmiller: Computational object recognition: A biologically motivated approach, Biol. Cybern. 100, 59–79 (2009)MathSciNetMATHCrossRefGoogle Scholar
  63. 78.63
    F.N. Newell, M.O. Ernst, B.S. Tjan, H.H. Bülthoff: Viewpoint dependence in visual and haptic object recognition, Psychol. Sci. 12, 37–42 (2001)CrossRefGoogle Scholar
  64. 78.64
    H. Lee, C. Wallraven: Exploiting object constancy: Effects of active exploration and shape morphing on similarity judgments of novel objects, Exp. Brain Res. 225(2), 277–289 (2012)CrossRefGoogle Scholar
  65. 78.65
    J.-P. Ewert: Neural mechanisms of prey-catching and avoidance behavior in the toad Bufo bufo L, Brain Behav. Evol. 3, 36–56 (1970)CrossRefGoogle Scholar
  66. 78.66
    G. Johansson: Visual perception of biological motion and a model for its analysis, Percept. Psychophys. 14, 201–211 (1973)CrossRefGoogle Scholar
  67. 78.67
    K. Verfaillie: Perceiving human locomotion: Priming effects in direction discrimination, Brain Cogn. 44, 192–213 (2000)CrossRefGoogle Scholar
  68. 78.68
    A.J. O’Toole, D.A. Roark, H.H. Abdi: Recognizing moving faces: A psychological and neural synthesis, Trends Cogn. Sci. 6, 261–266 (2002)CrossRefGoogle Scholar
  69. 78.69
    D. Perrett, A. Puce: Electrophysiology and brain imaging of biological motion, Philos. Trans. R. Soc. B 358, 435–445 (2003)CrossRefGoogle Scholar
  70. 78.70
    R. Blake, M. Shiffrar: Perception of human motion, Annu. Rev. Psychol. 58, 47–73 (2007)CrossRefGoogle Scholar
  71. 78.71
    D.D. Hoffman, B.E. Flinchbaugh: The interpretation of biological motion, Biol. Cybern. 42, 195–204 (1982)MATHGoogle Scholar
  72. 78.72
    J.A. Webb, J.K. Aggarwal: Structure from motion of rigid and jointed objects, Artif. Intell. 19, 107–130 (1982)CrossRefGoogle Scholar
  73. 78.73
    M.A. Giese, T.T. Poggio: Neural mechanisms for the recognition of biological movements, Nat. Rev. Neurosci. 4, 179–192 (2003)CrossRefGoogle Scholar
  74. 78.74
    J. Jastorff, G.A. Orban: Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing, J. Neurosci. 29(22), 7315–7329 (2009)CrossRefGoogle Scholar
  75. 78.75
    G. Rizzolatti, L. Craighero: The mirror-neuron system, Annu. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  76. 78.76
    V. Caggiano, L. Fogassi, G. Rizzolatti, J.K. Pomper, P. Thier, M.A. Giese, A. Casile: View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex, Curr. Biol. 21(2), 144–148 (2011)CrossRefGoogle Scholar
  77. 78.77
    F. Simion, E. Di Giorgio, I. Leo, L. Bardi: The processing of social stimuli in early infancy: From faces to biological motion perception, Prog. Brain Res. 189, 173–193 (2011)CrossRefGoogle Scholar
  78. 78.78
    E.D. Grossman, R. Blake, C.Y. Kim: Learning to see biological motion: Brain activity parallels behavior, J. Cogn. Neurosci. 16, 1669–1679 (2004)CrossRefGoogle Scholar
  79. 78.79
    J. Jastorff, Z. Kourtzi, M.A. Giese: Learning to discriminate complex movements: Biological versus artificial trajectories, J. Vis. 6, 791–804 (2006)CrossRefGoogle Scholar
  80. 78.80
    J. Jastorff, Z. Kourtzi, M.A. Giese: Visual learning shapes the processing of complex movement stimuli in the human brain, J. Neurosci. 29(44), 14026–14038 (2009)CrossRefGoogle Scholar
  81. 78.81
    H. Hill, F.E. Pollick: Exaggerating temporal differences enhances recognition of individuals from point light displays, Psychol. Sci. 11, 223–228 (2000)CrossRefGoogle Scholar
  82. 78.82
    B. Knappmeyer, I.M. Thornton, H.H. Bülthoff: The use of facial motion and facial form during the processing of identity, Vis. Res. 43, 1921–1936 (2003)CrossRefGoogle Scholar
  83. 78.83
    J. Lee, W. Wong: A stochastic model of coherent motion detection, Biol. Cybern. 91, 306–314 (2004)MATHCrossRefGoogle Scholar
  84. 78.84
    J. Lange, M. Lappe: A model of biological motion perception from configural form cues, J. Neurosci. 26(11), 2894–2906 (2006)CrossRefGoogle Scholar
  85. 78.85
    G. Tessitore, F. Donnarumma, R. Prevete: An action-tuned neural network architecture for hand pose estimation, Proc. Int. Conf. Fuzzy Comput. Int. Conf. Neural Comput. Valencia (2010) pp. 358–363Google Scholar
  86. 78.86
    G. Metta, G. Sandini, L. Natale, L. Craighero, L. Fadiga: Understanding mirror neurons – A bio-robotic approach, Interact. Stud. 7, 197–232 (2006)CrossRefGoogle Scholar
  87. 78.87
    H. Jhuang, T. Serre, L. Wolf, T. Poggio: A biologically inspired system for action recognition, IEEE Int. Conf. Comput. Vis. (ICCV) (2007) pp. 1–18Google Scholar
  88. 78.88
    M.J. Escobar, G.S. Masson, T. Vieville, P. Kornprobst: Action recognition using a bio-inspired feedforward spiking network, Int. J. Comput. Vis. 82(3), 284–301 (2009)CrossRefGoogle Scholar
  89. 78.89
    H. Jhuang, E. Garrote, J. Mutch, T. Poggio, A. Steele, T. Serre: Automated home-cage behavioral phenotyping of mice, Nat. Commun. 1(86), 1–9 (2010)CrossRefGoogle Scholar
  90. 78.90
    D.M. Wolpert, K. Doya, M. Kawato: A unifying computational framework for motor control and social interaction, Philos. Trans. R. Soc. B 358, 593–602 (2003)CrossRefGoogle Scholar
  91. 78.91
    Y. Demiris, M. Johnson: Distributed, predictive perception of actions: A biologically inspired robotics architecture for imitation and learning, Connect. Sci. 15(4), 231–243 (2003)CrossRefGoogle Scholar
  92. 78.92
    J.M. Kilner, K.J. Friston, C.D. Frith: The mirror-neuron system: A Bayesian perspective, Neuroreport 18, 619–623 (2007)CrossRefGoogle Scholar
  93. 78.93
    K. Friston, J. Mattout, J. Kilner: Action understanding and active inference, Biol. Cybern. 104(1/2), 137–160 (2011)MathSciNetMATHCrossRefGoogle Scholar
  94. 78.94
    R. Li, T.P. Tian, S. Sclaroff, M.H. Yang: 3D human motion tracking with a coordinated mixture of factor analyzers, Int. J. Comput. Vis. 87, 170–190 (2010)CrossRefGoogle Scholar
  95. 78.95
    D.R. Weinland, R. Ronfard, E. Boyer: A survey of vision-based methods for action representation. Segmentation and recognition, Comput. Vis. Image Underst. 115(2), 224–241 (2011)CrossRefGoogle Scholar
  96. 78.96
    F. Fleischer, V. Caggiano, P. Thier, M.A. Giese: Physiologically inspired model for the visual recognition of transitive hand actions, J. Neurosci. 33, 6563–6580 (2013)CrossRefGoogle Scholar
  97. 78.97
    E. Salinas, L.F. Abbott: Transfer of coded information from sensory to motor networks, J. Neurosci. 15, 6461–6474 (1995)Google Scholar
  98. 78.98
    A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei: Large-scale video classification with convolutional neural networks, Proc. 2014 IEEE Conf. Computer Vision and Pattern Recognition, New York (2014) pp. 1725–1732CrossRefGoogle Scholar
  99. 78.99
    C. Breazeal: Designing Sociable Robots (MIT Press, Cambridge 2002)MATHGoogle Scholar
  100. 78.100
    M. Nusseck, D.W. Cunningham, C. Wallraven, H.H. Bülthoff: The contribution of different facial regions to the recognition of conversational expressions, J. Vis. 8(8), 1 (2008)CrossRefGoogle Scholar
  101. 78.101
    J.K. Lee, C. Breazeal: Human social response toward humanoid robot’s head and facial features, Proc. CHI 2010 (2010) pp. 4237–4242Google Scholar
  102. 78.102
    D. Hanson: Exploring the aesthetic range for humanoid robots, CogSci-2006 Workshop: Toward Soc. Mech. Android Sci. (2006)Google Scholar
  103. 78.103
    H. Ishiguro: Understanding humans by building androids, Proc. SIGDIAL Conf. (2010)Google Scholar
  104. 78.104
    P. Jaeckel, N. Campbell, C. Melhuish: Facial behaviour mapping - From video footage to a robot head, Robotics Auton. Syst. 56(12), 1042–1049 (2008)CrossRefGoogle Scholar
  105. 78.105
    G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori: The iCub humanoid robot: An open platform for research in embodied cognition, Proc. 8th Workshop Perform. Metr. Intell. Syst. (2008) pp. 50–56Google Scholar
  106. 78.106
    C. Wallraven, M. Breidt, D.W. Cunningham, H.H. Bülthoff: Evaluating the perceptual realism of animated facial expressions, ACM Trans. Appl. Percept. 4(4), 1–20 (2008)CrossRefGoogle Scholar
  107. 78.107
    K.F. MacDorman: Subjective ratings of robot video clips for human likeness, familiarity, and eeriness: An exploration of the uncanny valley, ICCS/CogSci-2006 Symp. Toward Soc. Mech. Android Sci. (2006) pp. 26–29Google Scholar
  108. 78.108
    C. Ho, K.F. MacDorman, Z.A.D. Pramono: Human emotion and the uncanny valley: A GLM, MDS, and isomap analysis of robot video ratings, Proc. HRI 2008 (2008) pp. 169–176Google Scholar
  109. 78.109
    F. Delaunay, J. de Greeff, T. Belpaeme: Towards retro-projected robot faces: An alternative to mechatronic and android faces, Proc. 18th IEEE Int. Symp. Robot Human Interact. Commun. RO-MAN (2009) pp. 306–311Google Scholar
  110. 78.110
    T. Kuratate, M. Riley, B. Pierce, G. Cheng: Gender identification bias induced with texture images on a life size retro-projected face screen, Proc. 21st IEEE Int. Symp. Robot Human Interact. Commun. RO-MAN 2012 (2012) pp. 43–48CrossRefGoogle Scholar
  111. 78.111
    A.P. Saygin, T. Chaminade, H. Ishiguro, J. Driver, C. Frith: The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions, Soc. Cogn. Affect. Neurosci. 7(4), 413–422 (2012)CrossRefGoogle Scholar
  112. 78.112
    P.S.A. Reitsma, N.S. Pollard: Perceptual metrics for character animation: Sensitivity to errors in ballistic motion, ACM SIGGRAPH 2003 Papers (SIGGRAPH ’03) (ACM, New York 2003) pp. 537–542CrossRefGoogle Scholar
  113. 78.113
    T. Ezzat, G. Geiger, T. Poggio: Trainable videorealistic speech animation, Proc. 29th Annu. Conf. Comput. Gr. Interact. Techn. (SIGGRAPH ’02) (ACM, New York 2002) pp. 388–398Google Scholar
  114. 78.114
    J. Wang, B. Bodenheimer: Synthesis and evaluation of linear motion transitions, ACM Trans. Graph. 27(1), Article 1 (2008)Google Scholar
  115. 78.115
    M. Candidi, C. Urgesi, S. Ionta, S.M. Aglioti: Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions, Soc. Neurosci. 3(3/4), 388–400 (2008)CrossRefGoogle Scholar
  116. 78.116
    T. Chaminade, J. Hodgins, M. Kawato: Anthropomorphism influences perception of computer-animated characters’ actions, Soc. Cogn. Affect. Neurosci. 2(3), 206–216 (2007)CrossRefGoogle Scholar
  117. 78.117
    T. Chaminade, M. Zecca, S.J. Blakemore, A. Takanishi, C.D. Frith, S. Micera, P. Dario, G. Rizzolatti, V. Gallese, M.A. Umiltà: Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures, PLoS ONE 5(7), e11577 (2010)CrossRefGoogle Scholar
  118. 78.118
    Y.F. Tai, C. Scherfler, D.J. Brooks, N. Sawamoto, U. Castiello: The human premotor cortex is ’mirror’ only for biological actions, Curr. Biol. 14, 117–120 (2004)CrossRefGoogle Scholar
  119. 78.119
    L.M. Oberman, J.P. McCleery, V.S. Ramachandran, J.A. Pineda: EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots, Neurocomput. 70, 2194–2203 (2007)CrossRefGoogle Scholar
  120. 78.120
    C. Press, H. Gillmeister, C. Heyes: Sensorimotor experience enhances automatic imitation of robotic action, Proc. Biol. Sci. 274(1625), 2509–2514 (2007)CrossRefGoogle Scholar
  121. 78.121
    C.L. Colby: Action-oriented spatial reference frames in cortex, Neuron 20, 15–24 (1998)CrossRefGoogle Scholar
  122. 78.122
    A.R. Kilgour, R. Kitada, P. Servos, T.W. James, S.J. Lederman: Haptic face identification activates ventral occipital and temporal areas: An fMRI study, Brain Cogn. 59, 246–257 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Heinrich Bülthoff
    • 1
  • Christian Wallraven
    • 2
  • Martin A. Giese
    • 3
  1. 1.Human Perception, Cognition and ActionMax-Planck-Institute for Biological CyberneticsTübingenGermany
  2. 2.Department of Brain and Cognitive Engineering, Cognitive Systems LabKorea UniversitySeoulKorea
  3. 3.Department for Cognitive NeurologyUniversity Clinic TübingenTübingenGermany

Personalised recommendations