Biologically Inspired Robotics

  • Fumiya Iida
  • Auke Jan Ijspeert
Part of the Springer Handbooks book series (SHB)


Throughout the history of robotics research, nature has been providing numerous ideas and inspirations to robotics engineers. Small insect-like robots, for example, usually make use of reflexive behaviors to avoid obstacles during locomotion, whereas large bipedal robots are designed to control complex human-like leg for climbing up and down stairs. While providing an overview of bio-inspired robotics, this chapter particularly focus on research which aims to employ robotics systems and technologies for our deeper understanding of biological systems. Unlike most of the other robotics research where researchers attempt to develop robotic applications, these types of bio-inspired robots are generally developed to test unsolved hypotheses in biological sciences. Through close collaborations between biologists and roboticists, bio-inspired robotics research contributes not only to elucidating challenging questions in nature but also to developing novel technologies for robotics applications. In this chapter, we first provide a brief historical background of this research area and then an overview of ongoing research methodologies. A few representative case studies will detail the successful instances in which robotics technologies help identifying biological hypotheses. And finally we discuss challenges and perspectives in the field.

Biologically inspired robotics (or bio-inspired robotics in short) is a very broad research area because almost all robotic systems are, in one way or the other, inspired from biological systems. Therefore, there is no clear distinction between bio-inspired robots and the others, and there is no commonly agreed definition [75.1]. For example, legged robots that walk, hop, and run are usually regarded as bio-inspired robots because many biological systems rely on legged locomotion for their survival. On the other hand, many robotics researchers implement biological models of motion control and navigation onto wheeled platforms, which could also be regarded as bio-inspired robots [75.2].


Robotic System Central Pattern Generator Robotic Platform Robotic Research Evolutionary Robotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

central pattern generator


spring loaded inverted pendulum


  1. 75.1
    R. Pfeifert, M. Lungarella, F. Iida: The challenges ahead for bio-inspired ’soft’ robotics, Communications ACM 55(11), 76–87 (2012)CrossRefGoogle Scholar
  2. 75.2
    G. Becky: Autonomous Robots (MIT Press, Cambridge 2001)Google Scholar
  3. 75.3
    W.R. Ashby: An Introduction to Cybernetics (Chapman Hall, London 1956)zbMATHCrossRefGoogle Scholar
  4. 75.4
    N. Wiener: Cybernetics, or Communication and Control in the Animal and the Machine (MIT Press, Cambridge 1948)Google Scholar
  5. 75.5
    O.E. Holland: Grey Walter: The pioneer of real artificial life, Proc. 5th Int. Workshop Artif. Life, ed. by C. Langton (MIT Press, Cambridge 1997) pp. 34–44Google Scholar
  6. 75.6
    V. Braitenberg: Vehicles: Experiments in Synthetic Psychology (MIT Press, Cambridge 1984)Google Scholar
  7. 75.7
    J. von Neumann: The Theory of Self-Reproducing Automata (Univ. of Illinois Press, Illinois 1966)Google Scholar
  8. 75.8
    A.M. Turing: The chemical basis of morphogenesis, Philos. Trans. R. Soc. 237(641), 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  9. 75.9
    N. Nilsson: The physical symbol system hypothesis: Status and prospects, Lect. Notes Artif. Intell. 4850, 9–17 (2007)Google Scholar
  10. 75.10
    R. Arkin: Behavior-Based Robotics (MIT Press, Cambridge 1998)Google Scholar
  11. 75.11
    R.A. Brooks: A robust layered control system for a mobile robot, IEEE Robot. Autom. 2(1), 14–23 (1986)CrossRefGoogle Scholar
  12. 75.12
    R.A. Brooks: Intelligence without representation, Artif. Intell. 47, 139–159 (1991)CrossRefGoogle Scholar
  13. 75.13
    R. Pfeifer, C. Scheier: Understanding Intelligence (MIT Press, Cambridge 2001)Google Scholar
  14. 75.14
    M. Lungarella, G. Metta, R. Pfeifer, G. Sandini: Developmental robotics: A survey, Connect. Sci. 15, 151–190 (2003)CrossRefGoogle Scholar
  15. 75.15
    R. Pfeifer, M. Lungarella, F. Iida: Self-organization, embodiment, and biologically inspired robotics, Science 318, 1088–1093 (2007)CrossRefGoogle Scholar
  16. 75.16
    T.D. Johnston, L. Edwards: Genes, interactions, and the development of behavior, Psychol. Rev. 109(1), 26–34 (2002)CrossRefGoogle Scholar
  17. 75.17
    R.J. Full, D.K. Koditschek: Templates and anchors: Neuromechanical hypotheses of legged locomotion on land, J. Exp. Biol. 202, 3325–3332 (1999)Google Scholar
  18. 75.18
    B. Webb: Can robots make good models of biological behaviour?, Behav. Brain Sci. 24, 1033–1050 (2001)Google Scholar
  19. 75.19
    K. Sims: Evolving 3D morphology and behavior by competition. In: Proc. Artificial Life IV, ed. by R. Brooks, P. Maes (MIT Press, Cambridge 1994) pp. 28–39Google Scholar
  20. 75.20
    J. Bongard: Morphological change in machines accelerates the evolution of robust behavior, Proc. Natl. Acad. Sci. USA 108(4), 1234–1239 (2011)CrossRefGoogle Scholar
  21. 75.21
    C.G. Langton: Artificial Life: An Overview (MIT Press, Cambridge 1995)Google Scholar
  22. 75.22
    A. Adamatzky, M. Komosinski: Artificial Life Models in Hardware (Springer, Berlin, Heidelberg 2009)zbMATHCrossRefGoogle Scholar
  23. 75.23
    H. Lipson, J. Pollack: Automatic design and manufacture of robotic lifeforms, Nature 406, 974–978 (2000)CrossRefGoogle Scholar
  24. 75.24
    G. Borelli: De Motu Animalium (Apud Petrum vander Aa, Cornelium Boutesteyn, Johannem de Vivie, Danielem à Gaesbeeck, Lugduni in Batavis 1685)Google Scholar
  25. 75.25
    H. Miura, I. Shimoyama: Dynamic walk of a biped, Int. J. Robotics Res. 3(2), 60–74 (1984)CrossRefGoogle Scholar
  26. 75.26
    M. Vukobratovic, B. Borovac: Zero-moment point – Thirty years of its life, Int. J. Humanoid Robotics 1(1), 157–174 (2004)CrossRefGoogle Scholar
  27. 75.27
    M. Raibert: Legged Robots that Balance (MIT Press, Cambridge 1987)zbMATHGoogle Scholar
  28. 75.28
    R. Blickhan, A. Seyfarth, H. Geyer, S. Grimmer, H. Wagner, M. Guenther: Intelligence by mechanics, Philos. Trans. R. Soc. A 365(1850), 199–220 (2007)MathSciNetCrossRefGoogle Scholar
  29. 75.29
    I.E. Brown, G.E. Loeb: A reductionist approach to creating and using neuromusculoskeletal models. In: Biomechanical and Neurological Control of Posture and Movements, ed. by P.E. Winters (Springer, New York 2000) pp. 148–163CrossRefGoogle Scholar
  30. 75.30
    T.A. McMahon: Muscles, Reflexes, and Locomotion (Princeton Univ. Press, Princeton 1984)Google Scholar
  31. 75.31
    S. Yakovenko, V. Gritsenko, A. Prochazka: Contribution of stretch reflexes to locomotor control: a modeling study, Biol. Cybern. 90(2), 146–155 (2004)zbMATHCrossRefGoogle Scholar
  32. 75.32
    G. Orlovsky, G.N. Orlovskii, S. Grillner: Neuronal Control of Locomotion From Mollusc to Man (Oxford Univ. Press, Oxford 1999)CrossRefGoogle Scholar
  33. 75.33
    M. Bear, M. Paradiso, B.W. Connors: Neuroscience: Exploring the Brain (Lippincott Williams and Wilkins, Baltimore 2006)Google Scholar
  34. 75.34
    F. Asano, M. Suguro: Limit cycle walking, running, and skipping of telescopic-legged rimless wheel, Robotica 30(6), 989–1003 (2012)CrossRefGoogle Scholar
  35. 75.35
    F. Iida, R. Tedrake: Minimalistic control of biped walking in rough terrain, Auton. Robots 28(3), 355–368 (2010)CrossRefGoogle Scholar
  36. 75.36
    I.R. Manchester, U. Mettin, F. Iida, R. Tedrake: Stable dynamic walking over uneven terrain, Int. J. Robotics Res. 30(3), 265–279 (2011)zbMATHCrossRefGoogle Scholar
  37. 75.37
    S.H. Collins, A. Ruina, R. Tedrake, M. Wisse: Efficient bipedal robots based on passive-dynamic walkers, Science 307, 1082–1085 (2005)CrossRefGoogle Scholar
  38. 75.38
    D. Owaki, M. Koyama, S. Yamaguchi, S. Kubo, A. Ishiguro: A 2-D passive dynamic running biped with elastic elements, IEEE Trans. Robotics 27(1), 156–162 (2011)CrossRefGoogle Scholar
  39. 75.39
    M. Ahmadi, M. Buehler: Controlled passive dynamic running experiments with ARL monopod II, IEEE Trans. Robotics 22(5), 974–986 (2006)CrossRefGoogle Scholar
  40. 75.40
    F. Iida, J. Rummel, A. Seyfarth: Bipedal walking and running with spring-like biarticular muscles, J. Biomech. 41, 656–667 (2008)CrossRefGoogle Scholar
  41. 75.41
    J.W. Hurst, A.A. Rizzi: Series compliance for an efficient running gait: Lessons learned from the electric cable differential leg, IEEE Robotics Autom, Mag. 15(3), 42–51 (2008)Google Scholar
  42. 75.42
    R. Altendorfer, N. Moore, H. Komsuoglu, H.B. Brown Jr., D. McMordie, U. Saranli, R. Full, D.E. Koditschek: RHex: A biologically inspired hexapod runner, Auton. Robots 11, 207–213 (2001)zbMATHCrossRefGoogle Scholar
  43. 75.43
    T. McGeer: Passive dynamic walking, Int. J. Robotics Res. 9(2), 62–82 (1990)CrossRefGoogle Scholar
  44. 75.44
    A. Goswami, B. Thuilot, B. Espiau: A study of the passive gait of a compass-like biped robot: Symmetry and chaos, Int. J. Robotics Res. 17(12), 1282–1301 (1998)CrossRefGoogle Scholar
  45. 75.45
    D.G.E. Hobbelen, M. Wisse: Swing-leg retraction for limit cycle walkers improves disturbance rejection, IEEE Trans. Robotics 24(2), 377–389 (2008)CrossRefGoogle Scholar
  46. 75.46
    J. Hass, J.M. Herrmann, T. Geisel: Optimal mass distrib- ution for passivity-based bipedal robots, Int. J. Robotics Res. 25(11), 1087–1098 (2006)CrossRefGoogle Scholar
  47. 75.47
    K. Byl, R. Tedrake: Metastable walking machines, Int. J. Robotics Res. 28(8), 1040–1064 (2008)CrossRefGoogle Scholar
  48. 75.48
    R.D. Gregg, M.W. Spong: Reduction-based control of three-dimensional bipedal walking robots, Int. J. Robotics Res. 29(6), 680–702 (2010)CrossRefGoogle Scholar
  49. 75.49
    R.M. Alexander: Three uses for springs in legged locomotion, Int. J. Robotics Res. 9(2), 53–61 (1990)CrossRefGoogle Scholar
  50. 75.50
    X. Zhou, S. Bi: A survey of bio-inspired compliant legged robot designs, Bioinspir. Biomim. 7(4), 1–20 (2012)CrossRefGoogle Scholar
  51. 75.51
    J. Rummel, A. Seyfarth: Stable running with segmented legs, Int. J. Robotics Res. 27(8), 919–934 (2008)CrossRefGoogle Scholar
  52. 75.52
    T.M. Kubow, R.J. Full: The role of the mechanicalvsystem in control: A hypothesis of self-stabilization in hexapedal runners, Philos. Trans. R. Soc. B 354, 849–862 (1999)CrossRefGoogle Scholar
  53. 75.53
    H. Geyer, A. Seyfarth, R. Blickhan: Compliant leg behaviour explains basic dynamics of walking and running, Proc. R. Soc. B 273, 1471–2954 (2006)CrossRefGoogle Scholar
  54. 75.54
    M. Reis, F. Iida: An energy efficient hopping robot based on free vibration of a curved beam, IEEE/ASME Trans. Mechatron. 19(1), 300–311 (2013)CrossRefGoogle Scholar
  55. 75.55
    A.M. Grabowski, H.M. Herr: Leg exoskeleton reduces the metabolic cost of human hopping, J. Appl. Physiol. 107, 670–678 (2009)CrossRefGoogle Scholar
  56. 75.56
    A.D. Kuo: Choosing your steps carefully: Trade-offs between economy and versatility in dynamic walking bipedal robots, IEEE Robotics Autom. Mag. 14, 18–29 (2007)CrossRefGoogle Scholar
  57. 75.57
    A.J. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen: From swimming to walking with a salamander robot driven by a spinal cord model, Science 315(5817), 1416–1420 (2007)CrossRefGoogle Scholar
  58. 75.58
    S. Steingrube, M. Timme, F. Wörgötter, P. Manoonpong: Self-organized adaptation of simple neural circuits enables complex robot behavior, Nat. Phys. 6, 224–230 (2010)CrossRefGoogle Scholar
  59. 75.59
    T. Geng, B. Porr, F. Wörgötter: Fast biped walking with a sensor-driven neuronal controller and real-time online learning, Int. J. Robotics Res. 25(3), 243–259 (2006)CrossRefGoogle Scholar
  60. 75.60
    P. Manoonpong, T. Geng, T. Kulvicius, B. Porr, F. Wörgötter: Adaptive, fast walking in a biped robot under neuronal control and learning, PLoS Comput. Biol. 3(7), 1305–1320 (2007)CrossRefGoogle Scholar
  61. 75.61
    K. Narioka, K. Hosoda: Motor development of an pneumatic musculoskeletal infant robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 963–968Google Scholar
  62. 75.62
    G.A. Pratt, M.M. Williamson: Series elastic actuators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (1995) pp. 399–406Google Scholar
  63. 75.63
    A. Albu-Schaffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimbock, S. Wolf, G. Hirzinger: Soft robotics, IEEE Robotics Autom, Mag. 15(3), 20–30 (2008)Google Scholar
  64. 75.64
    A.J. Ijspeert: Central pattern generators for locomotion control in animals and robots: A review, Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  65. 75.65
    H. Cruse, T. Kindermann, M. Schumm, J. Dean, J. Schmitz: Walknet: A biologically inspired network to control six- legged walking, Neural Netw. 11, 1435–1447 (1998)CrossRefGoogle Scholar
  66. 75.66
    V. Dürr, A.F. Krause, J. Schmitz, H. Cruse: Neuroethological concepts and their transfer to walking machines, Int. J. Robotics Res. 22(3/4), 151–167 (2003)CrossRefGoogle Scholar
  67. 75.67
    K.S. Espenschied, R.D. Quinn, H.J. Chiel, R.D. Beer: Biologically-based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot, Robotics Auton. Syst. 18, 59–64 (1996)CrossRefGoogle Scholar
  68. 75.68
    H. Geyer, A. Seyfarth, R. Blickhan: Positive force feedback in bouncing gaits, Proc. R. Soc. B 270, 2173–2183 (2003)CrossRefGoogle Scholar
  69. 75.69
    H. Geyer, H.M. Herr: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities, IEEE Trans. Neural. Syst. Rehabil. Eng. 18(3), 263–273 (2010)CrossRefGoogle Scholar
  70. 75.70
    G. Taga, Y. Yamaguchi, H. Shimizu: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biol. Cybern. 65, 147–159 (1991)zbMATHCrossRefGoogle Scholar
  71. 75.71
    G. Taga: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance, Biol. Cybern. 78(1), 9–17 (1998)zbMATHCrossRefGoogle Scholar
  72. 75.72
    K. Matsuoka: Mechanisms of frequency and pattern control in the neural rhythm generators, Biol. Cybern. 56, 345–353 (1987)CrossRefGoogle Scholar
  73. 75.73
    P. Arena, L. Fortuna, M. Frasca, G. Sicurella: An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion, IEEE Trans. Syst. Man Cybern. B 34(4), 1823–1837 (2004)CrossRefGoogle Scholar
  74. 75.74
    S. Inagaki, H. Yuasa, T. Suzuki, T. Arai: Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control, Robotics Auton. Syst. 54(2), 118–126 (2006)CrossRefGoogle Scholar
  75. 75.75
    B. Klaassen, R. Linnemann, D. Spenneberg, F. Kirchner: Biomimetic walking robot scorpion: Control and modeling, Auton. Robots 41, 69–76 (2002)CrossRefGoogle Scholar
  76. 75.76
    A. Crespi, A. Ijspeert: Online optimization of swimming and crawling in an amphibious snake robot, IEEE Trans. Robotics 24(1), 75–87 (2008)CrossRefGoogle Scholar
  77. 75.77
    C. Stefanini, G. Orlandi, A. Menciassi, Y. Ravier, G.L. Spina, S. Grillner: A mechanism for biomimetic actuation in lamprey-like robots, Proc. 1st IEEE/RAS-EMBS Int. Conf. Biomed. Robotics Biomechatron. (2006) pp. 579–584Google Scholar
  78. 75.78
    C. Wilbur, W. Vorus, Y. Cao, S.N. Currie: A lamprey-based undulatory vehicle. In: Neurotechnology for Biomimetic Robots, ed. by J. Ayers, J.L. Davis, A. Rudolph (MIT Press, Cambridge 2002)Google Scholar
  79. 75.79
    H. Kimura, S. Akiyama, K. Sakurama: Realization of dynamic walking and running of the quadruped using neural oscillators, Auton. Robots 7(3), 247–258 (1999)CrossRefGoogle Scholar
  80. 75.80
    H. Kimura, Y. Fukuoka, A.H. Cohen: Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts, Int. J. Robotics Res. 26(5), 475–490 (2007)CrossRefGoogle Scholar
  81. 75.81
    J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, M. Kawato: Learning from demonstration and adaptation of biped locomotion, Robotics Auton. Syst. 47, 79–91 (2004)CrossRefGoogle Scholar
  82. 75.82
    S. Aoi, K. Tsuchiya: Locomotion control of a biped robot using nonlinear oscillators, Auton. Robots 19, 219–232 (2005)CrossRefGoogle Scholar
  83. 75.83
    G. Endo, J. Nakanishi, J. Morimoto, G. Cheng: Experimental studies of a neural oscillator for biped locomotion with QRIO, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 598–604Google Scholar
  84. 75.84
    L. Righetti, A.J. Ijspeert: Programmable central pattern generators: An application to biped locomotion control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1585–1590Google Scholar
  85. 75.85
    R. Héliot, B. Espiau: Multisensor input for CPG-based sensorymotor coordination, IEEE Trans. Robotics 24(1), 191–195 (2008)CrossRefGoogle Scholar
  86. 75.86
    D. Floreano, J.C. Zufferey, M.V. Srinivasan, C. Ellington (Eds.): Flying Insects and Robots (Springer, Berlin, Heidelberg 2009)Google Scholar
  87. 75.87
    N. Franceschini, J.M. Pichon, C. Blanes: From insect vision to robot vision, Philos. Trans. R. Soc. B 337, 283–294 (1992)CrossRefGoogle Scholar
  88. 75.88
    J.C. Zufferey, D. Floreano: Fly-inspired visual steering of an ultralight indoor aircraft, IEEE Trans. Robotics 22(1), 137–146 (2006)CrossRefGoogle Scholar
  89. 75.89
    F. Iida: Biologically inspired visual odometer for navigation of a flying robot, Robotics Auton. Syst. 44(3/4), 201–208 (2003)CrossRefGoogle Scholar
  90. 75.90
    M.V. Srinivasan, S.W. Zhang, J.S. Chahl, E. Barth, S. Venkatesh: How honeybees make grazing landings on flat surfaces, Biol. Cybern. 83, 171–183 (2000)CrossRefGoogle Scholar
  91. 75.91
    S. Viollet, N. Franceschini: Aerial minirobot that stabilizes and tracks with a bio-inspired visual scanning sensor. In: Biorobotics. Methods and Applications, ed. by B. Webb, T. Consi (MIT Press, Cambridge 2001) pp. 67–83Google Scholar
  92. 75.92
    M. Dobrzynski, R.P. Camara, D. Floreano: Vision Tape –A flexible compound vision sensor for motion detection and proximity estimation, IEEE Sens. J. 12(5), 1131–1139 (2012)CrossRefGoogle Scholar
  93. 75.93
    C. Eliasmith, C.H. Anderson: Neural engineering: Computation, Representation, and Dynamics in Neurobiological Systems (MIT Press, Cambridge 2004)Google Scholar
  94. 75.94
    S.C. Liu, T. Delbruck: Neuromorphic sensory systems, Curr. Opin. Neurobiol. 20, 1–8 (2010)CrossRefGoogle Scholar
  95. 75.95
    R. Berner, T. Delbruck: Event-based pixel sensitive to changes of color and brightness, IEEE Trans. Circuits Syst. I 58(7), 1581–1590 (2011)MathSciNetCrossRefGoogle Scholar
  96. 75.96
    D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, R. Wehner: A mobile robot employing insect strategies for navigation, Robotics Auton. Syst. 30(1/2), 39–64 (2000)CrossRefGoogle Scholar
  97. 75.97
    R. Möller: Insect visual homing strategies in a robot with analog processing, Biol. Cybern. 83(3), 231–243 (2000)zbMATHCrossRefGoogle Scholar
  98. 75.98
    E. Moser, E. Kropff, M. Moser: Place cells, grid cells, and the brain’s spatial representation system, Annu. Rev. Neurosci. 31, 69–89 (2008)CrossRefGoogle Scholar
  99. 75.99
    J.L. Krichmar, D.A. Nitz, J.A. Gally, G.M. Edelman: Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task, Proc. Natl. Acad. Sci. USA 102, 2111–2116 (2005)CrossRefGoogle Scholar
  100. 75.100
    M.J. Milford, J. Wiles, G.F. Wyeth: Solving navigational uncertainty using grid cells on robots, PLoS Comput. Biol. 6(11), e1000995 (2010)MathSciNetCrossRefGoogle Scholar
  101. 75.101
    G. Edelman: Learning in and from brain-based devices, Science 318, 1103–1105 (2007)CrossRefGoogle Scholar
  102. 75.102
    T.J. Prescott, M.J. Pearson, B. Mitchinson, T. Pipe: Whisking with robots: From rat vibrissae to biomimetic technology for active touch, IEEE Robotics Autom. Mag. 16, 42–50 (2009)CrossRefGoogle Scholar
  103. 75.103
    S. Kim, A. Asbeck, M. Cutkosky, W. Provancher: SpinybotII: Climbing hard walls with compliant microspines, Proc. 12th Int. Conf. Adv. Robotics (ICAR) (2005) pp. 601–606Google Scholar
  104. 75.104
    R.J. Wood: The first biologically inspired at-scale robotic insect, IEEE Trans. Robotics 24(2), 341–347 (2008)CrossRefGoogle Scholar
  105. 75.105
    T. Salumäe, M. Kruusmaa: A flexible fin with bio-inspired stiffness profile and geometry, J. Bionic Eng. 8(4), 418–428 (2011)CrossRefGoogle Scholar
  106. 75.106
    H.T. Lin, G.G. Leisk, B. Trimmer: GoQBot: A caterpillar-inspired soft-bodied rolling robot, Bioinspir. Biomim. 6, 026007 (2011)CrossRefGoogle Scholar
  107. 75.107
    M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, C. Yoshida: Cognitive developmental robotics: A survey, IEEE Trans. Auton. Mental Dev. 1(1), 12–34 (2009)CrossRefGoogle Scholar
  108. 75.108
    T. Carlson, J.D.R. Mill: Brain-controlled wheelchairs: A robotic architecture, IEEE Robotics Autom, Mag. 20(1), 65–73 (2013)Google Scholar
  109. 75.109
    S. Murata, H. Kurokawa: Self-reconfigurable robots, IEEE Robotics Autom, Mag. 14(1), 71–78 (2007)Google Scholar
  110. 75.110
    M.R. Cutkosky, S. Kim: Design and fabrication of multi-material structures for bioinspired robots, Philos. Trans. R. Soc. 367, 1799–1813 (2009)CrossRefGoogle Scholar
  111. 75.111
    O. Unver, M. Sitti: Tankbot: A palm-size, tank like climbing robot on rough and smooth surfaces, Int. J. Robotics Res. 29(14), 1761–1777 (2010)CrossRefGoogle Scholar
  112. 75.112
    A.T. Asbeck, S. Kim, M.R. Cutkosky, W.R. Provancher, M. Lanzetta: Scaling hard vertical surfaces with compliant microspine arrays, Int. J. Robotics Res. 25(12), 1165–1179 (2006)CrossRefGoogle Scholar
  113. 75.113
    M.J. Spenko, G.C. Haynes, J.A. Saunders, M.R. Cutkosky, A.A. Rizzi, R.J. Full, D.E. Koditschek: Biologically inspired climbing with a hexapedal robot, J. Field Robotics 25(4/5), 223–242 (2008)CrossRefGoogle Scholar
  114. 75.114
    T. Lam, Y. Xu: Climbing strategy for a flexible tree climbing robot Treebot, IEEE Trans. Robotics 27(6), 1107–1117 (2011)CrossRefGoogle Scholar
  115. 75.115
    M.S. Triantafyllou, G.S. Triantafyllou: An efficient swimming machine, Sci. Am. 272(3), 40–48 (1995)CrossRefGoogle Scholar
  116. 75.116
    M.H. Dickinson, C.T. Farley, R.J. Full, M.A. Koehl, R. Kram, S. Lehman: How animals move: An integrative view, Science 288(5463), 100–106 (2000)CrossRefGoogle Scholar
  117. 75.117
    G.V. Lauder, E.J. Anderson, J. Tangorra, P.G. Madden: Fish biorobotics: Kinematics and hydrodynamics of self-propulsion, J. Exp. Biol. 210(16), 2767–2780 (2007)CrossRefGoogle Scholar
  118. 75.118
    R. Fearing, J. Hollerbach: Basic solid mechanics for tactile sensing, Int. J. Robotics Res. 1, 266–275 (1984)Google Scholar
  119. 75.119
    V. Hayward, O.R. Astley, M. Cruz-Hernandez, D. Grant, G. Robles-De-La-Torre: Haptic interfaces and devices, Sens. Rev. 24(1), 16–29 (2004)CrossRefGoogle Scholar
  120. 75.120
    D. Gunji, Y. Mizoguchi, S. Teshigawara, A. Ming, A. Namiki, M. Ishikawaand, M. Shimojo: Grasping force control of multi-fingered robot hand based on slip detection using tactile sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 2605–2610Google Scholar
  121. 75.121
    T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes, Proc. Natl. Acad. Sci. USA 102, 12321–12325 (2005)CrossRefGoogle Scholar
  122. 75.122
    G. Cannata, M. Maggiali, G. Metta, G. Sandini: An embedded artificial skin for humanoid robots, Int. Conf. Multi-Sensor Fusion Integr. (2008) pp. 434–438Google Scholar
  123. 75.123
    S.F. Gilbert: Developmental Biology (Palgrave Macmillan, London 2010)Google Scholar
  124. 75.124
    F. Hara, R. Pfeifer (Eds.): Morpho-Functional Machines: The New Species: Designing Embodied Intelligence (Springer, Berlin, Heidelberg 2003)Google Scholar
  125. 75.125
    M. Yim, W.M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, G.S. Chirikjian: Modular self-reconfigurable robot systems: Challenges and opportunities for the future, IEEE Robotics Autom, Mag. 14(1), 43–52 (2007)Google Scholar
  126. 75.126
    S. Hirose: Biologically inspired robots: Snake-like locomotors and manipulators (Oxford Univ. Press, Oxford 1993)Google Scholar
  127. 75.127
    T. Kano, T. Sato, R. Kobayashi, A. Ishiguro: Local reflexive mechanisms essential for snakes’ scaffold-based locomotion, Bioinspir. Biomim. 7, 046008 (2012)CrossRefGoogle Scholar
  128. 75.128
    P.J. White, K. Kopanski, H. Lipson: Stochastic self-reconfigurable cellular robotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 2888–2893Google Scholar
  129. 75.129
    E. Klavins, R. Ghrist, D. Lipsky: A grammatical approach to self-organizing robotic systems, IEEE Trans. Autom. Control 51(6), 949–962 (2006)MathSciNetCrossRefGoogle Scholar
  130. 75.130
    S. Nolfi, D. Floreano: Evolutionary Robotics. The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT Press, Cambridge 2000)Google Scholar
  131. 75.131
    S. Seok, C.D. Onal, K.J. Cho, R.J. Wood, D. Rus, S. Kim: Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators, IEEE/ASME Trans. Mechatron. 18, 1485–1497 (2013)CrossRefGoogle Scholar
  132. 75.132
    D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker: Soft robotics: Biological inspiration, state of the art, and future research, Appl. Bionics Biomech. 5(3), 99–117 (2008)CrossRefGoogle Scholar
  133. 75.133
    F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides: Soft robotics for chemists, Angew. Chem. Int. Ed. 50, 1890–1895 (2011)CrossRefGoogle Scholar
  134. 75.134
    L. Brodbeck, F. Iida: Enhanced robotic body extension with modular units, Proc. 2012 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 1428–1433CrossRefGoogle Scholar
  135. 75.135
    A.T. Conn, J.M. Rossiter: Towards holonomic electro-elastomer actuators with six degrees of freedom, Smart Mater. Struct. 21, 035012–035020 (2012)CrossRefGoogle Scholar
  136. 75.136
    J. Rieffel, D. Knox, S. Smith, B.A. Trimmer: Growing and evolving soft robots, Artif. Life 20(1), 143–162 (2014)CrossRefGoogle Scholar
  137. 75.137
    C. Laschi, B. Mazzolai, V. Mattoli, M. Cianchetti, P. Dario: Design of a biomimetic robotic octopus arm, Bioinspir. Biomim. 4, 1–8 (2009)CrossRefGoogle Scholar
  138. 75.138
    A.B. Schwartz, X.T. Cui, D.J. Weber, D.W. Moran: Brain-controlled interfaces: Movement restoration with neural prosthetics, Neuron 52(1), 205–220 (2006)CrossRefGoogle Scholar
  139. 75.139
    J.E. O’Doherty, M.A. Lebedev, K.Z. Zhuang, S. Shokur, H. Bleuler, M.A.L. Nicolelis: Active tactile exploration enabled by a brain-machine-brain interface, Nature 479, 228–231 (2011)CrossRefGoogle Scholar
  140. 75.140
    J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tache, I. Said, V. Durier, S. Canonge, J.M. Ame, C. Detrain, N. Correll, A. Martinoli, F. Mondada, R. Siegwart, J.L. Deneubourg: Social integration of robots into groups of cockroaches to control self-organized choices, Science 318(5853), 1155–1158 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.School of EngineeringSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland

Personalised recommendations