Human–Robot Augmentation

Abstract

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-the-art devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

ADL

activities for daily living

ARX

auto regressive estimator

BE

body extender

BLEEX

Berkely exoskeleton

COT

cost of transport

DARPA

Defense Advanced Research Projects Agency

D

distal

DOF

degree of freedom

EHPA

exoskeleton for human performance augmentation

EMG

electromyography

EVA

extravehicular activity

FB-EHPA

full-body EHPA

HAL

hybrid assistive limb

HE

hand exoskeleton

IAD

intelligent assisting device

IAS

intelligent autonomous system

IP

interphalangeal

JPL

Jet Propulsion Laboratory

MCP

metacarpophalangeal

MIT

Massachusetts Institute of Technology

MPHE

multiphalanx hand exoskeleton

SEA

series elastic actuator

SPHE

single-phalanx hand exoskeleton

TBG

time-base generator

ULE

upper limb exoskeleton

VE

virtual environment

ZMP

zero moment point

References

  1. 70.1
    M. McCullough: Abstracting Craft: The Practiced Digital Hand (MIT, Cambridge 1998)Google Scholar
  2. 70.2
    H. Kazerooni: Human-robot interaction via the transfer of power and information signals, IEEE Trans. Syst. Man Cybern. 20(2), 450–463 (1990)CrossRefGoogle Scholar
  3. 70.3
    A. Frisoli, F. Salsedo, M. Bergamasco, B. Rossi, M.C. Carboncini: A force-feedback exoskeleton for upper-limb rehabilitation in virtual reality, Appl. Bionics Biomech. 6(2), 115–126 (2009)CrossRefGoogle Scholar
  4. 70.4
    J.E. Colgate, J. Edward, M.A. Peshkin, W. Wannasuphoprasit: Cobots: Robots for collaboration with human operators, ASME Int. Cong. Mech. Eng. (1996) pp. 433–440Google Scholar
  5. 70.5
    H. Kazerooni: Exoskeletons for human performance augmentation. In: Handbook of Robotics, ed. by B. Siciliano, O. Khatib (New York, Springer 2008) pp. 773–793CrossRefGoogle Scholar
  6. 70.6
    A.M. Dollar, H. Herr: Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art, IEEE Trans. Robotics 24(1), 144–158 (2008)CrossRefGoogle Scholar
  7. 70.7
    R. Kobetic, C.S. To, J.R. Schnellenberger, M.L. Audu, T.C. Bulea, R. Gaudio, G. Pinault, S. Tashman, R.J. Triolo: Development of hybrid orthosis for standing, walking, stair climbing after spinal cord injury, J. Rehabil. Res. Dev. 46(3), 447–462 (2009)CrossRefGoogle Scholar
  8. 70.8
    H. Herr: Exoskeletons and orthoses: Classification, design challenges and future directions, J. NeuroEng. Rehabil. 6, 21 (2009)CrossRefGoogle Scholar
  9. 70.9
    A. Frisoli, F. Rocchi, S. Marcheschi, A. Dettori, F. Salsedo, M. Bergamasco: A new force-feedback arm exoskeleton for haptic interaction in virtual environments, Proc. 1st IEEE Jt. Eurohaptics Conf./Symp. Haptic Interfaces Virt. Environ. Teleoperator Syst. (2005) pp. 195–201CrossRefGoogle Scholar
  10. 70.10
    S.C. Jacobsen, F.M. Smith, E.K. Iversen, D.K. Backman: High performance, high dexterity, force reflective teleoperator, Proc. 38th Conf. Remote Syst. Technol., Washington (1990) pp. 180–185Google Scholar
  11. 70.11
    Y. Ren, H.S. Park, L.Q. Zhang: Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, IEEE Int. Conf. Rehabil. Robotics (ICORR) (2009) pp. 761–765Google Scholar
  12. 70.12
    N.G. Tsagarakis, D.G. Caldwell: Development and control of a soft-actuated exoskeleton for use in physiotherapy and training, Auton. Robots 15(1), 21–33 (2003)CrossRefGoogle Scholar
  13. 70.13
    J.C. Perry, J. Rosen, S. Burns: Upper-limb powered exoskeleton design, IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)CrossRefGoogle Scholar
  14. 70.14
    T.G. Sugar, J. He, E.J. Koeneman, J.B. Koeneman, R. Herman, H. Huang, R.S. Schultz, D.E. Herring, J. Wanberg, S. Balasubramanian, P. Swenson, J.A. Ward: Design and control of rupert: A device for robotic upper extremity repetitive therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 336–346 (2007)CrossRefGoogle Scholar
  15. 70.15
    T. Nef, M. Mihelj, G. Kiefer, C. Perndl, R. Muller, R. Riener: Armin-exoskeleton for arm therapy in stroke patients, IEEE 10th Int. Conf. Rehabil. Robotics (ICORR) (2007) pp. 68–74Google Scholar
  16. 70.16
    R. Gopura, D.S.V. Bandara, K. Kiguchi, G.K.I. Mann: Developments in hardware systems of active upper-limb exoskeleton robots: A review, J. Appl. Physiol. B 75, 203–220 (2016)Google Scholar
  17. 70.17
    G.M. Prisco, C.A. Avizzano, M. Calcara, S. Ciancio, S. Pinna, M. Bergamasco: A virtual environment with haptic feedback for the treatment of motor dexterity disabilities, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1998) pp. 3721–3726Google Scholar
  18. 70.18
    L.I. Lugo-Villeda, A. Frisoli, O. Sandoval-Gonzalez, M.A. Padilla, V. Parra-Vega, C.A. Avizzano, E. Ruffaldi, M. Bergamasco: Haptic guidance of light-exoskeleton for arm-rehabilitation tasks, 18th IEEE Int. Symp. Robot Human Interact. Commun. (RO-MAN) (2009) pp. 903–908Google Scholar
  19. 70.19
    C. Carignan, J. Tang, S. Roderick: Development of an exoskeleton haptic interface for virtual task training, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 3697–3702Google Scholar
  20. 70.20
    R. Vertechy, A. Frisoli, A. Dettori, M. Solazzi, M. Bergamasco: Development of a new exoskeleton for upper limb rehabilitation, IEEE Int. Conf. Rehabil. Robotics (ICORR) (2009) pp. 188–193Google Scholar
  21. 70.21
    K. Kiguchi, T. Tanaka, K. Watanabe, T. Fukuda: Exoskeleton for human upper-limb motion support, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2003) pp. 2206–2211Google Scholar
  22. 70.22
    T. Rahman, W. Sample, S. Jayakumar, M.M. King, J.Y. Wee, R. Seliktar, M. Alexander, M. Scavina, A. Clark: Passive exoskeletons for assisting limb movement, J. Rehabil. Res. Dev. 43(5), 583 (2006)CrossRefGoogle Scholar
  23. 70.23
    S.J. Ball, I.E. Brown, S.H. Scott: MEDARM: A rehabilitation robot with 5DOF at the shoulder complex, IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2007) pp. 1–6Google Scholar
  24. 70.24
    J. Klein, S.J. Spencer, J. Allington, K. Minakata, E.T. Wolbrecht, R. Smith, J.E. Bobrow, D.J. Reinkensmeyer: Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (bones), 2nd IEEE/RAS/EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2008) pp. 535–541Google Scholar
  25. 70.25
    P. Garrec, J.P. Friconneau, Y. Measson, Y. Perrot: ABLE, an innovative transparent exoskeleton for the upper-limb, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 1483–1488Google Scholar
  26. 70.26
    A.M.M. Aalsma, F.C.T. van der Helm, H. van der Kooij: Dampace: Design of an exoskeleton for force-coordination training in upper-extremity rehabilitation, J. Med. Dev. 3, 031003–31001 (2009)CrossRefGoogle Scholar
  27. 70.27
    M.H. Rahman, T.K. Ouimet, M. Saad, J.P. Kenne, P.S. Archambault: Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements, 36th Annu. Conf. IEEE Ind. Electron. Soc. (IECON) (2010) pp. 1506–1511Google Scholar
  28. 70.28
    M.H. Rahman, M. Saad, J.P. Kenne, P.S. Archambault: Exoskeleton robot for rehabilitation of elbow and forearm movements, 18th Mediterr. Conf. Cont. Autom. (MED) (2010) pp. 1567–1572Google Scholar
  29. 70.29
    A. Gupta, M.K. O'Malley: Design of a haptic arm exoskeleton for training and rehabilitation, IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)CrossRefGoogle Scholar
  30. 70.30
    H. Kawasaki, S. Ito, Y. Ishigure, Y. Nishimoto, T. Aoki, T. Mouri, H. Sakaeda, M. Abe: Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control, IEEE 10th Int. Conf. Rehabil. Robotics (ICORR) (2007) pp. 234–240Google Scholar
  31. 70.31
    P. Heo, G.M. Gu, S. Lee, K. Rhee, J. Kim: Current hand exoskeleton technologies for rehabilitation and assistive engineering, Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012)CrossRefGoogle Scholar
  32. 70.32
    M. Fontana, S. Fabio, S. Marcheschi, M. Bergamasco: Haptic hand exoskeleton for precision grasp simulation, ASME J. Mech. Robotics 5(4), 041014 (2013)CrossRefGoogle Scholar
  33. 70.33
    C.A. Avizzano, F. Bargagli, A. Frisoli, M. Bergamasco: The hand force feedback: analysis and control of a haptic device for the human-hand, IEEE Inter. Conf. Syst. Man Cybern., Vol. 2 (2000) pp. 989–994Google Scholar
  34. 70.34
    M. Bergamasco, B. Allotta, L. Bosio, L. Ferretti, G. Parrini, G.M. Prisco, F. Salsedo, G. Sartini: An arm exoskeleton system for teleoperation and virtual environments applications, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 1449–1454Google Scholar
  35. 70.35
    T. Nef, R. Riener: Shoulder actuation mechanisms for arm rehabilitation exoskeletons, 2nd IEEE/RAS/EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2008) pp. 862–868Google Scholar
  36. 70.36
    P. DeVita, J. Helseth, T. Hortobagyi: Muscles do more positive than negative work in human locomotion, J. Exp. Biol. 210(19), 3361–3373 (2007)CrossRefGoogle Scholar
  37. 70.37
    M. Bergamasco: Design of hand force feedback systems for glove-like advanced interfaces, Proc. IEEE Int. Work. Robot Human Commun. (1992) pp. 286–293CrossRefGoogle Scholar
  38. 70.38
    A. De Luca: Feedforward/feedback laws for the control of flexible robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (2000) pp. 233–240Google Scholar
  39. 70.39
    D.C. Clark, N.J. Deleys, C.W. Matheis: Exploratory Investigation of the Man Amplifier Concept, Tech. Documentary Rep. AMRL-TDR-62-89 (Cornell Aeronautical Laboratory, Buffalo 1962)Google Scholar
  40. 70.40
    A. Zarudiansky: Remote handling devices, US Patent 4302138 A (1981)Google Scholar
  41. 70.41
    B.M. Jau: Anthropomorhic exoskeleton dual arm/hand telerobot controller, IEEE Int. Workshop Intell. Robots (1988) pp. 715–718CrossRefGoogle Scholar
  42. 70.42
    G. Burdea, J. Zhuang, E. Roskos, D. Silver, N. Langrana: A portable dextrous master with force feedback, Presence Teleoperators Virt. Environ. 1(1), 18–28 (1992)CrossRefGoogle Scholar
  43. 70.43
    T. Koyama, I. Yamano, K. Takemura, T. Maeno: Multi-fingered exoskeleton haptic device using passive force feedback for dexterous teleoperation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2002) pp. 2905–2910CrossRefGoogle Scholar
  44. 70.44
    S. Nakagawara, H. Kajimoto, N. Kawakami, S. Tachi, I. Kawabuchi: An encounter-type multi-fingered master hand using circuitous joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 2667–2672Google Scholar
  45. 70.45
    D. Gomez, G. Burdea, N. Langrana: Integration of the Rutgers Master II in a virtual reality simulation, Virt. Real. Annu. Int. Symp. (1995) pp. 198–202CrossRefGoogle Scholar
  46. 70.46
    A. Wege, K. Kondak, G. Hommel: Mechanical design and motion control of a hand exoskeleton for rehabilitation, IEEE Int. Conf. Mechatron. Autom., Vol. 1 (2005) pp. 155–159Google Scholar
  47. 70.47
    M. Mulas, M. Folgheraiter, G. Gini: An emg-controlled exoskeleton for hand rehabilitation, IEEE 9th Int. Conf. Rehabil. Robotics (ICORR) (2005) pp. 371–374Google Scholar
  48. 70.48
    S. Ito, H. Kawasaki, Y. Ishigure, M. Natsume, T. Mouri, Y. Nishimoto: A design of fine motion assist equipment for disabled hand in robotic rehabilitation system, J. Frankl. Inst. 348(1), 79–89 (2011)MATHCrossRefGoogle Scholar
  49. 70.49
    P. Brown, D. Jones, S.K. Singh, J.M. Rosen: The exoskeleton glove for control of paralyzed hands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1993) pp. 642–647CrossRefGoogle Scholar
  50. 70.50
    B.L. Shields, J.A. Main, S.W. Peterson, A.M. Strauss: An anthropomorphic hand exoskeleton to prevent astronaut hand fatigue during extravehicular activities, IEEE Trans. Syst. Man Cybern. A 27(5), 668–673 (1997)CrossRefGoogle Scholar
  51. 70.51
    Y. Yamada, T. Morizono, S. Sato, T. Shimohira, Y. Umetani, T. Yoshida, S. Aoki: Proposal of a Skilmate finger for EVA gloves, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2001) pp. 1406–1412Google Scholar
  52. 70.52
    J.Y. Wang, Z.W. Xie, J.D. Zhao, H.G. Fang, M.H. Jin, H. Liu: An exoskeleton system for measuring mechanical characteristics of extravehicular activity glove joint, IEEE Int. Conf. Robotics Biomim. (ROBIO) (2006) pp. 1260–1265Google Scholar
  53. 70.53
    H. Herr, G.P. Whiteley, D. Childress: Cyborg technology – Biomimetic orthotic and prosthetic technology. In: Biologically Inspired Intelligent Robots, ed. by Y. Bar-Cohen, C. Breazeal (SPIE, Bellingham 2003)Google Scholar
  54. 70.54
    K. Endo, H. Herr: A model of muscle-tendon function in human walking at self-selected speed, IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 352–362 (2014)CrossRefGoogle Scholar
  55. 70.55
    H.M. Herr, A.M. Grabowski: Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation, Proc. R. Soc. B 279(1728), 457–464 (2012)CrossRefGoogle Scholar
  56. 70.56
    J.M. Donelan, R. Kram, A.D. Kuo: Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking, J. Exp. Biol. 205(23), 3717–3727 (2002)Google Scholar
  57. 70.57
    A. Grabowski, C.T. Farley, R. Kram: Independent metabolic costs of supporting body weight and accelerating body mass during walking, J. Appl. Physiol. 98(2), 579–583 (2005)CrossRefGoogle Scholar
  58. 70.58
    A.D. Kuo, J.M. Donelan, A. Ruina: Energetic consequences of walking like an inverted pendulum: Step-to-step transitions, Exerc. Sport Sci. Rev. 33(2), 88–97 (2005)CrossRefGoogle Scholar
  59. 70.59
    R. Margaria: Positive and negative work performances and their efficiencies in human locomotion, Eur. J. Appl. Physiol. Occupat. Physiol. 25(4), 339–351 (1968)CrossRefGoogle Scholar
  60. 70.60
    D.A. Winter: Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences, Clin. Orthop. Rel. Res. 175(175), 147 (1983)Google Scholar
  61. 70.61
    A.H. Hansen, D.S. Childress, S.C. Miff, S.A. Gard, K.P. Mesplay: The human ankle during walking: implications for design of biomimetic ankle prostheses, J. Biomech. 37(10), 1467–1474 (2004)CrossRefGoogle Scholar
  62. 70.62
    S. Au, H. Herr: Powered ankle-foot prosthesis, IEEE Robotics Autom. Mag. 15(3), 52–59 (2008)CrossRefGoogle Scholar
  63. 70.63
    D. Paluska, H. Herr: The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design, Robotics Auton. Syst. 54(8), 667–673 (2006)CrossRefGoogle Scholar
  64. 70.64
    G. Pratt, M. Williamson, P. Dillworth, J. Pratt, A. Wright: Stiffness isn't everything, Lect. Notes Control Inf. Sci. 223, 253–262 (1997)CrossRefGoogle Scholar
  65. 70.65
    J. Markowitz, P. Krishnaswamy, M.F. Eilenberg, K. Endo, C. Barnhart, H. Herr: Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model, Philos. Trans. R. Soc. B Biol. Sci. 366(1570), 1621–1631 (2011)CrossRefGoogle Scholar
  66. 70.66
    K. Endo, E. Swart, H. Herr: An artificial gastrocnemius for a transtibial prosthesis, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC) (2009) pp. 5034–5037Google Scholar
  67. 70.67
    H. Geyer, H. Herr: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities, IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)CrossRefGoogle Scholar
  68. 70.68
    J. Wang: EMG Control of Prosthetic Ankle Plantar Flexion, Ph.D. Thesis (MIT, Cambridge 2011)Google Scholar
  69. 70.69
    R.A. Heinlein: Starship Troopers (Ace Books, New York 1987)Google Scholar
  70. 70.70
    N. Yagn: Apparatus for facilitating walking, US Patent 420179 A (1890)Google Scholar
  71. 70.71
    S.J. Zaroodny: Bumpusher-A Powered Aid to Locomotion, Tech. Note (Ballistic Research Laboratory, Aberdeen 1963)Google Scholar
  72. 70.72
    R.S. Mosher: Handyman to Hardiman, Tech. Rep. (Society of Automotive Engineers, Warrendale 1967)CrossRefGoogle Scholar
  73. 70.73
    M.E. Rosheim: Man-amplifying exoskeleton, SPIE Proc. Mob. Robots IV 1195, 402–411 (1989)Google Scholar
  74. 70.74
    E. Garcia, J.M. Sater, J. Main: Exoskeletons for human performance augmentation (EHPA): A program summary, J. Robotics Soc. Jpn. 20(8), 44–48 (2002)CrossRefGoogle Scholar
  75. 70.75
    H. Kazerooni: The berkeley lower extremity exoskeleton, Springer Tracts. Adv. Robotics 25, 9–15 (2006)CrossRefGoogle Scholar
  76. 70.76
    A.B. Zoss, H. Kazerooni, A. Chu: Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006)CrossRefGoogle Scholar
  77. 70.77
    K. Amundson, J. Raade, N. Harding, H. Kazerooni: Hybrid hydraulic-electric power unit for field and service robots, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 3453–3458Google Scholar
  78. 70.78
    C.J. Walsh, K. Pasch, H. Herr: An autonomous, underactuated exoskeleton for load-carrying augmentation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 1410–1415Google Scholar
  79. 70.79
    C.J. Walsh: Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation, M.A. Thesis (MIT, Cambridge 2006)Google Scholar
  80. 70.80
    C.J. Walsh, K. Endo, H. Herr: A quasi-passive leg exoskeleton for load-carrying augmentation, Int. J. Hum. Robotics 4(03), 487–506 (2007)CrossRefGoogle Scholar
  81. 70.81
    N. Costa, D.G. Caldwell: Control of a biomimetic soft-actuated 10DoF lower body exoskeleton, 1st IEEE/RAS-EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2006) pp. 495–501Google Scholar
  82. 70.82
    H. Kawamoto, S. Lee, S. Kanbe, Y. Sankai: Power assist method for HAL-3 using EMG-based feedback controller, IEEE Int. Conf. Syst. Man Cybern., Vol. 2 (2003) pp. 1648–1653Google Scholar
  83. 70.83
    K. Yamamoto, K. Hyodo, M. Ishii, T. Matsuo: Development of power assisting suit for assisting nurse labor, JSME Int. J. Ser. C 45(3), 703–711 (2002)CrossRefGoogle Scholar
  84. 70.84
    J.E. Pratt, B.T. Krupp, C.J. Morse, S.H. Collins: The roboknee: An exoskeleton for enhancing strength and endurance during walking, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (2004) pp. 2430–2435Google Scholar
  85. 70.85
    Y. Sankai: Hal: Hybrid assistive limb based on cybernics. In: Robotics Research, ed. by M. Kaneko, Y. Nakamura (Springer, Berlin, Heidelberg 2011) pp. 25–34Google Scholar
  86. 70.86
    US Army Research Laboratory, US Army Research Office: ARO in Review (USRL/USRO, Adelphi 2006)Google Scholar
  87. 70.87
    J.E. Pratt, B.T. Krupp, C.J. Morse, S.H. Collins: The RoboKnee: An exoskeleton for enhancing strength and endurance during walking, Proc. ICRA IEEE Int. Conf. Robotics Autom., Vol. 3 (2001) pp. 2430–2435Google Scholar
  88. 70.88
    C.J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, H. Herr: Development of a lightweight, underactuated exoskeleton for load-carrying augmentation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 3485–3491Google Scholar
  89. 70.89
    A. Goffer: Gait-locomotor apparatus, US Patent 7 153 242 (2006)Google Scholar
  90. 70.90
    R. Little, R.A. Irving: Self contained powered exoskeleton walker for a disabled user, US Patent 20110066088 A1 (2011)Google Scholar
  91. 70.91
    R. Bogue: Exoskeletons and robotic prosthetics: A review of recent developments, Ind. Robot Int. J. 36(5), 421–427 (2009)CrossRefGoogle Scholar
  92. 70.92
    C.P. Lent: Mobile space suit, US Patent 3034131 A (1962)Google Scholar
  93. 70.93
    N.J. Mizen: Powered exoskeletal apparatus for amplifying human strength in response to normal body movements, US Patent 3449769 A (1969)Google Scholar
  94. 70.94
    B.R. Fick, J.B. Makinson: Hardiman I Prototype for Machine Augmentation of Human Strength and Endurance: Final Report, Tech. Rep. S-71-1056 (General Electric Comp., Schenectady 1971)Google Scholar
  95. 70.95
    T.J. Snyder, H. Kazerooni: A novel material handling system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (1996) pp. 1147–1152CrossRefGoogle Scholar
  96. 70.96
    B.R. Fick: Cutaneous stimuli sensor and transmission network, US Patent 3535711 (1970)Google Scholar
  97. 70.97
    S.R. Taal, Y. Sankai: Exoskeletal spine and shoulders for full body exoskeletons in health care, Adv. Appl. Sci. Res. 2(6), 270–286 (2011)Google Scholar
  98. 70.98
    T. Ishida, T. Kiyama, K. Osuka, G. Shirogauchi, R. Oya, H. Fujimoto: Movement analysis of power-assistive machinery with high strength-amplification, Proc. SICE Annu. Conf. (2010) pp. 2022–2025Google Scholar
  99. 70.99
    S. Jacobsen, M. Olivier: Contact displacement actuator system, Patent WO 2008094191 A3 (2008)Google Scholar
  100. 70.100
    S. Toyama, G. Yamamoto: Development of wearable-agri-robot  mechanism for agricultural work, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 5801–5806Google Scholar
  101. 70.101
    S. Jacobsen, M. Olivier, B. Maclean: Method of sizing actuators for a biomimetic mechanical joint, Patent WO 2010025419 A3 (2010)Google Scholar
  102. 70.102
    S. Marcheschi, F. Salsedo, M. Fontana, M. Bergamasco: Body extender: whole body exoskeleton for human power augmentation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 611–616Google Scholar
  103. 70.103
    M. Fontana, R. Vertechy, S. Marcheschi, F. Salsedo, M. Bergamasco: The body extender: A full-body exoskeleton for the transport and handling of heavy loads, IEEE Robotics Autom. Mag. 21(4), 34–44 (2014)CrossRefGoogle Scholar
  104. 70.104
    G.P. Rosati Papini, C.A. Avizzano: Transparent force control for body extender, IEEE Int. Symp. Robot Human Interact. Commun. (RO-MAN) (2012) pp. 138–143Google Scholar
  105. 70.105
    G. Mone: Building the real iron man, Pop. Sci. 4, 1–6 (2008)Google Scholar
  106. 70.106
  107. 70.107
    P. Filippi: Device for the automatic control of the articulation of the knee, US Patent 2305291 (1937)Google Scholar
  108. 70.108
    M. Vukobratovic, D. Hristic, Z. Stojiljkovic: Development of active anthropomorphic exoskeletons, Med. Biol. Eng. Comput. 12(1), 66–80 (1974)CrossRefGoogle Scholar
  109. 70.109
    K. Kazerooni: On the robot compliant motion control, J. Dyn. Syst. Meas. Control. 111(3), 416–425 (1989)MathSciNetMATHCrossRefGoogle Scholar
  110. 70.110
    Y. Uchimura, H. Kazerooni: A μ-synthesis based control for compliant manoeuvres, IEEE Int. Conf. Syst. Man Cybern., Vol. 4 (1999) pp. 1014–1019Google Scholar
  111. 70.111
    H. Kazerooni: The human power amplifier technology at the University of California, Robotics Auton. Syst. 19(2), 179–187 (1996)CrossRefGoogle Scholar
  112. 70.112
    H. Kazerooni: Human power amplifier for lifting load including apparatus for preventing slack in lifting cable, US Patent 6386513 A (2002)Google Scholar
  113. 70.113
    J.E. Colgate, M. Peshkin, S.H. Klostermeyer: Intelligent assist devices in industrial applications: A review, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2003) pp. 2516–2521Google Scholar
  114. 70.114
    D. McGee, P. Swanson: Method of controlling an intelligent assist device, US Patent 6204620 A (2001)Google Scholar
  115. 70.115
    H. Kazerooni: Exoskeletons for human power augmentation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 3459–3464Google Scholar
  116. 70.116
    J. Rosen, M. Brand, M.B. Fuchs, M. Arcan: A myosignal-based powered exoskeleton system, IEEE Trans. Syst. Man Cybern. A 31(3), 210–222 (2001)CrossRefGoogle Scholar
  117. 70.117
    A.V. Hill: The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. B 126(843), 136–195 (1938)CrossRefGoogle Scholar
  118. 70.118
    S. Kawai, K. Naruse, H. Yokoi, Y. Kakazu: An analysis of human motion for control of a wearable power assist system, J. Robotics Mechatron. 16(3), 237–244 (2004)CrossRefGoogle Scholar
  119. 70.119
    S. Lee, Y. Sankai: Power assist control for walking aid with HAL-3 based on emg and impedance adjustment around knee joint, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (2002) pp. 1499–1504CrossRefGoogle Scholar
  120. 70.120
    E. Guizzo, H. Goldstein: The rise of the body bots [robotic exoskeletons], IEEE Spectrum 42(10), 50–56 (2005)CrossRefGoogle Scholar
  121. 70.121
    K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, Y. Sankai: Intention-based walking support for paraplegia patients with robot suit HAL, Adv. Robotics 21(12), 1441–1469 (2007)Google Scholar
  122. 70.122
    K. Kiguchi, T. Tanaka, T. Fukuda: Neuro-fuzzy control of a robotic exoskeleton with EMG signals, IEEE Trans. Fuzzy Syst. 12(4), 481–490 (2004)CrossRefGoogle Scholar
  123. 70.123
    K. Kiguchi, M.H. Rahman, M. Sasaki: Neuro-fuzzy based motion control of a robotic exoskeleton: considering end-effector force vectors, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 3146–3151Google Scholar
  124. 70.124
    M. Bergamasco, A. Frisoli, C. Avizzano: Exoskeletons as man-machine interface systems for teleoperation and interaction in virtual environments, Adv. Telerobotics 31, 61–76 (2007)CrossRefGoogle Scholar
  125. 70.125
    K. Zhou, J.C. Doyle, K. Glover (Eds.): Robust and Optimal Control (Prentice Hall, Upper Saddle River 1996)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Perceptual Robotics LaboratorySant’Anna School of Advanced StudiesPisaItaly
  2. 2.MIT Media LabCambridgeUSA

Personalised recommendations