Physical Human–Robot Interaction

Abstract

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and high-precision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motion-planning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

3-D

three-dimensional

AO

Arbeitsgemeinschaft für Ostheosynthesefragen

CC

compression criterion

CHMM

continuous hidden Markov model

COMAN

compliant humanoid platform

DARPA

Defense Advanced Research Projects Agency

DC

dynamic constrained

DHMM

discrete hidden Markov model

DLR

Deutsches Zentrum für Luft- und Raumfahrt

DNF

dynamic neural field

DOF

degree of freedom

DPC

dynamic partially constrained

DU

dynamic unconstrained

fs

force sensor

HASY

hand arm system

HIC

head injury criterion

HIII

Hybrid III dummy

HMM

hidden Markov model

IIT

Istituto Italiano di Tecnologia

IM

injury measure

ISO

International Organization for Standardization

LWR

light-weight robot

MRI

magnetic resonance imaging

NASA

National Aeronautics and Space Agency

PCA

principal component analysis

pHRI

physical human–robot interaction

PI

possible injury

POI

point of interest

QSC

quasistatic constrained

RGB-D

red–green–blue–depth

SEA

series elastic actuator

SME

small and medium enterprises

SMU

safe motion unit

TORO

torque controlled humanoid robot

TS

technical specification

UBC

University of British Columbia

VAS

visual analog scale

VIA

variable impedance actuator

VSA

variable stiffness actuator

WCF

worst-case factor

WCR

worst-case range

References

  1. 69.1
    M.A. Goodrich, A.C. Schultz: Human-robot interaction: A survey, Found. Trends Hum.-Comput. Interact. 1(3), 203–275 (2007)MATHCrossRefGoogle Scholar
  2. 69.2
    M.A. Peshkin, J.E. Colgate, W. Wannasuphoprasit, C.A. Moore, R.B. Gillespie, P. Akella: Cobot architecture, IEEE Trans. Robotics Autom. 17(4), 377–390 (2001)CrossRefGoogle Scholar
  3. 69.3
    T. Shibata, T. Mitsui, K. Wada, A. Touda: Mental commit robot and its application to therapy of children, IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2001) pp. 1053–1058Google Scholar
  4. 69.4
    S. Yohanan, K.E. MacLean: The role of affective touch in human-robot interaction: Human intent and expectations in touching the haptic creature, Int. J. Soc. Robotics 4(2), 163–180 (2011)CrossRefGoogle Scholar
  5. 69.5
    Y. Iwamura, M. Shiomi, T. Kanda, H. Ishiguro, N. Hagita: Do elderly people prefer a conversational humanoid as a shopping assistant partner in supermarkets?, ACM Int. Conf. Hum.-Robot Interact. (2011) p. 449Google Scholar
  6. 69.6
    T. Ende, S. Haddadin, S. Parusel, W. Tilo, M. Hassenzahl, A. Albu-Schäffer: A human-centered approach to robot gesture based communication within collaborative working processes, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3367–3374Google Scholar
  7. 69.7
    A.L. Thomaz, C. Chao: Turn-taking based on information flow for fluent human-robot interaction, AI Mag. 32(4), 53–63 (2011)Google Scholar
  8. 69.8
    B. Gleeson, K. MacLean, A. Haddadi, E. Croft, J. Alcazar: Gestures for industry Intuitive human-robot communication from human observation, ACM/IEEE Int. Conf. Hum.-Robot Interact. (2013) pp. 349–356Google Scholar
  9. 69.9
    S. Haddadin, S. Parusel, R. Belder, A. Albu-Schäffer: It is (almost) all about human safety: A novel paradigm for robot design, control, and planning, Lect. Notes Comput. Sci. 8153, 202–215 (2013)CrossRefGoogle Scholar
  10. 69.10
    J. Mainprice, D. Berenson: Human-robot collaborative manipulation planning using early prediction of human motion, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 299–306Google Scholar
  11. 69.11
    M. Cakmak, S.S. Srinivasa, M.K. Lee, S. Kiesler, J. Forlizzi: Using spatial and temporal contrast for fluent robot-human hand-overs, ACM/IEEE Int. Conf. Hum.-Robot Interact. (2011) pp. 489–496Google Scholar
  12. 69.12
    E.A. Sisbot, R. Alami: A human-aware manipulation planner, IEEE Trans. Robotics 28(5), 1045–1057 (2012)CrossRefGoogle Scholar
  13. 69.13
    W.P. Chan, C.A.C. Parker, H.F.M. Van der Loos, E.A. Croft: A human-inspired object handover controller, Int. J. Robotics Res. 32(8), 972–984 (2013)CrossRefGoogle Scholar
  14. 69.14
    M.S. Erden, T. Tomiyama: Human-intent detection and physically interactive control of a robot without force sensors, IEEE Trans. Robotics 26(2), 370–382 (2010)CrossRefGoogle Scholar
  15. 69.15
    A. Thobbi, Y. Gu, W. Sheng: Using human motion estimation for human-robot cooperative manipulation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 2873–2878Google Scholar
  16. 69.16
    P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, A. Kheddar: Teaching physical collaborative tasks: Object-lifting case study with a humanoid, IEEE-RAS Int. Conf. Humanoid Robots (2009) pp. 399–404Google Scholar
  17. 69.17
    S. Ikemoto, H. Ben Amor, T. Minato, H. Ishiguro, B. Jung: Mutual learning and adaptation in physical human-robot interaction, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 24–335Google Scholar
  18. 69.18
    D. Lee, C. Ott: Incremental kinesthetic teaching of motion primitives using the motion refinement tube, Auton. Robots 31(2–3), 115–131 (2011)CrossRefGoogle Scholar
  19. 69.19
    S. Haddadin, A. Albu-Schäffer, G. Hirzinger: Requirements for safe robots: Measurements, analysis & new insights, Int. J. Robotics Res. 28(11-12), 1507–1527 (2009)CrossRefGoogle Scholar
  20. 69.20
    A. Bicchi, G. Tonietti: Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control, IEEE Robotics Autom. Mag. 11, 22–33 (2004)CrossRefGoogle Scholar
  21. 69.21
    M. Zinn, O. Khatib, B. Roth: A new actuation approach for human friendly robot design, Int. J. Robotics Res. 23, 379–398 (2004)CrossRefGoogle Scholar
  22. 69.22
    S. Haddadin, A. Albu-Schäffer, G. Hirzinger: Safety evaluation of physical human-robot interaction via crash-testing, Proc. Robotics Sci. Syst. Conf. (2007) pp. 217–224Google Scholar
  23. 69.23
    S. Oberer, R.-D. Schraft: Robot-dummy crash tests for robot safety assessment, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2934–2939Google Scholar
  24. 69.24
    S. Haddadin, A. Albu-Schäffer, F. Haddadin, J. Roßmann, G. Hirzinger: Study on soft-tissue injury in robotics, IEEE Robotics Autom. Mag. 18(4), 20–34 (2011)CrossRefGoogle Scholar
  25. 69.25
    S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, A. Albu-Schäffer: On making robots understand safety: Embedding injury knowledge into control, Int. J. Robotics Res. 31, 1578–1602 (2012)CrossRefGoogle Scholar
  26. 69.26
    S. Haddadin: Towards safe robots – Approaching Asimov's 1st law, Springer Tracts Adv. Robotics 90, 1–343 (2014)CrossRefGoogle Scholar
  27. 69.27
    D.C. Schneider, A.M. Nahum: Impact studies of facial bones and skull, Proc. 16th Stapp Car Crash Conf. (1972) pp. 186–204Google Scholar
  28. 69.28
    A.M. Nahum, J.D. Gatts, C.W. Gadd, J. Danforth: Impact tolerance of the skull and face, Proc. Stapp Car Crash Conf. (1968)Google Scholar
  29. 69.29
    D. Allsop, T.R. Perl, C. Warner: Force/deflection and fracture characteristics of the temporo-parietal region of the human head, SAE Transactions (1991) pp. 2009–2018Google Scholar
  30. 69.30
    J. Cormier, S. Manoogian, J. Bisplinghoff, S. Rowson, A. Santago, C. McNally, S. Duma, J.I.V. Bolte: The tolerance of the nasal bone to blunt impact, Ann. Adv. Automot. Med (2010) p. 3Google Scholar
  31. 69.31
    H. Delye, P. Verschueren, B. Depreitere, I. Verpoest, D. Berckmans, J. Vander Sloten, G. Van Der Perre, J. Goffin: Biomechanics of frontal skull fracture, J. Neurotrauma 24(10), 1576–1586 (2007)CrossRefGoogle Scholar
  32. 69.32
    G.W. Nyquist, J.M. Cavanaugh, S.J. Goldberg, A.I. King: Facial impact tolerance and response, Proc. 30th Stapp Car Crash Conf. (1986) pp. 733–754Google Scholar
  33. 69.33
    D.L. Allsop, C.Y. Warner, M.G. Wille, D.C. Schneider, A.M. Nahum: Facial Impact response – A comparison of the hybrid III dummy and human cadaver, Proc. Stapp Car Crash Conf. (1988) pp. 781–797Google Scholar
  34. 69.34
    V.R. Hodgson, L.M. Thomas: Comparison of head acceleration injury indices in cadaver skull fracture, Proc. Stapp Car Crash Conf. (1971) pp. 299–307Google Scholar
  35. 69.35
    A.M. Nahum, R.W. Smith: An experimental model for closed head impact injury, Proc. Stapp Car Crash Conf. (1976)Google Scholar
  36. 69.36
    S. Haddadin, A. Albu-Schäffer, M. Frommberger, J. Rossmann, G. Hirzinger: The DLR Crash Report: Towards a standard crash-testing protocol for robot safety – Part I: Results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 272–279Google Scholar
  37. 69.37
    S. Haddadin, A. Albu-Schäffer, M. Frommberger, J. Rossmann, G. Hirzinger: The “DLR Crash Report”: Towards a standard crash-testing protocol for robot safety – Part II: Discussions, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 280–287Google Scholar
  38. 69.38
    C.K. Kroell, D.C. Schneider, A.M. Nahum: Impact tolerance and response of the human thorax I, Proc. Stapp Car Crash Conf. (1971)Google Scholar
  39. 69.39
    C.K. Kroell, D.C. Scheider, A.M. Nahum: Impact tolerance and response of the human thorax II, Proc. Stapp Car Crash Conf. (1974) pp. 383–457Google Scholar
  40. 69.40
    L.M. Patrick: Impact force deflection of the human thorax, Proc. 25th Stapp Car Crash Conf. (1981) pp. 471–496Google Scholar
  41. 69.41
    A.M. Nahum, C.W. Gadd, D.C. Schneider, C. Kroell: Deflection of the human thorax under sternal impact, Int. Automot. Saf. Conf. (1970)Google Scholar
  42. 69.42
    J.M. Cavanaugh, G.W. Nyquist, S.J. Goldberg, A.I. King: Lower abdominal impact tolerance and response, Proc. Stapp Car Crash Conf. (1986)Google Scholar
  43. 69.43
    S.M. Duma, P. Schreiber, J. McMaster, J. Crandall, C. Bass, W. Pilkey: Dynamic injury tolerances for long bones of the female upper extremity, Int. Res. Council Biomech. Inj. (IRCOBI) (1998) pp. 189–201Google Scholar
  44. 69.44
    S.M. Duma, J.R. Crandall, S.R. Hurwitz, W.D. Pilkey: Small female upper extremity interaction with the deploying side air bag, Proc. Stapp Car Crash Conf. (1998) pp. 47–63Google Scholar
  45. 69.45
    R. Behrens, N. Elkmann: Study on meaningful and verified thresholds for minimizing the consequences of human-robot collisions, IEEE Int. Conf. Robotics Autom. (ICRA) (2014) pp. 3378–3383Google Scholar
  46. 69.46
    J.A. Spadaro, F.W. Werner, R.A. Brenner, M.D. Fortino, L.A. Fay, W.T. Edwards: Cortical and trabecular bone contribute strength to the osteopenic distal radius, J. Orthop. Res. 12, 211–218 (1994)CrossRefGoogle Scholar
  47. 69.47
    O. Khatib: Inertial properties in robotic manipulation: An object-level framework, Int. J. Robotics Res. 14(1), 19–36 (1995)CrossRefGoogle Scholar
  48. 69.48
    T.E. Lobdell, C.K. Kroell, D.C. Scheider, W.E. Hering: Impact response of the human thorax, Symp. Hum. Impact Response (1972) pp. 201–245Google Scholar
  49. 69.49
    T.P. Ruedi, W.M. Murphy: AO Principles of Fracture Management, Vol. 1 (Thieme, Stuttgart 2007)Google Scholar
  50. 69.50
    I.V. Lau, D.C. Viano: Role of impact velocity and chest compression in thoraic injury, Avia. Space Environ. Med. 56, 16–21 (1983)Google Scholar
  51. 69.51
    ISO: ISO12100:2010: Safety of Machinery – General Principles for Design – Risk Assessment and Risk Reductions (Int. Organization for Standardization, Geneva 2010) Google Scholar
  52. 69.52
    ISO: ISO13849-1:2006: Safety of Machinery – Safety-Related Parts of Control Systems – Part 1: General Principles for Design (Int. Organization for Standardization, Geneva 2006) Google Scholar
  53. 69.53
    ISO: ISO13855:2010: Safety of Machinery – Positioning of Safeguards With Respect to the Approach Speeds of Parts of the Human Body (Int. Organization for Standardization, Geneva 2010) Google Scholar
  54. 69.54
    ISO: ISO10218-1:2011: Robots and Robotic Devices – Safety Requirements for Industrial Robots – Part 1: Robots (Int. Organization for Standardization, Geneva 2011) Google Scholar
  55. 69.55
    ISO/DTS 15066: Robots and Robotic Devices – Safety Requirements for Industrial Robots – Collaborative operation (Int. Organization for Standardization, Geneva) under developmentGoogle Scholar
  56. 69.56
    ISO: ISO13482:2014: Robots and Robotic Devices – Safety Requirements for Personal Care Robots (Int. Organization for Standardization, Geneva 2014) Google Scholar
  57. 69.57
    C. Gosselin, T. Laliberte, B. Mayer-St-Onge, S. Foucault, A. Lecours, V. Duchaine, N. Paradis, D. Gao, R. Menassa: A friendly beast of burden: A human-assistive robot for handling large payloads, IEEE Robotics Autom. Mag. 20(4), 139–147 (2013)CrossRefGoogle Scholar
  58. 69.58
    G. Hirzinger, A. Albu-Schäffer: Lightweight robots, Scholarpedia 3, 3889 (2008)CrossRefGoogle Scholar
  59. 69.59
    W.T. Townsend, J.K. Salisbury: Mechanical design for whole-arm manipulation, Proc. NATO Adv. Workshop Robots Biol. Syst, ed. by P. Dario, G. Sandini, P. Aebischer (1993) pp. 153–164Google Scholar
  60. 69.60
    A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, G. Hirzinger: The DLR lightweight robot – Lightweight design and soft robotics control concepts for robots in human environments, Ind. Robot J. 34(5), 376–385 (2007)CrossRefGoogle Scholar
  61. 69.61
    KUKA Roboter GmbH: http://www.kuka-lbr-iiwa.com (2015)
  62. 69.62
    A.S. Shafer, M.R. Kermani: Design and validation of a magneto-rheological clutch for practical control applications in human-friendly manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 4266–4271Google Scholar
  63. 69.63
    G. Hirzinger, J. Butterfaß, M. Fischer, M. Grebenstein, M. Hähnle, H. Liu, I. Schaefer, N. Sporer: A mechatronics approach to the design of light-weight arms and multi-fingered hands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000)Google Scholar
  64. 69.64
    M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders, R.S. Askew, D.M. Linn, J.D. Yamokoski, F.A. Permenter, B.K. Hargrave, R. Piatt, R.T. Savely, R.O. Ambrose: Robonaut 2 – The first humanoid robot in space, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 2178–2183Google Scholar
  65. 69.65
    M. Bluethmann, R. Ambrose, R. Askew, M. Goza, C. Lovechik, D. Magruder, M.A. Differ, F. Rehnmark: Robonaut: A robotic astronaut's assistant, Int. Conf. Adv. Robotics (2001)Google Scholar
  66. 69.66
    C. Ott, B. Henze, D. Lee: Kinesthetic teaching of humanoid motion based on whole-body compliance control with interaction-aware balancing, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 4615–4621Google Scholar
  67. 69.67
    C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C. Borst, A. Albu-Schäffer, B. Brunner, H. Hirschmuller, S. Kielhofer, S. Kielhofer, R. Konietschke, M. Suppa, T. Wimbock, F. Zacharias, G. Hirzinger: A humanoid two-arm system for dexterous manipulation, IEEE-RAS Int. Conf. Humanoid Robots (2006) pp. 276–283Google Scholar
  68. 69.68
    M.W. Spong: Modeling and control of elastic joint robots, ASME J. Dyn. Syst. Meas. Control 109(4), 310–319 (1987)MATHCrossRefGoogle Scholar
  69. 69.69
    G. Hirzinger, N. Sporer, M. Schedl, J. Butterfaß, M. Grebenstein: Torque-controlled lightweight arms and articulated hands: Do we reach technological limits now?, Int. J. Robotics Res. 23(4/5), 331–340 (2004)CrossRefGoogle Scholar
  70. 69.70
    B. Vanderborght, B. Verrelst, R.V. Ham, M.V. Damme, D. Lefeber, B.M.Y. Duran, P. Beyl: Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators, Int. J. Robotics Res. 25(4), 343–358 (2006)CrossRefGoogle Scholar
  71. 69.71
    S. Haddadin, M. Weis, A. Albu-Schäffer, S. Wolf: Optimal control for maximizing link velocity of robotic variable stiffness joints, IFAC World Congr. (2011) pp. 3175–3182Google Scholar
  72. 69.72
    S. Haddadin, T. Laue, U. Frese, S. Wolf, A. Albu-Schäffer, G. Hirzinger: Kick it like a safe robot: Requirements for 2050, Robotics Auton. Syst. 57, 761–775 (2009)CrossRefGoogle Scholar
  73. 69.73
    A. Albu-Schäffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimböck, S. Wolf, G. Hirzinger: Soft robotics: From torque feedback controlled lightweight robots to intrinsically compliant systems, IEEE Robotics Autom. Mag. 15(3), 20–30 (2008)CrossRefGoogle Scholar
  74. 69.74
    B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M.G. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N.G. Tsagarakis, M.V. Damme, R.V. Ham, L.C. Visser, S. Wolf: Variable impedance actuators: A review, Robotics Auton. Syst. 61(12), 1601–1614 (2013)CrossRefGoogle Scholar
  75. 69.75
    G.A. Pratt, M. Williamson: Series elastics actuators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1995) pp. 399–406Google Scholar
  76. 69.76
    S. Haddadin, A. Albu-Schäffer, O. Eiberger, G. Hirzinger: New insights concerning intrinsic joint elasticity for safety, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 2181–2187Google Scholar
  77. 69.77
    S. Haddadin, K. Krieger, N. Mansfeld, A. Albu-Schaffer: On impact decoupling properties of elastic robots and time optimal velocity maximization on joint level, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 5089–5096Google Scholar
  78. 69.78
    J.-J. Park, H.-S. Kim, J.-B. Song: Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 3371–3376Google Scholar
  79. 69.79
    N.G. Tsagarakis, S. Morfey, G. Medrano Cerda, L. Zhibin, D.G. Caldwell: Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 673–678Google Scholar
  80. 69.80
    A. Albu-Schäffer, M. Fischer, G. Schreiber, F. Schoeppe, G. Hirzinger: Soft robotics: What cartesian stiffness can we obtain with passively compliant, uncoupled joints?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 3295–3301Google Scholar
  81. 69.81
    M. Garabini, A. Passaglia, F. Belo, P. Salaris, A. Bicchi: Optimality principles in variable stiffness control: The VSA hammer, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3770–3775Google Scholar
  82. 69.82
    D. Braun, M. Howard, S. Vijayakumar: Exploiting variable stiffness in explosive movement tasks, Robotics Sci. Syst. (2011)Google Scholar
  83. 69.83
    U. Mettin, A. Shiriaev: Ball-pitching challenge with an underactuated two-link robot arm, IFAC World Congr. (2011) pp. 1–6Google Scholar
  84. 69.84
    A. Flagg, K. Maclean: Affective touch gesture recognition for a furry zoomorphic machine, Int. Conf. Tangible Embed. Embodied Interact. (2013) pp. 1–4Google Scholar
  85. 69.85
    R.M. Voyles, P.K. Khosla: Tactile gestures for human/robot interaction, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1995) pp. 7–13Google Scholar
  86. 69.86
    S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer, G. Hirzinger: Towards the robotic co-worker, Int. Symp. Robotics Res. Lucerne (2009)Google Scholar
  87. 69.87
    R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer, A. Beyer, O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, G. Hirzinger: The KUKA-DLR lightweight robot arm: A new reference platform for robotics research and manufacturing, Int. Symp. Robotics (2010) pp. 1–10Google Scholar
  88. 69.88
    S. Haddadin, A. Albu-Schäffer, A. De Luca, G. Hirzinger: Collision detection & reaction: A contribution to safe physical human-robot interaction, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 3356–3363Google Scholar
  89. 69.89
    L.E. Pfeffer, O. Khatib, J. Hake: Joint torque sensory feedback in the control of a PUMA manipulator, IEEE Trans. Robotics Autom. 5(4), 418–425 (1989)CrossRefGoogle Scholar
  90. 69.90
    G. Plank, G. Hirzinger: Controlling a robot's motion speed by a force-torque-sensor for deburring problems, IFAC Inf. Control Probl. Manuf. Technol. (1982) pp. 97–102Google Scholar
  91. 69.91
    G. Hirzinger, U. Brunet: Fast and self-improving compliance using digital force-torque control, 4th Int. Conf. Assembly Autom. (1983) pp. 268–281Google Scholar
  92. 69.92
    V.J. Lumelsky, E. Cheung: Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators, IEEE Trans. Syst. Man Cybern. 23(1), 194–203 (1993)CrossRefGoogle Scholar
  93. 69.93
    G. De Maria, C. Natale, S. Pirozzi: Force/tactile sensor for robotic applications, Sens. Actuators A 175, 60–72 (2012)CrossRefGoogle Scholar
  94. 69.94
    R.S. Dahiya, P. Mittendorfer, M. Valle, G. Cheng, V.J. Lumelsky: Directions toward effective utilization of tactile skin: A review, IEEE Sens. J. 13(11), 4121–4138 (2013)CrossRefGoogle Scholar
  95. 69.95
    M. Strohmayr: Artificial Skin in Robotics, Ph.D. Thesis (Karlsruhe Institute of Technology, Karlsruhe 2012)Google Scholar
  96. 69.96
    A. Jain, M.D. Killpack, A. Edsinger, C.C. Kemp: Manipulation in clutter with whole-arm tactile sensing, Int. J. Robotics Res. 32(4), 458–482 (2013)CrossRefGoogle Scholar
  97. 69.97
    A.J. Schmid, M. Hoffmann, H. Worn: A tactile language for intuitive human-robot communication, IEEE-RAS Int. Conf. Humanoid Robots (2007) pp. 569–576Google Scholar
  98. 69.98
    S. Yohanan, J.P. Hall, K.E. MacLean, E.A. Croft, H.F.M. Van Der Loos, M.A. Baumann, J. Chang, D. Nielsen, S. Zoghbi, G. Jih Shiang Chang: Affect-driven emotional expression with the haptic creature, Proc. User Interface Softw. Technol. (UIST) (2009) p. 2Google Scholar
  99. 69.99
    M. Frigola, A. Casals, J. Amat: Human-robot interaction based on a sensitive bumper skin, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 283–287Google Scholar
  100. 69.100
    T. Mukai, M. Onishi, T. Odashima, S. Hirano: Development of the tactile sensor system of a human-interactive robot, IEEE Trans. Robotics 24(2), 505–512 (2008)CrossRefGoogle Scholar
  101. 69.101
    B.D. Argall, A.G. Billard: A survey of tactile human-robot interactions, Robotics Auton. Syst. 58(10), 1159–1176 (2010)CrossRefGoogle Scholar
  102. 69.102
    M. Van den Bergh, D. Carton, R. De Nijs, N. Mitsou, C. Landsiedel, K. Kuehnlenz, D. Wollherr, L. Van Gool, M. Buss: Real-time 3D hand gesture interaction with a robot for understanding directions from humans, IEEE Int. Symp. Robot Hum. Interact. Commun. (2011) pp. 357–362Google Scholar
  103. 69.103
    M. Sigalas, M. Pateraki, I. Oikonomidis, P. Trahanias: Robust model-based 3D torso pose estimation in RGB-D sequences, IEEE Int. Conf. Computer Vis. Work. (2013) pp. 315–322Google Scholar
  104. 69.104
    N. Hogan: Impedance Control: An Approach to Manipulation: Part I – Theory, Part II – Implementation, Part III – Applications, J. Dyn. Syst. Meas. Control 107, 1–24 (1985)CrossRefGoogle Scholar
  105. 69.105
    J. Craig, M. Raibert: A systematic method for hybrid position/force control of a manipulator, IEEE Computer Softw. Appl. Conf. (1979) pp. 446–451Google Scholar
  106. 69.106
    C. Yang, G. Gowrishankar, S. Haddadin, S. Parusel, A. Albu-Schäffer, E. Burdet: Human like adaptation of force and impedance in stable and unstable interactions, IEEE Trans. Robotics 27(5), 918–930 (2010)CrossRefGoogle Scholar
  107. 69.107
    A. Stemmer, A. Albu-Schäffer, G. Hirzinger: An analytical method for the planning of robust assembly tasks of complex shaped planar parts, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 317–323Google Scholar
  108. 69.108
    N. Hogan: On the stability of manipulators performing contact tasks, IEEE Int. Conf. Robotics Autom. 4(6), 677–686 (1988)CrossRefGoogle Scholar
  109. 69.109
    C. Ott, R. Mukherjee, Y. Nakamura: Unified impedance and admittance control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 554–561Google Scholar
  110. 69.110
    T.R. Kurfess: Robotics and Automation Handbook (CRC, Boca Raton 2010)Google Scholar
  111. 69.111
    F. Caccavale, C. Natale, B. Siciliano, L. Villani: Six-DOF impedance control based on angle/axis representations, IEEE Trans. Robotics Autom. 15(2), 289–300 (1999)CrossRefGoogle Scholar
  112. 69.112
    L. Sentis, O. Khatib: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives, Int. J. Humanoid Robotic s, 505–518 (2005)CrossRefGoogle Scholar
  113. 69.113
    A. Dietrich, T. Wimböck, A. Albu-Schäffer: Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3199–3206Google Scholar
  114. 69.114
    A. Albu-Schäffer, C. Ott, U. Frese, G. Hirzinger: Cartesian impedance control of redundant robots: Recent results with the DLR-light-weight-arms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3704–3709Google Scholar
  115. 69.115
    A. Albu-Schäffer, C. Ott, G. Hirzinger: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots, Int. J. Robotics Res. 26, 23–39 (2007)MATHCrossRefGoogle Scholar
  116. 69.116
    L. Zollo, B. Siciliano, A. De Luca, E. Guglielmelli, P. Dario: Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments, J. Dyn. Syst. Meas. Control 127(3), 321–328 (2005)CrossRefGoogle Scholar
  117. 69.117
    R. Platt Jr., M. Abdallah, C. Wampler: Multiple-priority impedance control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 6033–6038Google Scholar
  118. 69.118
    S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-Free Approach (Springer, New York 2001)MATHGoogle Scholar
  119. 69.119
    C.-C. Cheah, D. Wang: Learning impedance control for robotic manipulators, IEEE Trans. Robotics Autom. 14(3), 452–465 (1998)CrossRefGoogle Scholar
  120. 69.120
    Y. Li, S. Sam Ge, C. Yang: Learning impedance control for physical robot–environment interaction, Int. J. Control 85(2), 182–193 (2012)MathSciNetMATHCrossRefGoogle Scholar
  121. 69.121
    S. Jung, T.C. Hsia: Neural network impedance force control of robot manipulator, IEEE Trans. Ind. Electron. 45(3), 451–461 (1998)CrossRefGoogle Scholar
  122. 69.122
    A.M. Zanchettin, P. Rocco: Path-consistent safety in mixed human-robot collaborative manufacturing environments, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 1131–1136Google Scholar
  123. 69.123
    D.W. Franklin, E. Burdet, K.P. Tee, R. Osu, C.-M. Chew, T.E. Milner, M. Kawato: CNS learns stable, accurate, and efficient movements using a simple algorithm, J. Neurosci. 28(44), 11165–11173 (2008)CrossRefGoogle Scholar
  124. 69.124
    J.-J.E. Slotine, W. Li: Applied Nonlinear Control (Prentice Hall, Englewood Cliffs 1991)MATHGoogle Scholar
  125. 69.125
    E. Gribovskaya, A. Kheddar, A. Billard: Motion learning and adaptive impedance for robot control during physical interaction with humans, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 4326–4332Google Scholar
  126. 69.126
    K. Kronander, A. Billard: Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Trans. Haptics 7(3), 367–380 (2014)CrossRefGoogle Scholar
  127. 69.127
    A. Ajoudani, N.G. Tsagarakis, A. Bicchi: Tele-impedance: Towards transferring human impedance regulation skills to robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 382–388Google Scholar
  128. 69.128
    S. Calinon, P. Evrard, E. Gribovskaya, A. Billard, A. Kheddar: Learning collaborative manipulation tasks by demonstration using a haptic interface, Int. Conf. Adv. Robotics (2009) pp. 1–6Google Scholar
  129. 69.129
    J.R. Medina, M. Lawitzky, A. Mörtl, D. Lee, S. Hirche: An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 2416–2422Google Scholar
  130. 69.130
    D. Lee, C. Ott, Y. Nakamura: Mimetic communication model with compliant physical contact in human-humanoid interaction, Int. J. Robotics Res. 29(13), 1684–1704 (2010)CrossRefGoogle Scholar
  131. 69.131
    A. Jain, B. Wojcik, T. Joachims, A. Saxena: Learning trajectory preferences for manipulators via iterative improvement, Adv. Neural Inf. Process. Syst. (2013) pp. 575–583Google Scholar
  132. 69.132
    K. Suita, Y. Yamada, N. Tsuchida, K. Imai, H. Ikeda, N. Sugimoto: A failure-to-safety kyozon system with simple contact detection and stop capabilities for safe human – Autonomous robot coexistence, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 3089–3096Google Scholar
  133. 69.133
    Y. Yamada, Y. Hirasawa, S. Huang, Y. Umetani, K. Suita: Human-robot contact in the safeguarding space, IEEE/ASME Trans. Mechatron. 2(4), 230–236 (1997)CrossRefGoogle Scholar
  134. 69.134
    S. Takakura, T. Murakami, K. Ohnishi: An approach to collision detection and recovery motion in industrial robot, Annual Conf. IEEE Ind. Electron. Soc. (1989) pp. 421–426CrossRefGoogle Scholar
  135. 69.135
    S. Morinaga, K. Kosuge: Collision detection system for manipulator based on adaptive impedance control law, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 1080–1085Google Scholar
  136. 69.136
    K. Kosuge, T. Matsumoto, S. Morinaga: Collision detection system for manipulator based on adaptive control scheme, Trans. Soc. Instrum. Control Eng. 39, 552–558 (2003)CrossRefGoogle Scholar
  137. 69.137
    A. De Luca, A. Albu-Schäffer, S. Haddadin, G. Hirzinger: Collision detection and safe reaction with the DLR-III lightweight manipulator arm, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 1623–1630Google Scholar
  138. 69.138
    A. De Luca, R. Mattone: Actuator fault detection and isolation using generalized momenta, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 634–639Google Scholar
  139. 69.139
    H.-B. Kuntze, C.W. Frey, K. Giesen, G. Milighetti: Fault tolerant supervisory control of human interactive robots, IFAC Workshop Adv. Control Diagn. (2003) pp. 55–60Google Scholar
  140. 69.140
    S. Parusel, S. Haddadin, A. Albu-Schäffer: Modular state-based behavior control for safe human-robot interaction: A lightweight control architecture for a lightweight robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 4298–4305Google Scholar
  141. 69.141
    N. Mansfeld, S. Haddadin: Reaching desired states time-optimally from equilibrium and vice versa for visco-elastic joint robots with limited elastic deflection, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2014) pp. 3904–3911Google Scholar
  142. 69.142
    C.A.C. Parker, E.A. Croft: Design & personalization of a cooperative carrying robot controller, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3916–3921Google Scholar
  143. 69.143
    N. Hogan, S.P. Buerger: Impedance and interaction control. In: Robotics and Automation Handbook, ed. by T.R. Kurfess (CRC, Boca Raton 2005) pp. 19-1–19-24Google Scholar
  144. 69.144
    R. Ikeura, H. Inooka: Variable impedance control of a robot for cooperation with a human, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 3097–3102Google Scholar
  145. 69.145
    R. Ikeura, T. Moriguchi, K. Mizutani: Optimal Variable Impedance Control for a Robot and Its Application To Lifting an Object with a Human, IEEE Int. Workshop Robot Hum. Interact. Commun. (2002) pp. 500–505CrossRefGoogle Scholar
  146. 69.146
    K. Kosuge, N. Kazamura: Mobile robot helper, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 583–588Google Scholar
  147. 69.147
    N. Nejatbakhsh, K. Kosuge: Adaptive guidance for the elderly based on user intent and physical impairment, IEEE Int. Symp. Robot Hum. Interact. Commun. (2006) pp. 510–514Google Scholar
  148. 69.148
    M. Lawitzky, A. Mörtl, S. Hirche: Load sharing in human-robot cooperative manipulation, IEEE Int. Symp. Robot Human Interact. Commun. (2010) pp. 185–191CrossRefGoogle Scholar
  149. 69.149
    V. Duchaine, B. Mayer St.-Onge, C. Gosselin: Stable and intuitive control of an intelligent assist device, IEEE Trans. on Haptics 5(2), 148–159 (2012)CrossRefGoogle Scholar
  150. 69.150
    A. Mörtl, M. Lawitzky, A. Kucukyilmaz, M. Sezgin, C. Basdogan, S. Hirche: The role of roles: Physical cooperation between humans and robots, Int. J. Robotics Res. 31(13), 1656–1674 (2012)CrossRefGoogle Scholar
  151. 69.151
    T. Flash, N. Hogan: The coordination of arm movements: Mathematical model, J. Neurosci. 5(7), 1688–1703 (1985)Google Scholar
  152. 69.152
    Y. Maeda, T. Hara, T. Arai: Human-robot cooperative manipulation with motion estimation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 2240–2245Google Scholar
  153. 69.153
    S. Miossec, A. Kheddar: Human motion in cooperative tasks: Moving object case study, Robotics Biomim. (2009) pp. 1509–1514Google Scholar
  154. 69.154
    D. Kulić, E. Croft: Pre-collision strategies for human robot interaction, Auton. Robots 22(2), 149–164 (2007)CrossRefGoogle Scholar
  155. 69.155
    K. Ikuta, H. Ishii, M. Nokata: Safety evaluation method of design and control for human-care robots, Int. J. Robotics Res. 22(5), 281–298 (2003)CrossRefGoogle Scholar
  156. 69.156
    D. Kulić, E.A. Croft: Real-time safety for human-robot interaction, Robotics Auton. Syst. 54(1), 1–12 (2006)CrossRefGoogle Scholar
  157. 69.157
    Y. Tamura, T. Fukuzawa, H. Asama: Smooth collision avoidance in human-robot coexisting environment, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 3887–3892Google Scholar
  158. 69.158
    B. Lacevic, P. Rocco, A.M. Zanchettin: Safety assessment and control of robotic manipulators using danger field, IEEE Trans. Robotics 29(5), 1257–1270 (2013)CrossRefGoogle Scholar
  159. 69.159
    S. Haddadin, H. Urbanek, S. Parusel, D. Burschka, J. Roßmann, A. Albu-Schäffer, G. Hirzinger: Realtime reactive motion generation based on variable attractor dynamics and shaped velocities, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 3109–3116Google Scholar
  160. 69.160
    F. Flacco, T. Kroger, A. De Luca, O. Khatib: A depth space approach to human-robot collision avoidance, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 338–345Google Scholar
  161. 69.161
    E.A. Sisbot, L.F. Marin-urias, R. Alami, T. Siméon: A human aware mobile robot motion planner, IEEE Trans. Robotics 23(5), 874–883 (2007)CrossRefGoogle Scholar
  162. 69.162
    J. Mainprice, E.A. Sisbot, T. Siméon, R. Alami: Planning safe and legible hand-over motions for human-robot interaction, IARP Workshop Tech. Chall. Dependable Robots Hum. Environ. (2010) p. 7Google Scholar
  163. 69.163
    J. Mainprice, E.A. Sisbot, L. Jaillet, J. Cortes, R. Alami, T. Simeon: Planning human-aware motions using a sampling-based costmap planner, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5012–5017Google Scholar
  164. 69.164
    A. Clodic, H. Cao, S. Alili, V. Montreuil, R. Alami, R. Chatila: SHARY: A supervision system adapted to human-robot interaction, Springer Tracts Adv. Robotics 54, 229–238 (2009)CrossRefGoogle Scholar
  165. 69.165
    E. Bicho, W. Erlhagen, L. Louro, E. Costa e Silva: Neuro-cognitive mechanisms of decision making in joint action: A human–robot interaction study, Hum. Mov. Sci. 30(5), 846–868 (2011)CrossRefGoogle Scholar
  166. 69.166
    T.S. Dahl, A. Paraschos: A force-distance model of humanoid arm withdrawal reflexes, Lect. Notes Comput. Sci. 7429, 13–24 (2012)CrossRefGoogle Scholar
  167. 69.167
    S. Parusel, H. Widmoser, S. Golz, T. Ende, N. Blodow, M. Saveriano, K. Krieger, A. Maldonado, I. Kresse, R. Weitschat, D. Lee, M. Beetz, S. Haddadin: Human-Robot interaction Planning, AAAI Video Competition, http://www.aaaivideos.org/2014/15_hri_planning/ (2014)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Electrical Engineering and Computer ScienceLeibniz University HannoverHannoverGermany
  2. 2.Department of Mechanical EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations