Rehabilitation and Health Care Robotics

  • H.F. Machiel Van der Loos
  • David J. Reinkensmeyer
  • Eugenio Guglielmelli

Abstract

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap.  73 for cognitive rehabilitation robotics and to Chap.  65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

ADL

activities for daily living

ALEX

active leg exoskeleton

ARM

assistive robot service manipulator

BCI

brain-computer interface

BI

brain imaging

BWSTT

body-weight supported treadmill training

CEA

Atomic Energy Commission

COM

center of mass

CP

cerebral palsy

DC

direct current

DOF

degree of freedom

DSO

Defense Sciences Office

EEG

electroencephalography

EMG

electromyography

EPP

extended physiological proprioception

ES

electrical stimulation

EU

European Union

EVRYON

evolving morphologies for human–robot symbiotic interaction

fMRI

functional magnetic resonance imaging

FNS

functional neural stimulation

IWS

intelligent wheelchair system

LENAR

lower extremity nonanthropomorphic robot

LOPES

lower extremity powered exoskeleton

MEG

magnetoencephalography

MIME

mirror image motion enabler

mirror image movement enhancer

MIMICS

multimodal immersive motion rehabilitation with interactive cognitive system

MIT

Massachusetts Institute of Technology

NIDRR

National Institute on Disability and Rehabilitation Research

NIRS

near infrared spectroscopy

NIST

National Institute of Standards and Technology

NOAH

navigation and obstacle avoidance help

NRI

national robotics initiative

OxIM

Oxford intelligent machine

P&O

prosthetics and orthotic

ProVAR

professional vocational assistive robot

RERC

Rehabilitation Engineering Research Center

rTMS

repetitive TMS

SCI

spinal cord injury

SEA

series elastic actuator

tDCS

transcranial direct current stimulation

TMS

transcranial magnetic stimulation

References

  1. 64.1
    L. Leifer: Rehabilitative robots. In: Robotics Age, in the Beginning: Selected from Robotics Age Magazine, ed. by C. Helmers (Hayden Book, Rochelle Park 1983) pp. 227–241Google Scholar
  2. 64.2
    M. Kassler: Introduction to the special issue on robotics for health care, Robotica 11, 493–494 (1993)CrossRefGoogle Scholar
  3. 64.3
    H.F.M. Van der Loos: VA/Stanford rehabilitation robotics research and development program: Lessons learned in the application of robotics technology to the field of rehabilitation, IEEE Trans. Rehabil. Eng. 3, 46–55 (1995)CrossRefGoogle Scholar
  4. 64.4
    J.L. Patton, M.E. Phillips-Stoykov, M. Stojakovich, F.A. Mussa-Ivaldi: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors, Exp. Brain Res. 168, 368–383 (2006)CrossRefGoogle Scholar
  5. 64.5
    J. Emken, D. Reinkensmeyer: Robot-enhanced motor learning: Accelerating internal model formation during locomotion by transient dynamic amplification, IEEE Trans. Neural Syst. Rehabil. Eng. 99, 1–7 (2005)Google Scholar
  6. 64.6
    E. Guglielmelli, M. Johnson, T. Shibata: Guest editorial special issue on rehabilitation robotics, IEEE Trans. Robotics 25, 477–480 (2009)CrossRefGoogle Scholar
  7. 64.7
    M.J. Matarić, J. Eriksson, D.J. Feil-Seifer, C.J. Winstein: Socially assistive robotics for post-stroke rehabilitation, J. Neuroeng. Rehabil. 19, 5 (2007)CrossRefGoogle Scholar
  8. 64.8
    M.P. Dijkers, P.C. deBear, R.F. Erlandson, K.A. Kristy, D.M. Geer, A. Nichols: Patient and staff acceptance of robotic technology in occupational therapy: A pilot study, J. Rehabil. Res. 28, 33–44 (1991)CrossRefGoogle Scholar
  9. 64.9
    R. Jimínez-Fabián, O. Verlinden: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons, Med. Eng. Phys. 34, 397–408 (2012)CrossRefGoogle Scholar
  10. 64.10
    D.G. Smith, J.D. Bigelow: Biomedicine: Revolutionizing prosthetics-guest editors' introduction, Johns Hopkins APL Tech. Dig. 30, 182–185 (2011)Google Scholar
  11. 64.11
    G. Baldassarre: La disabilità in Italia. Il quadro della statistica ufficiale (Istat, Roma 2010)Google Scholar
  12. 64.12
    Demo-Geodemo: Mappe, Popolazione, Statistiche Demografiche dell'ISTAT, available online at http://demo.istat.it
  13. 64.13
    Destatis (Statistisches Bundesamt), https://www.destatis.de/EN/
  14. 64.14
    X. Zheng, G. Chen, X. Song, J. Liu, L. Yan, W. Du, L. Pang, L. Zhang, J. Wu, B. Zhang, J. Zhang: Twenty-year trends in the prevalence of disability in China, Bull. World Health Organ. 89, 788–797 (2011)CrossRefGoogle Scholar
  15. 64.15
    National-Bureau-of-Statistics-of-China: http://www.stats.gov.cn/english/
  16. 64.16
    Central-Statistics-Office-Ministry-of-Statistics-&-Programme-Implementation: Disability in India – A statistical profile 2011 (2011) Google Scholar
  17. 64.17
  18. 64.18
    H.F.M. Van der Loos, R. Mahoney, C. Ammi: Great expectations for rehabilitation mechatronics in the coming decade. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 427–433CrossRefGoogle Scholar
  19. 64.19
    K. Corker, J.H. Lyman, S. Sheredos: A preliminary evaluation of remote medical manipulators, Bull. Prosthet. Res. 10, 107–134 (1979)Google Scholar
  20. 64.20
    M. Hillman: Rehabilitation robotics from past to present – A historical perspective. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 25–44CrossRefGoogle Scholar
  21. 64.21
    W. Seamone, G. Schmeisser: Early clinical evaluation of a robot arm/work table system for spinal cord injured persons, J. Rehabil. Res. Dev. 22, 38–57 (1985)CrossRefGoogle Scholar
  22. 64.22
    J. Guittet, H.H. Kwee, N. Quetin, J. Yelon: The SPARTACUS telethesis: Manipulator control studies, Bull. Prosthet. Res. 10, 69–105 (1979)Google Scholar
  23. 64.23
    H.H. Kwee: Integrated control of MANUS manipulator and wheelchair enhanced by environmental docking, Robotica 16, 491–498 (2000)CrossRefGoogle Scholar
  24. 64.24
    J. Hammel, K. Hall, D.S. Lees, L.J. Leifer, H.F.M. Van der Loos, I. Perkash, R. Crigler: Clinical evaluation of a desktop robotic assistant, J. Rehabil. Res. Dev. 26, 1–16 (1989)Google Scholar
  25. 64.25
    J.M. Hammel, H.F.M. Van der Loos, I. Perkash: Evaluation of a vocational robot with a quadriplegic employee, Arch. Phys. Med. Rehabil. 73, 683–693 (1992)Google Scholar
  26. 64.26
    H.F.M. Van der Loos, S.J. Michalowski, L.J. Leifer: Design of an omnidirectional mobile robot as a manipulation aid for the severely disabled. In: Interactive Robotic Aids – One Option for Independent Living: An International Perspective, ed. by R. Foulds (World Rehabilitation Fund, New York 1986) pp. 61–63Google Scholar
  27. 64.27
    J.J. Wagner, M. Wickizer, H.F.M. Van der Loos, L.J. Leifer: User testing and design iteration of the ProVAR user interface, 8th IEEE Int. Workshop Robot Hum. Interact. (RO-MAN) (1999) pp. 18–22Google Scholar
  28. 64.28
    M. Busnel, R. Cammoun, F. Coulon-Lauture, J.-M. Detriche, G. Le Claire, B. Lesigne: The robotized workstation MASTER for users with tetraplegia: Description and evaluation, J. Rehabil. Res. Dev. 36, 217–229 (1999)Google Scholar
  29. 64.29
    R. Gelin, B. Lesigne, M. Busnel, J.P. Michel: The first moves of the AFMASTER workstation, Adv. Robotics 14, 639–649 (2001)CrossRefGoogle Scholar
  30. 64.30
    M. Topping: The development of Handy 1, a rehabilitation robotic system to assist the severely disabled, Ind. Robot 25, 316–320 (1998)CrossRefGoogle Scholar
  31. 64.31
    R.M. Mahoney: The raptor wheelchair robot system. In: Integration of Assistive Technology in the Information Age, ed. by M. Mokhtari (IOS, Amsterdam 2001) pp. 135–141Google Scholar
  32. 64.32
    V. Maheu, J. Frappier, P.S. Archambault, F. Routhier: Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with upper-extremity disabilities, IEEE Int. Conf. Rehabil. Robotics (2011) p. 5975397Google Scholar
  33. 64.33
    Z. Bien, M.J. Chung, P.H. Chang, D.S. Kwon, D.J. Kim, J.S. Han, J.-H. Kim, D.-H. Kim, H.-S. Park, S.-H. Kang, K. Lee, S.-C. Lim: Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units, Auton. Robots 16, 165–191 (2004)CrossRefGoogle Scholar
  34. 64.34
    R.C. Simpson, S.P. Levine, D.A. Bell, L. Jaros, Y. Koren, J. Borenstein: NavChair: An assistive wheelchair navigation system with automatic adaptation, assistive technology and AI, Lect. Notes Artif. Intell. 1458, 235–255 (1998)Google Scholar
  35. 64.35
    R.C. Simpson, D. Poirot, F. Baxter: The Hephaestus smart wheelchair system, IEEE Trans. Neural Syst. Rehabil. Eng. 10, 118–122 (2002)CrossRefGoogle Scholar
  36. 64.36
    R. Krukowski: Particle brake clutch muscle exercise and rehabilitation apparatus, US Patent Ser 4765315 A (1986)Google Scholar
  37. 64.37
    D. Khalili, M. Zomlefer: An intelligent robotic system for rehabilitation of joints and estimation of body segment parameters, IEEE Trans. Biomed. Eng. 35, 138–146 (1988)CrossRefGoogle Scholar
  38. 64.38
    P.S. Lum, S.L. Lehman, D.J. Reinkensmeyer: The bimanual lifting rehabilitator: A device for rehabilitating bimanual control in stroke patients, IEEE Trans. Rehabil. Eng. 3, 166–174 (1995)CrossRefGoogle Scholar
  39. 64.39
    P.S. Lum, D.J. Reinkensmeyer, S.L. Lehman: Robotic assist devices for bimanual physical therapy: Preliminary experiments, IEEE Trans. Rehabil. Eng. 1, 185–191 (1993)CrossRefGoogle Scholar
  40. 64.40
    P.S. Lum, H.F.M. Van der Loos, P. Shor, C.G. Burgar: A robotic system for upper-limb exercises to promote recovery of motor function following stroke, Proc. 6th Int. Conf. Rehabil. Robotics (1999) pp. 235–239Google Scholar
  41. 64.41
    M.J. Johnson, H.F. Van der Loos, C.G. Burgar, P. Shor, L.J. Leifer: Experimental results using force-feedback cueing in robot-assisted stroke therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 335–348 (2005)CrossRefGoogle Scholar
  42. 64.42
    D.J. Reinkensmeyer, J.P.A. Dewald, W.Z. Rymer: Guidance-based quantification of arm impairment following brain injury: A pilot study, IEEE Trans. Rehabil. Eng. 7, 1–11 (1999)CrossRefGoogle Scholar
  43. 64.43
    P. Hilaire, A.C. Jacob, T. Böni, B. Rüttimann: Richard Scherb: Orthopaedic surgeon and muscle physiologist, 28th Int. Soc. Biomech. Congr. (2001)Google Scholar
  44. 64.44
    J.P.L. Bel, P. Rabischong: Orthopaedic appliances, US Patent Ser 3993056 A (1976)Google Scholar
  45. 64.45
    G. Colombo, M. Joerg, R. Schreier, V. Dietz: Treadmill training of paraplegic patients with a robotic orthosis, J. Rehabil. Res. Dev. 37, 693–700 (2000)Google Scholar
  46. 64.46
    S. Hesse, D. Uhlenbrock: A mechanized gait trainer for restoration of gait, J. Rehabil. Res. Dev. 37, 701–708 (2000)Google Scholar
  47. 64.47
    Cybernetic Zoo: Stock Photo ID 42-17253903, available online at http://cyberneticzoo.com/bionics/1976-pneumatic-exoskeleton-prosthesis-pierre-rabischong-french/
  48. 64.48
  49. 64.49
  50. 64.50
    A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, T.H. Wagner, H.I. Krebs, B.T. Volpe, C.T. Bever, D.M. Bratava, P.W. Duncan, B.H. Corn, A.D. Maffucci, S.E. Nadeau, S.S. Conroy, J.M. Powell, G.D. Huang, P. Peduzzi: Robot-assisted therapy for long-term upper-limb impairment after stroke, N. Engl. J. Med. 362, 1772–1783 (2010)CrossRefGoogle Scholar
  51. 64.51
    G. Kwakkel, B.J. Kollen, H.I. Krebs: Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review, Neurorehabil. Neural Repair 22, 111–121 (2008)CrossRefGoogle Scholar
  52. 64.52
    E.C. Lu, R.H. Wang, D. Hebert, J. Boger, M.P. Galea, A. Mihailidis: The development of an upper limb stroke rehabilitation robot: Identification of clinical practices and design requirements through a survey of therapists, Disabil. Rehabil. Assist. Technol. 6, 420–431 (2011)CrossRefGoogle Scholar
  53. 64.53
    B.T. Volpe, P.T. Huerta, J.L. Zipse, A. Rykman, D. Edwards, L. Dipietro, N. Hogan, H.I. Krebs: Robotic devices as therapeutic and diagnostic tools for stroke recovery, Arch. Neurol. 66, 1086–1090 (2009)CrossRefGoogle Scholar
  54. 64.54
    L. Zollo, L. Rossini, M. Bravi, G. Magrone, S. Sterzi, E. Guglielmelli: Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation, Med. Biol. Eng. Comput. 49, 1131–1144 (2011)CrossRefGoogle Scholar
  55. 64.55
    B. Rohrer, S. Fasoli, H.I. Krebs, R. Hughes, B. Volpe, W.R. Frontera, J. Stein, N. Hogan: Movement smoothness changes during stroke recovery, J. Neurosci. 22, 8297–8304 (2002)Google Scholar
  56. 64.56
    E. Papaleo, L. Zollo, L. Spedaliere, E. Guglielmelli: Patient-tailored adaptive robotic system for upper-limb rehabilitation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)Google Scholar
  57. 64.57
    G. Pellegrino, L. Tomasevic, M. Tombini, G. Assenza, M. Bravi, S. Sterzi, V. Giacobbe, L. Zollo, E. Guglielmelli, G. Cavallo, F. Vernieri, F. Tecchio: Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation, Restor. Neurol. Neurosci. 30, 497–510 (2012)Google Scholar
  58. 64.58
    R. Riener, M. Munih: Special section on rehabilitation via bio-cooperative control, IEEE Trans. Neural Syst. Rehabil. Eng. 18, 337–338 (2010)CrossRefGoogle Scholar
  59. 64.59
    R.C. Loureiro, W.S. Harwin, K. Nagai, M. Johnson: Advances in upper limb stroke rehabilitation: A technology push, Med. Biol. Eng. Comput. 49, 1103–1118 (2011)CrossRefGoogle Scholar
  60. 64.60
    F.J. Badesa, R. Morales-Vidal, N. Garcia, C. Perez, J.M. Sabater-Navarro, E. Papaleo: New concept of multimodal assistive robotic device, IEEE Robotics Autom. Mag. (IEEE/RAM) (2012)Google Scholar
  61. 64.61
    L. Zollo, E. Papaleo, L. Spedaliere, E. Guglielmelli, F.J. Badesa, R. Morales, N. Garcia-Aracil: Multimodal interfaces to improve therapeutic outcomes in robot-assisted rehabilitation, Springer Tract. Adv. Robotics 94, 321–343 (2014)Google Scholar
  62. 64.62
    Intelligent System Co., Ltd., Japan: http://www.parorobots.com/
  63. 64.63
    K. Dautenhahn, I. Werry: Towards interaction robots in autism therapy: Background, motivation, and challenges, Pragmact. Cogn. 12, 1–35 (2004)CrossRefGoogle Scholar
  64. 64.64
    T. Shibata, T. Mitsui, K. Wada, K. Tanie: Psychophysiological effects by interaction with mental commit robot, J. Robotics Mechatron. 14, 13–19 (2002)CrossRefGoogle Scholar
  65. 64.65
    L. Sawaki: Use-dependent plasticity of the human motor cortex in health and disease, IEEE Eng. Med. Biol. Mag. 24, 36–39 (2005)CrossRefGoogle Scholar
  66. 64.66
    J.R. Wolpaw, A.M. Tennissen: Activity-dependent spinal cord plasticity in health and disease, Annu. Rev. Neurosci. 24, 807–843 (2001)CrossRefGoogle Scholar
  67. 64.67
    K.M. Baldwin, F. Haddad: Skeletal muscle plasticity: Cellular and molecular responses to altered physical activity paradigms, Am. J. Phys. Med. Rehabil. 81, S40–S51 (2002)CrossRefGoogle Scholar
  68. 64.68
    V.S. Huang, J.W. Krakauer: Robotic neurorehabilitation: A computational motor learning perspective, J. Neuroeng. Rehabil. 6(1), 5 (2009)CrossRefGoogle Scholar
  69. 64.69
    J. Mehrholz, M. Pohl: Electromechanical-assisted gait training after stroke: A systematic review comparing end-effector and exoskeleton devices, J. Rehabil. Med. 44(3), 193–199 (2012)CrossRefGoogle Scholar
  70. 64.70
    V. Klamroth-Marganska, J. Blanco, K. Campen, A. Curt, V. Dietz, T. Ettlin, M. Felder, B. Fellinghauer, M. Guidali, A. Kollmar, A. Luft, T. Nef, C. Schuster-Amft, W. Stahel, R. Riener: Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial, Lancet Neurol. 13(2), 159–166 (2014)CrossRefGoogle Scholar
  71. 64.71
    P. Langhorne, F. Coupar, A. Pollock: Motor recovery after stroke: A systematic review, Lancet Neurol. 8, 741–754 (2009)CrossRefGoogle Scholar
  72. 64.72
    J.L. Emken, R. Benitez, D.J. Reinkensmeyer: Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed, J. Neuroeng. Rehabil. 4, 8 (2007)CrossRefGoogle Scholar
  73. 64.73
    M. Casadio, V. Sanguineti: Learning, retention, and slacking: A model of the dynamics of recovery in robot therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 20, 286–296 (2012)CrossRefGoogle Scholar
  74. 64.74
    E.R. Pospisil, B.L. Luu, J.S. Blouin, H.F. Van der Loos, E.A. Croft: Independent ankle motion control improves robotic balance simulator, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (2012) pp. 6487–6491Google Scholar
  75. 64.75
    B. Luu, T. Huryn, E. Croft, H. Van der Loos, J. Blouin: Investigating load stiffness in quiet stance using a robotic balance system, IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 382–390 (2011)CrossRefGoogle Scholar
  76. 64.76
    M. Guadagnoli, T. Lee: Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning, J. Mot. Beh. 36, 212–224 (2004)CrossRefGoogle Scholar
  77. 64.77
    C. Bosecker, L. Dipietro, B. Volpe, H.I. Krebs: Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke, Neurorehabil. Neural Repair 24(1), 62–69 (2009)CrossRefGoogle Scholar
  78. 64.78
    L. Zollo, O.E. Gallotta, E. Guglielmelli, S. Sterzi: Robotic technologies and rehabilitation: New tools for upper-limb therapy and assessment in chronic stroke, Eur. J. Phys. Rehabil. Med. 47.2, 223–236 (2011)Google Scholar
  79. 64.79
    H.I. Krebs, M. Krams, D. Agrafiotis, A. DiBernardo, J.C. Chavez, G.S. Littman, E. Yang, G. Byttebier, L. Dipietro, A. Rykman, K. McArthur, K. Hajjar, K.R. Lees, B.T. Volpe: Robotic measurement of arm movements after stroke establishes biomarkers of motorecovery, Stroke 45(1), 200–204 (2014)CrossRefGoogle Scholar
  80. 64.80
    A. Domingo, T. Lam: Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury, J. Neuroeng. Rehabil. 11(1), 167 (2014)CrossRefGoogle Scholar
  81. 64.81
    C. Carignan, H. Krebs: Telerehabilitation robotics: Bright lights, big future?, J. Rehabil. Res. Dev. 43, 695–710 (2006)CrossRefGoogle Scholar
  82. 64.82
    B.H. Dobkin: Neurologic Rehabilitation (F.A. Davis, Philadelphia 1996)Google Scholar
  83. 64.83
    T. Truelsen, B. Piechowski-Jóźwiak, R. Bonita, C. Mathers, J. Bogousslavsky, G. Boysen: Stroke incidence and prevalence in Europe: A review of available data, Eur. J. Neurol. 13, 581–598 (2006)CrossRefGoogle Scholar
  84. 64.84
    ESCIF (European Spinal Cord Injury Federation): Statement on Spinal Cord Injury Regenerative Research (ESCIF, Nottwill 2011) Google Scholar
  85. 64.85
    M. Wirz, D.H. Zemon, R. Rupp, A. Scheel, G. Colombo, V. Dietz, T.G. Hornby: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial, Arch. Phys. Med. Rehabil. 86, 672–680 (2005)CrossRefGoogle Scholar
  86. 64.86
    H.I. Krebs, N. Hogan, M.L. Aisen, B.T. Volpe: Robot-aided neurorehabilitation, IEEE Trans. Rehabil. Eng. 6, 75–87 (1998)CrossRefGoogle Scholar
  87. 64.87
    S.P. Buerger, H.I. Krebs, N. Hogan: Characterization and control of a screw-driven robot for neurorehabilitation, Proc. IEEE Int. Conf. Control Appl. (2001) pp. 388–394Google Scholar
  88. 64.88
    D.J. Williams, H.I. Krebs, N. Hogan: A robot for wrist rehabilitation, IEEE 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2001) pp. 1336–1339Google Scholar
  89. 64.89
    L. Masia, H.I. Krebs, P. Cappa, N. Hogan: Whole-arm rehabilitation following stroke: Hand module, IEEE/RAS-EMBS 1st Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2006) pp. 1085–1089Google Scholar
  90. 64.90
    J. Stein, H.I. Krebs, W.R. Frontera, S. Fasoli, R. Hughes, N. Hogan: Comparison of two techniques of robot-aided upper limb exercise training after stroke, Am. J. Phys. Med. Rehabil. 83, 720–728 (2004)CrossRefGoogle Scholar
  91. 64.91
    H. Krebs, J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan: Rehabilitation robotics: Performance-based progressive robot-assisted therapy, Auton. Robots 15, 7–20 (2003)CrossRefGoogle Scholar
  92. 64.92
    M.L. Aisen, H.I. Krebs, N. Hogan, F. McDowell, B. Volpe: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke, Arch. Neurol. 54, 443–446 (1997)CrossRefGoogle Scholar
  93. 64.93
    S. Fasoli, H. Krebs, J. Stein, W. Frontera, N. Hogan: Effects of robotic therapy on motor impairment and recovery in chronic stroke, Arch. Phys. Med. Rehabil. 84, 477–482 (2003)CrossRefGoogle Scholar
  94. 64.94
    J.J. Daly, N. Hogan, E.M. Perepezko, H.I. Krebs, J.M. Rogers, K.S. Goyal, M.E. Dohring, E. Fredrickson, J. Nethery, R.L. Ruff: Response to upper-limb robotics and functional neuromuscular stimulation following stroke, J. Rehabil. Res. Dev. 42, 723–736 (2005)CrossRefGoogle Scholar
  95. 64.95
    T.H. Wagner, A.C. Lo, P. Peduzzi, D.M. Bravata, G.D. Huang, H.I. Krebs, R.J. Ringer, D.G. Federman, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, B.T. Volpe, C.T. Bever, P.W. Duncan, A. Siroka, P.D. Guarino: An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke, Stroke 41, 2630–2632 (2011)CrossRefGoogle Scholar
  96. 64.96
    P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, H.F.M. Van der Loos: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper limb motor function following stroke, Arch. Phys. Med. Rehabil. 83, 952–959 (2002)CrossRefGoogle Scholar
  97. 64.97
    P.S. Lum, C.G. Burgar, H.F.M. Van der Loos, P.C. Shor, M. Majmundar, R. Yap: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study, J. Rehabil. Res. Dev. 43, 631–642 (2006)CrossRefGoogle Scholar
  98. 64.98
    C.G. Burgar, P.S. Lum, A.M. Scremin, S.L. Garber, H.F. Van der Loos, D. Kenney, F. Shor: Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of veterans affairs multisite clinical trial, J. Rehabil. Res. Dev. 48, 445–458 (2011)CrossRefGoogle Scholar
  99. 64.99
    L.E. Kahn, M.L. Zygman, W.Z. Rymer, D.J. Reinkensmeyer: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study, J. Neuroeng. Neurorehabil. 3, 12 (2006)CrossRefGoogle Scholar
  100. 64.100
    S. Hesse, C. Werner, M. Pohl, S. Rueckriem, J. Mehrholz, M.L. Lingnau: Computerized arm training improves the motor control of the severely affected arm after stroke: A single-blinded randomized trial in two centers, Stroke 36, 1960–1966 (2005)CrossRefGoogle Scholar
  101. 64.101
    D. Reinkensmeyer, J. Emken, S. Cramer: Robotics, motor learning, and neurologic recovery, Annu. Rev. Biomed. Eng. 6, 497–525 (2004)CrossRefGoogle Scholar
  102. 64.102
    F. Amirabdollahian, E. Gradwell, R. Loureiro, W. Harwin: Effects of the GENTLE/S robot mediated therapy on the outcome of upper limb rehabilitation post-stroke: Analysis of the Battle Hospital data, Proc. 8th Int. Conf. Rehabil. Robotics (2003) pp. 55–58Google Scholar
  103. 64.103
    F. Amirabdollahian, R. Loureiro, E. Gradwell, C. Collin, W. Harwin, G. Johnson: Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy, J. Neuroeng. Rehabil. 19, 4 (2007)CrossRefGoogle Scholar
  104. 64.104
    A.S. Merians, H. Poizner, R. Boian, G. Burdea, S. Adamovich: Sensorimotor training in a virtual reality environment: Does it improve functional recovery poststroke? The Rutgers arm, a rehabilitation system in virtual reality: A pilot study, Neurorehabil. Neural Repair. 20, 252–267 (2006)CrossRefGoogle Scholar
  105. 64.105
    R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. Carrozza, P. Dario, G. Minuco: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 311–324 (2005)CrossRefGoogle Scholar
  106. 64.106
    R.J. Sanchez, J. Liu, S. Rao, P. Shah, R. Smith, S.C. Cramer, J.E. Bobrow, D.J. Reinkensmeyer: Automating arm movement training following severe stroke: Functional exercises with quantitative feedback in a gravity-reduced environment, IEEE Trans. Neural Syst. Rehabil. Eng. 14, 378–389 (2006)CrossRefGoogle Scholar
  107. 64.107
    S.J. Housman, K.M. Scott, D.J. Reinkensmeyer: A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis, Neurorehabil. Neural Repair 23, 505–514 (2009)CrossRefGoogle Scholar
  108. 64.108
    D. Gijbels, I. Lamers, L. Kerkhofs, G. Alders, E. Knippenberg, P. Feys: The armeo spring as training tool to improve upper limb functionality in multiple sclerosis: A pilot study, J. Neuroeng. Rehabil. 8, 5 (2011)CrossRefGoogle Scholar
  109. 64.109
    J. Zariffa, N. Kapadia, J.L. Kramer, P. Taylor, M. Alizadeh-Meghrazi, V. Zivanovic, R. Williams, A. Townson, A. Curt, M.R. Popovic, J.D. Steeves: Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population, Spinal Cord 50, 220–226 (2012)CrossRefGoogle Scholar
  110. 64.110
    L. Schwickert, J. Klenk, A. Stähler, C. Becker, U. Lindemann: Robotic-assisted rehabilitation of proximal humerus fractures in virtual environments: A pilot study, Z. Gerontol. Geriatr. 44, 387–392 (2011)CrossRefGoogle Scholar
  111. 64.111
    S. Masiero, A. Celia, G. Rosati, M. Armani: Robotic-assisted rehabilitation of the the upper limb after acute stroke, Arch. Phys. Med. Rehabil. 88, 142–149 (2007)CrossRefGoogle Scholar
  112. 64.112
    G. Fazekas, M. Horvath, A. Toth: A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis, Int. J. Rehabil. Res. 29, 251–254 (2006)CrossRefGoogle Scholar
  113. 64.113
    T. Nef, R. Riener: ARMin – Design of a novel arm rehabilitation robot, Proc. IEEE Int. Conf. Rehabil. Robotics (2005) pp. 57–60Google Scholar
  114. 64.114
    E. Wolbrecht, J. Leavitt, D. Reinkensmeyer, J. Bobrow: Control of a pneumatic orthosis for upper extremity stroke rehabilitation, IEEE Eng. Med. Biol. Conf. (2006) pp. 2687–2693Google Scholar
  115. 64.115
    J. Klein, S.J. Spencer, J. Allington, J.E. Bobrow, D.J. Reinkensmeyer: Optimization of a parallel shoulder mechanism to achieve a high force, low mass, robotic arm exoskeleton, IEEE Trans. Robotics 26, 710–715 (2010)CrossRefGoogle Scholar
  116. 64.116
    J.L. Patton, G. Dawe, C. Scharver, F.A. Mussa-Ivaldi, R. Kenyon: Robotics and virtual reality: The development of a life-sized 3-D system for the rehabilitation of motor function, IEEE 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2004) pp. 4840–4843CrossRefGoogle Scholar
  117. 64.117
    H. Huang, J. He: Utilization of biomechanical modeling in design of robotic arm for rehabilitation of stroke patients, IEEE 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vol. 4 (2004) pp. 2718–2721Google Scholar
  118. 64.118
    J.C. Perry, J. Rosen, S. Burns: Upper-limb powered exoskeleton design, IEEE/ASME Trans. Mechatron. 12, 408–417 (2007)CrossRefGoogle Scholar
  119. 64.119
    R. Gopura, K. Kiguchi, Y. Li: SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 1126–1131Google Scholar
  120. 64.120
    N. Jarrasse, M. Tagliabue, J.V.G. Robertson, A. Maiza, V. Crocher, A. Roby-Brami, G. Morel: A methodology to quantify alterations in human upper limb movement during co-manipulation with an exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng. 18, 389–397 (2010)CrossRefGoogle Scholar
  121. 64.121
    B.-C. Tsai, W.-W. Wang, L.-C. Hsu, L.-C. Fu, J.-S. Lai: An articulated rehabilitation robot for upper limb physiotherapy and training, 2010 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 1470–1475CrossRefGoogle Scholar
  122. 64.122
    M.J. Johnson, H.F.M. Van der Loos, C.G. Burgar, P. Shor, L.J. Leifer: Experimental results using force-feedback cueing in robot-assisted stroke therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 335–348 (2005)CrossRefGoogle Scholar
  123. 64.123
    D. Reinkensmeyer, C. Pang, J. Nessler, C. Painter: Web-based telerehabilitation for the upper-extremity after stroke, IEEE Trans. Neural Sci. Rehabil. Eng. 10, 1–7 (2002)CrossRefGoogle Scholar
  124. 64.124
    X. Feng, J. Winters: UniTherapy: A computer-assisted motivating neurorehabilitation platform for teleassessment and remote therapy, IEEE Int. Conf. Rehabil. Robotics (2005) pp. 349–352Google Scholar
  125. 64.125
    H. Sugarman, E. Dayan, A. Weisel-Eichler, J. Tiran: The jerusalem telerehabilitation system, a new low-cost, haptic rehabilitation approach, Cyberpsychol. Behav. 9, 178–182 (2006)CrossRefGoogle Scholar
  126. 64.126
    L. Zollo, D. Accoto, F. Torchiani, D. Formica, E. Guglielmelli: Design of a planar robotic machine for neuro-rehabilitation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 2031–2036Google Scholar
  127. 64.127
    L. Zollo, A. Salerno, M. Vespignani, D. Accoto, M. Passalacqua, E. Guglielmelli: Dynamic characterization and interaction control of the CBM-Motus robot for upper-limb rehabilitation, Int. J. Adv. Robotic Syst. 10, 374 (2013)CrossRefGoogle Scholar
  128. 64.128
    O. Lambercy, L. Dovat, H. Yun, S.K. Wee, C. Kuah, K. Chua, R. Gassert, T. Milner, L.-T. Chee, E. Rurdet: Rehabilitation of grasping and forearm pronation/supination with the Haptic Knob, IEEE Int. Conf. Rehabil. Robotics (2009) pp. 22–27Google Scholar
  129. 64.129
    L. Dovat, O. Lambercy, R. Gassert, T. Maeder, T. Milner, T.C. Leong, E. Burdet: HandCARE: A cable-actuated rehabilitation system to train hand function after stroke, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 582–591 (2008)CrossRefGoogle Scholar
  130. 64.130
    S. Hesse, H. Kuhlmann, J. Wilk, C. Tomelleri, S.G.B. Kirker: A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: A case series in chronic and acute stroke patients, J. NeuroEng. Rehabil. 5, 21 (2008)CrossRefGoogle Scholar
  131. 64.131
    C. Takahashi, L. Der-Yeghiaian, V. Le, S. Cramer: A robotic device for hand motor therapy after stroke, IEEE Int. Conf. Rehabil. Robotics (2005) pp. 17–20Google Scholar
  132. 64.132
    C.N. Schabowsky, S.B. Godfrey, R.J. Holley, P.S. Lum: Development and pilot testing of HEXORR: Hand EXOskeleton rehabilitation robot, J. Neuroeng. Rehabil. 7, 1–16 (2010)CrossRefGoogle Scholar
  133. 64.133
    S. Ito, H. Kawasaki, Y. Ishigure, M. Natsume, T. Mouri, Y. Nishimoto: A design of fine motion assist equipment for disabled hand in robotic rehabilitation system, J. Frankl. Inst. 348, 79–89 (2011)MATHCrossRefGoogle Scholar
  134. 64.134
    M. Mulas, M. Folgheraiter, G. Gini: An EMG-controlled exoskeleton for hand rehabilitation, Int. Conf. Rehabil. Robotics (2005) pp. 371–374Google Scholar
  135. 64.135
    T. Kline, D. Kamper, B. Schmit: Control system for pneumatically controlled glove to assist in grasp activities, Int. Conf. Rehabil. Robotics (2005) pp. 78–81Google Scholar
  136. 64.136
    B. Birch, E. Haslam, I. Heerah, N. Dechev, E. Park: Design of a continuous passive and active motion device for hand rehabilitation, IEEE 30th Annu. Int. Conf. Eng. Med. Biol. Soc. (2008) pp. 4306–4309Google Scholar
  137. 64.137
    H. Yamaura, K. Matsushita, R. Kato, H. Yokoi: Development of hand rehabilitation system using wire-driven link mechanism for paralysis patients, IEEE Int. Conf. Robotics Biomim. (ROBIO) (2009) pp. 209–214Google Scholar
  138. 64.138
    H. Taheri, J.B. Rowe, D. Gardner, V. Chan, D.J. Reinkensmeyer, E.T. Wolbrecht: Robot-assisted guitar hero for finger rehabilitation after stroke, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (2012) pp. 3911–3917Google Scholar
  139. 64.139
    S. Balasubramanian, J. Klein, E. Burdet: Robot-assisted rehabilitation of hand function, Curr. Opin. Neurol. 23, 661–670 (2010)CrossRefGoogle Scholar
  140. 64.140
    B.R. Brewer, M. Fagan, R.L. Klatzky, Y. Matsuoka: Perceptual limits for a robotic rehabilitation environment using visual feedback distortion, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 1–11 (2005)CrossRefGoogle Scholar
  141. 64.141
    O. Lambercy, L. Dovat, H. Yun, S.K. Wee, C.W.K. Kuah, K.S.G. Chua, Z. Gassert, T.E. Milner, L.T. Chee, E. Burdet: Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: A pilot study, J. Neuroeng. Rehabil. 8(1), 63 (2011)Google Scholar
  142. 64.142
    S.P. Mazzoleni, M. Franceschini, S. Bigazzi, M.C. Carrozza, P. Dario, F. Posteraro: Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery, NeuroRehabilitation 33(1), 33–39 (2013)Google Scholar
  143. 64.143
    T. Boonstra, H. Clairbois, A. Daffertshofer, J. Verbunt, B. van Dijk, P. Beek: MEG-compatible force sensor, J. Neurosci. Methods 144, 193–196 (2005)CrossRefGoogle Scholar
  144. 64.144
    R. Gassert, R. Moser, E. Burdet, H. Bleuler: MRI/fMRI-compatible robotic system with force feedback for interaction with human motion, IEEE/ASME Trans. Mechatron. 11, 216–224 (2006)CrossRefGoogle Scholar
  145. 64.145
    Z.J. Tang, S. Sugano, H. Iwata: Design of an MRI compatible robot for finger rehabilitation, Int. Conf. Mechatron. Autom. (ICMA) (2012) pp. 611–616Google Scholar
  146. 64.146
    O. Unluhisarcikli, B. Weinberg, M. Sivak, A. Mirelman, P. Bonato, C. Mavroidis: A robotic hand rehabilitation system with interactive gaming using novel electro-rheological fluid based actuators, IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1846–1851Google Scholar
  147. 64.147
    A. Khanicheh, D. Mintzopoulos, B. Weinberg, A.A. Tzika, C. Mavroidis: MR_CHIROD v. 2: Magnetic resonance compatible smart hand rehabilitation device for brain imaging, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 91–98 (2008)CrossRefGoogle Scholar
  148. 64.148
    J. Izawa, T. Shimizu, T. Aodai, T. Kondo, H. Gomi, S. Toyama, K. Ito: MR compatible manipulandum with ultrasonic motor for fMRI studies, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (2006) pp. 3850–3854Google Scholar
  149. 64.149
    F. Sergi, H.I. Krebs, B. Groissier, A. Rykman, E. Guglielmelli, B.T. Volpe, J.D. Schaechter: Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (2011) pp. 7470–7473Google Scholar
  150. 64.150
    E. Buch, C. Weber, L.G. Cohen, C. Brawn, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, N. Birbaumer: Think to move: A neuromagnetic brain-computer interface (BCI) system for chronic stroke, Stroke 39(3), 910–917 (2008)CrossRefGoogle Scholar
  151. 64.151
    E.T. Wolbrecht, V. Chan, D.J. Reinkensmeyer, J.E. Bobrow: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 286–297 (2008)CrossRefGoogle Scholar
  152. 64.152
    J.L. Patton, M. Kovic, F.A. Mussa-Ivaldi: Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis, J. Rehabil. Res. Dev. 43, 643–656 (2006)CrossRefGoogle Scholar
  153. 64.153
    R.G. Lovely, R.J. Gregor, R.R. Roy, V.R. Edgerton: Effects of training on the recovery of full weight-bearing stepping in the adult spinal cat, Exp. Neurol. 92, 421–435 (1986)CrossRefGoogle Scholar
  154. 64.154
    H. Barbeau, S. Rossignol: Recovery of locomotion after chronic spinalization in the adult cat, Brain Res. 412, 84–95 (1987)CrossRefGoogle Scholar
  155. 64.155
    M. Visintin, H. Barbeau, N. Korner-Bitensky, N. Mayo: A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation, Stroke 29, 1122–1128 (1998)CrossRefGoogle Scholar
  156. 64.156
    S. Hesse, C. Bertelt, M. Jahnke, A. Schaffrin, P. Baake, M. Malezic, K.H. Mauritz: Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients, Stroke 26, 976–981 (1995)CrossRefGoogle Scholar
  157. 64.157
    A. Wernig, A. Nanassy, S. Muller: Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: Follow-up studies, Spinal Cord 36, 744–749 (1998)CrossRefGoogle Scholar
  158. 64.158
    A.L. Behrman, S.J. Harkema: Locomotor training after human spinal cord injury: A series of case studies, Phys. Ther. 80, 688–700 (2000)Google Scholar
  159. 64.159
    H. Barbeau: Locomotor training in neurorehabilitation: Emerging rehabilitation concepts, Neurorehabil. Neural Repair 17, 3–11 (2003)CrossRefGoogle Scholar
  160. 64.160
    B. Dobkin, D. Apple, H. Barbeau, M. Basso, A. Behrman, D. Deforge, J. Ditunno, G. Dudley, R. Elashoff, L. Fugate, S. Harkema, M. Saulino, M. Scott: Weight-supported treadmill vs. over-ground training for walking after acute incomplete SCI, Neurology 66, 484–493 (2006)CrossRefGoogle Scholar
  161. 64.161
    T.G. Hornby: Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury, Top. Spinal Cord Inj. Rehabil. 11, 1–17 (2005)CrossRefGoogle Scholar
  162. 64.162
    L. Nilsson, K. Fugl-Meyer, L. Kristensen, B. Sjölund, K. Sunnerhagen: Walking training of patients with hemiparesis at an early stage after stroke: A comparison of walking training on a treadmill with body weight support and walking training on the ground, Clin. Rehabil. 15, 515–527 (2001)CrossRefGoogle Scholar
  163. 64.163
    C. Werner, A. Bardeleben, K. Mauritz, S. Kirker, S. Hesse: Treadmill training with partial body weight support and physiotherapy in stroke patients: A preliminary comparison, Eur. J. Neurol. 9, 639–644 (2002)CrossRefGoogle Scholar
  164. 64.164
    S. Hesse, C. Werner, H. Seibel, S. von Frankenberg, E. Kappel, S. Kirker, M. Käding: Treadmill training with partial body-weight support after total hip arthroplasty: A randomized controlled trial, Arch. Phys. Med. Rehabil. 84, 1767–1773 (2003)CrossRefGoogle Scholar
  165. 64.165
    T. Brown, J. Mount, B. Rouland, K. Kautz, R. Barnes, J. Kim: Body weight-supported treadmill training versus conventional gait training for people with chronic traumatic brain injury, J. Head. Trauma. Rehabil. 20, 402–415 (2005)CrossRefGoogle Scholar
  166. 64.166
    P.W. Duncan, K.J. Sullivan, A.L. Behrman, S.P. Azen, S.S. Wu, S.E. Nadeau, B.H. Dobkin, D.K. Rose, J.K. Tilson, S. Cen, S.H. Hayden: Body-weight-supported treadmill rehabilitation after stroke, N. Engl. J. Med. 364, 2026–2036 (2011)CrossRefGoogle Scholar
  167. 64.167
    S. Freivogel, J. Mehrholz, T. Husak-Sotomayor, D. Schmalohr: Gait training with the newly developed LokoHelp-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study, Brain Inj. 22, 625–632 (2008)CrossRefGoogle Scholar
  168. 64.168
    Reha-Technology: http://www.rehatechnology.com/ (2012)
  169. 64.169
    C. Werner, S. Von Frankenberg, T. Treig, M. Konrad, S. Hesse: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: A randomized crossover study, Stroke 33, 2895–2901 (2002)CrossRefGoogle Scholar
  170. 64.170
    M. Pohl, C. Werner, M. Holzgraefe, G. Kroczek, J. Mehrholz, I. Wingendorf, G. Hoölig, R. Koch, S. Hesse: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: A single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS), Clin. Rehabil. 21, 17–27 (2007)CrossRefGoogle Scholar
  171. 64.171
    S. Freivogel, D. Schmalohr, J. Mehrholz: Improved walking ability and reduced therapeutic stress with an electromechanical gait device, J. Rehabil. Med. 41, 734–739 (2009)CrossRefGoogle Scholar
  172. 64.172
    K.P. Westlake, C. Patten: Journal of neuroengineering and rehabilitation, J. Neuroeng. Rehabil. 6, 18 (2009)CrossRefGoogle Scholar
  173. 64.173
    T.G. Hornby, D.D. Campbell, J.H. Kahn, T. Demott, J.L. Moore, H.R. Roth: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: A randomized controlled study, Stroke; J. Cereb. Circ. 39, 1786–1792 (2008)CrossRefGoogle Scholar
  174. 64.174
    J. Hidler, D. Nichols, M. Pelliccio, K. Brady, D.D. Campbell, J.H. Kahn, T.G. Hornby: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke, Neurorehabil. Neural Repair 23, 5–13 (2009)CrossRefGoogle Scholar
  175. 64.175
    M. Mihelj: Human arm kinematics for robot based rehabilitation, Robotica 24, 377–384 (2006)CrossRefGoogle Scholar
  176. 64.176
    S. Hesse, C. Tomelleri, A. Bardeleben, C. Werner, A. Waldner: Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients, J. Rehabil. Res. Dev. 49, 613–622 (2012)CrossRefGoogle Scholar
  177. 64.177
    S. Hesse, C. Werner, A. Bardeleben: Electromechanical gait training with functional electrical stimulation: Case studies in spinal cord injury, Spinal Cord 42, 346–352 (2004)CrossRefGoogle Scholar
  178. 64.178
    A. Picelli, C. Melotti, F. Origano, A. Waldner, A. Fiaschi, V. Santilli, N. Smania: Robot-assisted gait training in patients with parkinson disease a randomized controlled trial, Neurorehabil. Neural Repair 26, 353–361 (2012)CrossRefGoogle Scholar
  179. 64.179
    H. Schmidt, S. Hesse, R. Bernhardt, J. Krüger: HapticWalker – A novel haptic foot device, ACM Trans. Appl. Percept. 2, 166–180 (2005)CrossRefGoogle Scholar
  180. 64.180
    S. Jezernik, G. Colombo, M. Morari: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis, IEEE Trans. Robotics Autom. 20, 574–582 (2004)CrossRefGoogle Scholar
  181. 64.181
    D. Reinkensmeyer, D. Aoyagi, J. Emken, J. Galvez, W. Ichinose, G. Kerdanyan, S. Maneekobkunwong, K. Minakata, J.A. Nessler, R. Weber, B.R. Roy, R. de Leon, J.E. Bobrow, S.J. Harkema, V.R. Edgerton: Tools for understanding and optimizing robotic gait training, J. Rehabil. Res. Dev. 43, 657–670 (2006)CrossRefGoogle Scholar
  182. 64.182
    D. Surdilovic, R. Bernhardt: STRING-MAN: A new wire robot for gait rehabilitation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 2031–2036Google Scholar
  183. 64.183
    J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, F.C.T. van der Helm, H. van der Kooij: A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots, Int. J. Robotics Res. 25, 261–282 (2006)CrossRefGoogle Scholar
  184. 64.184
    J.A. Galvez, D.J. Reinkensmeyer: Robotics for gait training after spinal cord injury, Top. Spinal Cord Inj. Rehabil. 11, 18–33 (2005)CrossRefGoogle Scholar
  185. 64.185
    D. Aoyagi, W.E. Ichinose, S.J. Harkema, D.J. Reinkensmeyer, J.E. Bobrow: An assistive robotic device that can synchronize to the pelvic motion during human gait training, IEEE Int. Conf. Rehabil. Robotics (2005) pp. 565–568Google Scholar
  186. 64.186
    S. Jezernik, R. Scharer, G. Colombo, M. Morari: Adaptive robotic rehabilitation of locomotion: A clinical study in spinally injured individuals, Spinal Cord 41, 657–666 (2003)CrossRefGoogle Scholar
  187. 64.187
    D. Aoyagi: Ph.D. Thesis Ser. (Department of Mechanical and Aerospace Engineering, University of California at Irvine 2006)Google Scholar
  188. 64.188
    University of Twente, The Netherlands: http://www.utwente.nl/ctw/bw/research/projects/lopes/
  189. 64.189
    J.F. Veneman, R. Kruidhof, E.E. Hekman, R. Ekkelenkamp, E.H. Van Asseldonk, H. van der Kooij: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, IEEE Trans. Neural Syst. Rehabil. Eng. 15, 379–386 (2007)CrossRefGoogle Scholar
  190. 64.190
    G. Pratt, M. Williamson, P. Dillworth, J. Pratt, K. Ulland, A. Wright: Stiffness isn't everything, 4th Int. Symp. Exp. Robotics (1995)Google Scholar
  191. 64.191
    D. Accoto, F. Sergi, N. Tagliamonte, G. Carpino, A. Sudano, E. Guglielmelli: Robomorphism: A nonanthropomorphic wearable robot, IEEE Robotics Autom. Mag. 21(4), 45–55 (2014)CrossRefGoogle Scholar
  192. 64.192
    E.H. Van Asseldonk, J.F. Veneman, R. Ekkelenkamp, J.H. Buurke, F.C. Van der Helm, H. van der Kooij: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 360–370 (2008)CrossRefGoogle Scholar
  193. 64.193
    E. Van Asseldonk, R. Ekkelenkamp, J. Veneman, F. Van der Helm, H. Van der Kooij: Selective control of a subtask of walking in a robotic gait trainer (LOPES), IEEE Int. Conf. Rehabil. Robotics (2007) pp. 841–848Google Scholar
  194. 64.194
    E.H. van Asseldonk, B. Koopman, J.H. Buurke, C.D. Simons, H. van der Kooij: Selective and adaptive robotic support of foot clearance for training stroke survivors with stiff knee gait, IEEE Int. Conf Rehabil. Robotics (2009) pp. 602–607Google Scholar
  195. 64.195
    F. Sergi, D. Accoto, N.L. Tagliamonte, G. Carpino, E. Guglielmelli: A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots for the lower limbs, Front. Mech. Eng. 6(1), 61–70 (2011)Google Scholar
  196. 64.196
    F. Sergi, D. Accoto, N.L. Tagliamonte, G. Carpino, S. Galzerano, E. Guglielmelli: Kinematic synthesis, optimization and analysis of a non-anthropomorphic 2-DOFs wearable orthosis for gait assistance, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012)Google Scholar
  197. 64.197
    N.L. Tagliamonte, D. Accoto, F. Sergi, A. Sudano, D. Formica, E. Guglielmelli: Muscular activity when walking in a non-anthropomorphic wearable robot, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (2014) pp. 3073–3076Google Scholar
  198. 64.198
    D. Accoto, G. Carpino, F. Sergi, N.L. Tagliamonte, L. Zollo, E. Guglielmelli: Design and characterization of a novel high-power series elastic actuator for a lower limb robotic orthosis, Int. J. Adv. Robotics Syst. 10, 359 (2013)CrossRefGoogle Scholar
  199. 64.199
    M. Peshkin, D.A. Brown, J.J. Santos-Munne, A. Makhlin, E. Lewis, J.E. Colgate, J. Patton, D. Schwandt: KineAssist: A robotic overground gait and balance training device, IEEE Int. Conf. Rehabil. Robotics (2005) pp. 241–246Google Scholar
  200. 64.200
  201. 64.201
  202. 64.202
    D. Ferris: Powered lower limb orthoses for gait rehabilitation, Top. Spinal Cord Inj. Rehabil. 11, 34–49 (2005)CrossRefGoogle Scholar
  203. 64.203
    J. Deutsch, J. Latonio, G. Burdea, R. Boian: Post-stroke rehabilitation with the Rutgers Ankle system – A case study, Presence 10, 416–430 (2001)CrossRefGoogle Scholar
  204. 64.204
    S. Agrawal, A. Fattah: Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion, IEEE Trans. Neural Syst. Rehabil. Eng. 12, 157–165 (2004)CrossRefGoogle Scholar
  205. 64.205
    S.K. Banala, S.K. Agrawal: Gait rehabilitation with an active leg orthosis, Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. (2005)Google Scholar
  206. 64.206
    J. Kawamura, T. Ide, S. Hayashi, H. Ono, T. Honda: Automatic suspension device for gait training, Prosthet. Orthot. Int. 17, 120–125 (1993)Google Scholar
  207. 64.207
    S. Banala, S.H. Kim, S. Agrawal, J. Scholz: Robot assisted gait training with active leg exoskeleton (ALEX), IEEE Trans. Neural Syst. Rehabil. Eng. 17, 2–8 (2009)CrossRefGoogle Scholar
  208. 64.208
    I. Díaz, J.J. Gil, E. Sánchez: Lower-limb robotic rehabilitation: Literature review and challenges, J. Robotics 2011, 759–764 (2011)CrossRefGoogle Scholar
  209. 64.209
    R.F. Erlandson, P. deBear, K. Kristy, M. Dijkers, S. Wu: A robotic system to provide movement therapy, Proc. 5th Int. Serv. Robot Conf. (1990) pp. 7–15Google Scholar
  210. 64.210
    M.J. Rosen: Telerehabilitation, NeuroRehabilitation 12, 11–26 (1999)Google Scholar
  211. 64.211
    J. Borenstein, I. Ulrich: The guidecane – A computerized travel aid for the active guidance of blind pedestrians, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 1283–1288CrossRefGoogle Scholar
  212. 64.212
    I. Ulrich, J. Borenstein: The guidecane-applying mobile robot technologies to assist the visually impaired, IEEE Trans. Syst. Man Cybern. 31(2), 131–136 (2001)CrossRefGoogle Scholar
  213. 64.213
    L. Zollo, K. Wada, H. Van der Loos: Special issue on assistive robotics, IEEE Robotics Autom. Mag. 20, 16–19 (2013)CrossRefGoogle Scholar
  214. 64.214
    A. Tapus, M. Mataric, B. Scassellati: Socially assistive robotics - The grand challenges in helping humans through social interaction, IEEE Robotics Autom. Mag. 14, 35–42 (2007)CrossRefGoogle Scholar
  215. 64.215
    National Robotics Initiative: The realization of co-robots acting in direct support of individuals and groups, available online at http://www.nsf.gov/pubs/2012/nsf12607/nsf12607.htm (2012)
  216. 64.216
    C. Stanger, M. Cawley: Demographics of rehabilitation robotics users, Technol. Disabil. 5, 125–138 (1996)CrossRefGoogle Scholar
  217. 64.217
    J. Hammel: The role of assessment and evaluation in rehabilitation robotics research and development: Moving from concept to clinic to context, IEEE Trans. Rehabil. Eng. 3, 56–61 (1995)CrossRefGoogle Scholar
  218. 64.218
    J.J. Wagner, H.F.M. Van der Loos, L.J. Leifer: Dual-character based user interface design for an assistive robot, IEEE Int. Workshop Robot Hum. Commun. (RO-MAN) (1998) pp. 101–106Google Scholar
  219. 64.219
    H.F.M. Van der Loos, J. Hammel, D.S. Lees, D. Chang, I. Perkash: Field evaluation of a robot workstation for quadriplegic office workers, Eur. Rev. Biomed. Tech. 5, 317–319 (1990)Google Scholar
  220. 64.220
    J.J. Wagner, H.F.M. Van der Loos, L.J. Leifer: Construction of social relationships between user and robot, Robotics Auton. Syst. 31, 185–191 (2000)CrossRefGoogle Scholar
  221. 64.221
    M.J. Johnson, E. Guglielmelli, G.A. Di Lauro, C. Laschi, M.C. Carrozza, P. Dario: GIVING-A-HAND system: The development of a task-specific robot appliance. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 127–141CrossRefGoogle Scholar
  222. 64.222
    S. Groothuis, S. Stramigioli, R. Carloni: Lending a helping hand: Towards novel assistive robotic arms, IEEE Robotics Autom. Mag. 20(1), 20–29 (2013)CrossRefGoogle Scholar
  223. 64.223
    Kinova: JACO Arm user guide, available online at http://www.robotshop.com (2010)
  224. 64.224
    Assistive Innovations: iARM intelligent arm robot manipulator, available online at http://assistive-innovations.com (2010)
  225. 64.225
    W. Yoon: Robotic arm for persons with upper-limb DisAbilities (RAPUDA), AIST Today 36, 20 (2010)Google Scholar
  226. 64.226
    T. Barrett Inc.: WAM Arm datasheet, available online at http://www.barrett.com (2012)
  227. 64.227
    Elumotion: Elumotion RT2-Arm, available online at http://www.elumotion.com (2012)
  228. 64.228
    G. Hirzinger, N. Sporer, A. Albu-Schaffer, M. Hahnle, R. Krenn, A. Pascucci, M. Schedl: DLR's torque-controlled light weight robot III–are we reaching the technological limits now?, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1710–1716Google Scholar
  229. 64.229
    H.F.M. Van der Loos, N. Ullrich, H. Kobayashi: Development of sensate and robotic bed technologies for vital signs monitoring and sleep quality improvement, Auton. Robots 15, 67–79 (2003)CrossRefGoogle Scholar
  230. 64.230
    T. Sato, T. Harada, T. Mori: Environment-type robot system robotic room featured by behavior media, behavior contents, and behavior adaptation, IEEE/ASME Trans. Mechatron. 9, 529–534 (2004)CrossRefGoogle Scholar
  231. 64.231
    G. Romer, H.J.A. Stuyt, A. Peters: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM), IEEE Int. Conf. Rehabil. Robotics (2005) pp. 201–204Google Scholar
  232. 64.232
    M. Hillman, K. Hagan, S. Hagan, J. Jepson, R. Orpwood: The Weston wheelchair mounted assistive robot – the design story, Robotica 20(2), 125–132 (2002)CrossRefGoogle Scholar
  233. 64.233
    B.V. FOCAL-Meditech: Personal Robot Bridgit, available online at http://www.focalmeditech.nl (2012)
  234. 64.234
    J.F. Engelberger: Health-care robotics goes commercial: The HelpMate experience, Robotica 11, 517–524 (1993)CrossRefGoogle Scholar
  235. 64.235
    P. Dario, C. Laschi, E. Guglielmelli: Design and experiments on a personal robotic assistant, Adv. Robotics 13, 153–169 (1999)CrossRefGoogle Scholar
  236. 64.236
    European Union: Robot-Era: Implementation and integration of advanced robotic systems, available online at http://www.robot-era.eu/robotera (2012)
  237. 64.237
    B. Graf, M. Hans, R.D. Schraft: Care-O-bot II — Development of a next generation robotic home assistant, Auton. Robots 16, 193–205 (2004)CrossRefGoogle Scholar
  238. 64.238
    T.L. Chen, M. Ciocarlie, S. Cousins, P. Grice, K. Hawkins, K. Hsiao, C.C. Kemp, C.-H. King, D.A. Lazewatsky, H. Ngyen, A. Paepcke, C. Pantofaru, W.D. Smart, L. Takayama: Robots for humanity: A case study in assistive mobile manipulation, IEEE Robotics Autom. Mag. 20(1), 30–39 (2013)CrossRefGoogle Scholar
  239. 64.239
    P. Dario, E. Guglielmelli, C. Laschi, G. Teti: MOVAID: A personal robot in everyday life of disabled and elderly people, Technol. Disabil. 10, 77–93 (1999)Google Scholar
  240. 64.240
    R.C. Simpson: Smart wheelchairs: A literature review, J. Rehabil. Res. Dev. 42, 423–436 (2004)CrossRefGoogle Scholar
  241. 64.241
    S.P. Levine, D.A. Bell, L.A. Jaros, R.C. Simpson, Y. Koren, J. Borenstein: The navchair assistive wheelchair navigation system, IEEE Trans. Rehabil. Eng. E 7, 443–451 (1999)CrossRefGoogle Scholar
  242. 64.242
    H. Yanco: Wheelesley: A robotic wheelchair system: Indoor navigation and user interface, Lect. Notes Comput. Sci. 1458, 256–268 (1998)CrossRefGoogle Scholar
  243. 64.243
    P. Encarnação: Understanding and improving power mobility use among older adults: An overview of the canwheel program of research, Assist. Technol. Res. Pract. 33, 210 (2013)Google Scholar
  244. 64.244
    P. Viswanathan, A.K. Mackworth, J.J. Little, J. Hoey, A. Mihailidis: NOAH for wheelchair users with cognitive impairment: Navigation and obstacle avoidance help, AAAI Fall Symp. AI Eldercare New Solut. Old Prob. (2008) pp. 150–152Google Scholar
  245. 64.245
    T.-V. How, R.H. Wang, A. Mihailidis: Evaluation of an intelligent wheelchair system for older adults with cognitive impairments, J. Neuroeng. Rehabil. 10, 90 (2013)CrossRefGoogle Scholar
  246. 64.246
    R.A.M. Braga, M. Petry, L.P. Reis, A.P. Moreira: Intellwheels: Modular development platform for intelligent wheelchairs, J. Rehabil. Res. Dev. 48(9), 1061–1076 (2011)CrossRefGoogle Scholar
  247. 64.247
    B.M. Faria, L.P. Reis, N. Lau: Adapted control methods for cerebral palsy users of an intelligent wheelchair, J. Intell. Robotics Syst. 77(2), 1–14 (2014)Google Scholar
  248. 64.248
    M. Bailey, A. Chanler, B. Maxwell, M. Micire, K. Tsui, H. Yanco: Development of vision-based navigation for a robotic wheelchair, IEEE Int. Conf. Rehabil. Robotics (2007) pp. 951–957Google Scholar
  249. 64.249
    D. Ding, R.A. Cooper: Electric powered wheelchairs, IEEE Control Syst. 25(2), 22–34 (2005)CrossRefGoogle Scholar
  250. 64.250
    K.M. Tsui, H.A. Yanco, D.J. Feil-Seifer, M.J. Matarić: Survey of domain-specific performance measures in assistive robotic technology, Proc. ACM 8th Workshop Perform. Metr. Intell. Syst. (2008) pp. 116–123Google Scholar
  251. 64.251
    M.A. Peshkin, J.E. Colgate, W. Wannasuphoprasit, C.A. Moore, R.B. Gillerpie, P. Akella: Cobot architecture, IEEE Trans. Robotics Autom. 17(4), 377–390 (2001)CrossRefGoogle Scholar
  252. 64.252
    J. Colgate, J. Edward, M.A. Peshkin, W. Wannasuphoprasit: Cobots: Robots for Collaboration with Human Operators (Northwestern University, Evanston 1996)Google Scholar
  253. 64.253
    C.A. Moore, M.A. Peshkin, J.E. Colgate: Cobot implementation of virtual paths and 3D virtual surfaces, IEEE Trans. Robotics Autom. 19(2), 347–351 (2003)CrossRefGoogle Scholar
  254. 64.254
    G. Lacey, S. MacNamara: User involvement in the design and evaluation of a smart mobility aid, J. Rehabil. Res. Dev. 37(6), 709–723 (2000)Google Scholar
  255. 64.255
    A.M. Dollar, H. Herr: Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art, IEEE Trans. Robotics 24, 144–158 (2008)CrossRefGoogle Scholar
  256. 64.256
    H. Herr: Exoskeletons and orthoses: Classification, design challenges and future directions, J. Neuroeng. Rehabil. 6, 21 (2009)CrossRefGoogle Scholar
  257. 64.257
    J.L. Pons: Rehabilitation exoskeletal robotics, IEEE Eng. Med. Biol. Mag. 29, 57–63 (2010)CrossRefGoogle Scholar
  258. 64.258
    E. Strickland: Good-bye, wheelchair, hello, exoskeleton, http://spectrum.ieee.org/biomedical/bionics/goodbye-wheelchair-hello-exoskeleton
  259. 64.259
    T.A. Swift, K.A. Strausser, A. Zoss, H. Kazerooni: Control and experimental results for post stroke gait rehabilitation with a prototype mobile medical exoskeleton, ASME Dyn. Syst. Control Conf. (2010)Google Scholar
  260. 64.260
    K.A. Strausser, T.A. Swift, A. Zoss, H. Kazerooni: Prototype medical exoskeleton for paraplegic mobility: First experimental results, ASME Dyn. Syst. Control Conf. 2010, Cambridge (2010)Google Scholar
  261. 64.261
    Argo-Medical: http://www.rewalk.com/ (2012)
  262. 64.262
    T. Engineer: Rewalk is a new exoskeleton that lets paralysed people walk again, available online at http://wonderfulengineering.com/rewalk-is-a-new-exoskeleton-that-lets-paralysed-people-walk-again/
  263. 64.263
    H. Kawamoto, Y. Sankai: Power assist system HAL3 for gait disorder person, Lect. Notes Comput. Sci. 2398, 196–203 (2002)CrossRefGoogle Scholar
  264. 64.264
    K. Suzuki, Y. Kawamura, T. Hayashi, T. Sakurai, Y. Hasegawa, Y. Sankai: Intention-based walking support for paraplegia patient, IEEE Int. Conf. Syst. Man Cybern., Vol. 3 (2006) pp. 2707–2713Google Scholar
  265. 64.265
    R. Farris, H. Quintero, M. Goldfarb: Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals, IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 652–659 (2011)CrossRefGoogle Scholar
  266. 64.266
    Rex-Bionics: http://www.rexbionics.com (2012)
  267. 64.267
    R.F.F. Weir: Design of artificial arms and hands for prosthetic applications. In: Standard Handbook of Biomedical Engineering and Design, ed. by M. Kutz (McGraw-Hill, New York 2003) pp. 32.1–32.61Google Scholar
  268. 64.268
    T.A. Kuiken, G.A. Dumanian, R.D. Lipschutz, L.A. Miller, K.A. Stubblefield: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee, Prosthet. Orthot. Int. 28(3), 245–253 (2004)Google Scholar
  269. 64.269
    T.A. Kuiken, L.A. Miller, R.D. Lipschutz, B.A. Lock, K. Stubblefield, P.D. Marasco, P. Zhou, G.A. Dumanian: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study, Lancet 369, 371–380 (2007)CrossRefGoogle Scholar
  270. 64.270
    G.S. Dhillon, K.W. Horch: Direct neural sensory feedback and control of a prosthetic arm, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005)CrossRefGoogle Scholar
  271. 64.271
    K.P. Hoffmann, K.P. Koch, T. Doerge, S. Micera: New technologies in manufacturing of different implantable microelectrodes as an interface to the peripheral nervous system, IEEE/RAS-EMBS Int. Conf. Biomed. Robotics Biomech. (BioRob) (2006) pp. 414–419Google Scholar
  272. 64.272
    P.M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi, C. Cipriani, L. Denaro, V. Denaro, G. Di Pino, F. Ferrari, E. Guglielmelli, K.-P. Hoffmann, S. Raspopovic, J. Rigosa, L. Rossini, M. Tombini, P. Dario: Double nerve intraneural interface implant on a human amputee for robotic hand control, Clin. Neurophys. 121, 777–783 (2010)CrossRefGoogle Scholar
  273. 64.273
    S. Raspopovic, M. Capogrosso, F.M. Petrini, M. Bonizzato, J. Rigosa, G. Di Pino, I. Carpanedo, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C.M. Oddo, L. Citi, A.L. Ciancio, C. Cipriani, M.C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P.M. Rossini, S. Mieera: Restoring natural sensory feedback in real-time bidirectional hand prostheses, Sci. Transl. Med. 6(222), 222ra19 (2014)CrossRefGoogle Scholar
  274. 64.274
    S.G. Meek, S.C. Jacobsen, P.P. Goulding: Extended physiologic taction: Design and evaluation of a proportional force feedback system. J. Rehabil. Res, Dev. 26(3), 53–62 (1989)Google Scholar
  275. 64.275
    H.M. Herr, J.A. Weber, S.K. Au, B.W. Deffenbaugh, L.H. Magnusson, A.G. Hofmann, B.B. Aisen: Powered ankle food prothesis, US Patent Ser 8512415 B2 (2013)Google Scholar
  276. 64.276
  277. 64.277
    L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghve: Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature 442, 164–171 (2006)CrossRefGoogle Scholar
  278. 64.278
    C. Babiloni, V. Pizzella, C.D. Gratta, A. Ferretti, G.L. Romani: Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging, Int. Rev. Neurobiol. 86, 67–80 (2009)CrossRefGoogle Scholar
  279. 64.279
    G.E. Loeb, F.J. Richmond, L.L. Baker: The BION devices: Injectable interfaces with peripheral nerves and muscles, Neurosurg. Focus 20, E2 (2006)CrossRefGoogle Scholar
  280. 64.280
    R.B. Stein, V. Mushahwar: Reanimating limbs after injury or disease, Trends Neurosci. 28, 518–524 (2005)CrossRefGoogle Scholar
  281. 64.281
    P.F. Pasquina, P.R. Bryant, M.E. Huang, T.L. Roberts, V.S. Nelson, K.M. Flood: Advances in amputee care, Arch. Phys. Med. Rehabil. 87, S34–S43 (2006)CrossRefGoogle Scholar
  282. 64.282
    H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, H. van der Kooij: Compliant actuation of rehabilitation robots: Benefits and limitations of series elastic actuators, IEEE Robotics Autom. Mag. 15, 60–69 (2008)CrossRefGoogle Scholar
  283. 64.283
    A. Basmajian, E.E. Blanco, H.H. Asada: The marionette bed: Automated rolling and repositioning of bedridden patients, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1422–1427Google Scholar
  284. 64.284
    F. Kasagami, H. Wang, I. Sakuma, M. Araya, T. Dohi: Development of a robot to assist patient transfer, IEEE Int. Conf. Syst. Man Cybern., Vol. 5 (2004) pp. 4383–4388Google Scholar
  285. 64.285
    G.D. Abowd, M. Ebling, G. Hung, L. Hui, H.W. Gellersen: Context-aware computing, IEEE Pervasive Comput. 1, 22 (2002)CrossRefGoogle Scholar
  286. 64.286
    M.J. Covington, W. Long, S. Srinivasan, A.K. Dev, M. Ahamad, G.D. Abowd: Securing Context-Aware Applications Using Environment Roles (Georgia Institute of Technology, Atlanta 2001)CrossRefGoogle Scholar
  287. 64.287
    R. Sanchez, D.E.R.I.C. Reinkensmeyer, P. Shah, J. Liu, S. Rao, R. Smith, J. Bobrow: Monitoring functional arm movement for home-based therapy after stroke, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. Chicago, Vol. 2 (2004) pp. 4787–4790CrossRefGoogle Scholar
  288. 64.288
    S.J. Housman, V. Le, T. Rahman, R.J. Sanchez, D.J. Reinkensmeyer: Arm-training with T-WREX after chronic stroke: Preliminary results of a randomized controlled trial, IEEE Int. Conf. Rehabil. Robotics (2007) pp. 562–568Google Scholar
  289. 64.289
    A.J. Butler, C. Bay, D. Wu, K.M. Richards, S. Buchanan: Expanding tele-rehabilitation of stroke through in-home robot-assisted therapy, Int. J. Phys. Med. Rehabil. 2(184), 2 (2014)Google Scholar
  290. 64.290
    S.M. Linder, A.B. Rosenfeldt, R.C. Bay, K. Sahu, S.L. Wolf, J.L. Alberts: Improving quality of life and depression after stroke through telerehabilitation, Am. J. Occup. Ther. 69(2), 6902290020 (2015)CrossRefGoogle Scholar
  291. 64.291
    F.H. Wilhelm, W.T. Roth: Ambulatory assessment of clinical anxiety. In: Ambulatory Assessment: Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies, ed. by J. Fahrenberg, M. Myrteck (Hogrefe Huber, Seattle 1996) pp. 317–345Google Scholar
  292. 64.292
    E. Dishman: Inventing wellness systems for aging in place, Computer 37, 34 (2004)CrossRefGoogle Scholar
  293. 64.293
    H. Zhou, H. Hu: Human motion tracking for rehabilitation—A survey, Biomed. Sig. Process. Control 3, 1–18 (2008)CrossRefGoogle Scholar
  294. 64.294
    E. Papaleo, L. Zollo, S. Sterzi, E. Guglielmelli: An inverse kinematics algorithm for upper-limb joint reconstruction during robot-aided motor therapy, IEEE/RAS-EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2012) pp. 1983–1988Google Scholar
  295. 64.295
    M. Zinn, B. Roth, O. Khatib, J. Salisbury: A new actuation approach for human friendly robot design, Int. J. Robotics Res. 23, 379–398 (2004)CrossRefGoogle Scholar
  296. 64.296
    M. Nokata, K. Ikuta, H. Ishii: Safety evaluation method for rehabilitation robotics. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 187–198CrossRefGoogle Scholar
  297. 64.297
    N. Tejima: Risk reduction mechanisms for safe rehabilitation robots. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 187–198Google Scholar
  298. 64.298
    H.F.M. Van der Loos: Design and engineering ethics considerations for neurotechnologies, Camb. Quar. Heal. Ethics 16, 305–309 (2007)Google Scholar
  299. 64.299
    G. Veruggio: The Roboethics Roadmap, available online at http://www.roboethics.org/site/modules/mydownloads/visit.php?cid=1&lid=37 (2007)
  300. 64.300
    J.F. Engelberger: Robotics in Service (MIT Press, Cambridge 1989)CrossRefGoogle Scholar
  301. 64.301
    G. Colombo, M. Jorg, V. Dietz: Driven gait orthosis to do locomotor training of paraplegic patients, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., Vol. 4 (2000) pp. 3159–3163Google Scholar
  302. 64.302
    I.T. Lott, E. Doran, D.M. Walsh, M. Hill: Telemedicine, dementia and Down syndrome: Implications for Alzheimer disease, Alzheimer's Dement. 2, 179–184 (2006)CrossRefGoogle Scholar
  303. 64.303
    D. Reinkensmeyer, P. Lum, J. Winters: Emerging technologies for improving access to movement therapy following neurologic injury. In: Emerging and Accessible Telecommunications, Information and Healthcare Technologies: Engineering Challenges in Enabling Universal Access, ed. by J. Winters, C. Robinson, R. Simpson, G. Vanderheiden (Rehabiltitation Eng. Soc. North Am., Arlington 2002) pp. 136–150Google Scholar
  304. 64.304
    M. Lotze, C. Braun, N. Birbaumer, S. Anders, L.G. Cohen: Motor learning elicited by voluntary drive, Brain 126, 866–872 (2003)CrossRefGoogle Scholar
  305. 64.305
    J.E. Speich, J. Rosen: Medical robotics. In: Encyclopedia of Biomaterials and Biomedical Engineering, ed. by G.E. Wnek, G.L. Bowlin (Marcel Dekker, New York 2004)Google Scholar
  306. 64.306
    D.J. Reinkensmeyer, J.L. Emken, S.C. Cramer: Robotics, motor learning, and neurologic recovery, Annu. Rev. Biomed. Eng. 6, 497–525 (2004)CrossRefGoogle Scholar
  307. 64.307
    M. Oishi, I. Mitchell, H. Van der Loos: Design and Use of Assistive Technology (Springer, Berlin, Heidelberg 2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • H.F. Machiel Van der Loos
    • 1
  • David J. Reinkensmeyer
    • 2
  • Eugenio Guglielmelli
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Mechanical and Aerospace Engineering and Anatomy and NeurobiologyUniversity of California at IrvineIrvineUSA
  3. 3.Faculty Department of EngineeringUniversity Campus Bio-Medico of RomeRomeItaly

Personalised recommendations