Medical Robotics and Computer-Integrated Surgery

  • Russell H. Taylor
  • Arianna Menciassi
  • Gabor Fichtinger
  • Paolo Fiorini
  • Paolo Dario

Abstract

The growth of medical robotics since the mid-1980s has been striking. From a few initial efforts in stereotactic brain surgery, orthopaedics, endoscopic surgery, microsurgery, and other areas, the field has expanded to include commercially marketed, clinically deployed systems, and a robust and exponentially expanding research community. This chapter will discuss some major themes and illustrate them with examples from current and past research. Further reading providing a more comprehensive review of this rapidly expanding field is suggested in Sect. 63.4.

Medical robots may be classified in many ways: by manipulator design (e. g., kinematics, actuation); by level of autonomy (e. g., preprogrammed versus teleoperation versus constrained cooperative control), by targeted anatomy or technique (e. g., cardiac, intravascular, percutaneous, laparoscopic, microsurgical); or intended operating environment (e. g., in-scanner, conventional operating room). In this chapter, we have chosen to focus on the role of medical robots within the context of larger computer-integrated systems including presurgical planning, intraoperative execution, and postoperative assessment and follow-up.

First, we introduce basic concepts of computer-integrated surgery, discuss critical factors affecting the eventual deployment and acceptance of medical robots, and introduce the basic system paradigms of surgical computer-assisted planning, execution, monitoring, and assessment (surgical CAD/CAM) and surgical assistance. In subsequent sections, we provide an overview of the technology of medical robot systems and discuss examples of our basic system paradigms, with brief additional discussion topics of remote telesurgery and robotic surgical simulators. We conclude with some thoughts on future research directions and provide suggested further reading.

2-D

two-dimensional

3-D

three-dimensional

CAD

computer-aided design

CAM

computer-aided manufacturing

CIS

computer-integrated surgery

CMOS

complementary metal-oxide-semiconductor

CT

computed tomography

DC

direct current

DLR

Deutsches Zentrum für Luft- und Raumfahrt

GI

gastrointestinal

GPU

graphics processing unit

HMCS

human–machine cooperative system

JHU

Johns Hopkins University

JPL

Jet Propulsion Laboratory

LED

light-emitting diode

MEMS

microelectromechanical system

MIS

minimally invasive surgery

MRI

magnetic resonance imaging

NOTES

natural orifice transluminal surgery

OCT

optical coherence tomography

OR

operating room

PC

personal computer

PET

positron emission tomography

RAMS

random access memory system

RCM

remote center of motion

SMA

shape memory alloy

SPL

single port laparoscopy

THR

total hip replacement

References

  1. 63.1
    R.H. Taylor, L. Joskowicz: Computer-integrated surgery and medical robotics. In: Standard Handbook of Biomedical Engineering and Design, ed. by M. Kutz (McGraw-Hill, New York 2003) pp. 325–353Google Scholar
  2. 63.2
    J.R. Adler, M.J. Murphy, S.D. Chang, S.L. Hankock: Image guided robotic radiosurgery, Neurosurgery 44(6), 1299–1306 (1999)Google Scholar
  3. 63.3
    G.S. Guthart, J.K. Salisbury: The intuitive telesurgery system: Overview and application, IEEE Int. Conf. Robot. Autom. (ICRA), San Francisco (2000) pp. 618–621Google Scholar
  4. 63.4
    R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z.X. Wang, E. deJuan, L. Kavoussi: Steady-hand robotic system for microsurgical augmentation, Int. J. Robotics Res. 18, 1201–1210 (1999)CrossRefGoogle Scholar
  5. 63.5
    D. Rothbaum, J. Roy, G. Hager, R. Taylor, L. Whitcomb: Task performance in stapedotomy: comparison between surgeons of different experience levels, Otolaryngol. Head Neck Surg. 128, 71–77 (2003)CrossRefGoogle Scholar
  6. 63.6
    A. Uneri, M. Balicki, J. Handa, P. Gehlbach, R. Taylor, I. Iordachita: New steady-hand eye robot with microforce sensing for vitreoretinal surgery research, Proc. Int. Conf. Biomed. Robotics Biomechatronics (BIOROB), Tokyo (2010) pp. 814–819Google Scholar
  7. 63.7
    A. Amin, J. Grossman, P.J. Wang: Early experience with a computerized robotically controlled catheter system, J. Int. Card. Electrophysiol. 12, 199–202 (2005)CrossRefGoogle Scholar
  8. 63.8
    B. Hagag, R. Abovitz, H. Kang, B. Schmidtz, M. Conditt: RIO: Robotic-arm interactive orthopedic system MAKOplasty: User interactive haptic orthopedic robotics. In: Surgical Robotics: Systems Applications and Visions, ed. by J. Rosen, B. Hannaford, R. Satava (New York, Springer 2011) pp. 219–246CrossRefGoogle Scholar
  9. 63.9
    R. Konietschke, D. Zerbato, R. Richa, A. Tobergte, P. Poignet, F. Froehlich, D. Botturi, P. Fiorini, G. Hirzinger: Of new features for telerobotic surgery into the MiroSurge System, J. Appl. Bionics Biomech. Integr. 8(2), 116 (2011)Google Scholar
  10. 63.10
    L. Mettler, M. Ibrahim, W. Jonat: One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery, Hum. Reprod. 13, 2748–2750 (1998)CrossRefGoogle Scholar
  11. 63.11
    N. Simaan, R. Taylor, P. Flint: High dexterity snake-like robotic slaves for minimally invasive telesurgery of the throat, Proc. Int. Symp. Med. Image Comput. Comput. Interv. (2004) pp. 17–24Google Scholar
  12. 63.12
    N. Suzuki, M. Hayashibe, A. Hattori: Development of a downsized master-slave surgical robot system for intragastic surgery, Proc. ICRA Surg. Robotics Workshop, Barcelona (2005)Google Scholar
  13. 63.13
    K. Ikuta, K. Yamamoto, K. Sasaki: Development of remote microsurgery robot and new surgical procedure for deep and narrow space, Proc. IEEE Conf. Robot. Autom. (ICRA) (2003) pp. 1103–1108Google Scholar
  14. 63.14
    R.J. Webster, J.M. Romano, N.J. Cowan: Mechanics of precurved-tube continuum robots, IEEE Trans. Robotics 25(1), 67–78 (2009)CrossRefGoogle Scholar
  15. 63.15
    R.J. Webster, B.A. Jones: Design and kinematic modeling of constant curvature continuum robots: A review, Int. J. Robotics Res. 29(13), 1661–1683 (2010)CrossRefGoogle Scholar
  16. 63.16
    J. Ding, R.E. Goldman, K. Xu, P.K. Allen, D.L. Fowler, N. Simaan: Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery, IEEE/ASME Trans. Mechatron. 99, 1–13 (2012)Google Scholar
  17. 63.17
    R.H. Taylor, H.A. Paul, P. Kazandzides, B.D. Mittelstadt, W. Hanson, J.F. Zuhars, B. Williamson, B.L. Musits, E. Glassman, W.L. Bargar: An image-directed robotic system for precise orthopaedic surgery, IEEE Trans. Robot. Autom. 10, 261–275 (1994)CrossRefGoogle Scholar
  18. 63.18
    P. Kazanzides, B.D. Mittelstadt, B.L. Musits, W.L. Bargar, J.F. Zuhars, B. Williamson, P.W. Cain, E.J. Carbone: An integrated system for cementless hip replacement, IEEE Eng. Med. Biol. 14, 307–313 (1995)CrossRefGoogle Scholar
  19. 63.19
    Q. Li, L. Zamorano, A. Pandya, R. Perez, J. Gong, F. Diaz: The application accuracy of the NeuroMate robot – A quantitative comparison with frameless and frame-based surgical localization systems, Comput. Assist. Surg. 7(2), 90–98 (2002)CrossRefGoogle Scholar
  20. 63.20
    P. Cinquin, J. Troccaz, J. Demongeot, S. Lavallee, G. Champleboux, L. Brunie, F. Leitner, P. Sautot, B. Mazier, A. Perez, M. Djaid, T. Fortin, M. Chenic, A. Chapel: IGOR: image guided operating robot, Innov. Technonogie Biol. Med. 13, 374–394 (1992)Google Scholar
  21. 63.21
    H. Reichenspurner, R. Demaino, M. Mack, D. Boehm, H. Gulbins, C. Detter, B. Meiser, R. Ellgass, B. Reichart: Use of the voice controlled and computer-assisted surgical system Zeus for endoscopic coronary artery surgery bypass grafting, J. Thorac. Cardiovasc. Surg. 118, 11–16 (1999)CrossRefGoogle Scholar
  22. 63.22
    Y.S. Kwoh, J. Hou, E.A. Jonckheere, S. Hayati: A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery, IEEE Trans. Biomed. Eng. 35, 153–161 (1988)CrossRefGoogle Scholar
  23. 63.23
    J.M. Sackier, Y. Wang: Robotically assisted laparoscopic surgery. From concept to development, Surg. Endosc. 8, 63–66 (1994)CrossRefGoogle Scholar
  24. 63.24
    D. Stoianovici, L. Whitcomb, J. Anderson, R. Taylor, L. Kavoussi: A modular surgical robotic system for image-guided percutaneous procedures, Proc. Med. Image Comput. Comput. Interv. (MICCAI), Cambridge (1998) pp. 404–410Google Scholar
  25. 63.25
    R.H. Taylor, J. Funda, B. Eldridge, K. Gruben, D. LaRose, S. Gomory, M. Talamini, L.R. Kavoussi, J. Anderson: A telerobotic assistant for laparoscopic surgery, IEEE Eng. Med. Biol. Mag. 14, 279–287 (1995)CrossRefGoogle Scholar
  26. 63.26
    M. Mitsuishi, T. Watanabe, H. Nakanishi, T. Hori, H. Watanabe, B. Kramer: A telemicrosurgery system with colocated view and operation points and rotational-force-feedback-free master manipulator, Proc. 2nd Int. Symp. Med. Robot. Comput. Assist. Surg., Baltimore (1995) pp. 111–118Google Scholar
  27. 63.27
    K. Ikuta, M. Tsukamoto, S. Hirose: Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. In: Computer-Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G. Burdea, R. Mosges (MIT Press, Cambridge 1996) pp. 277–282Google Scholar
  28. 63.28
    A. Menciassi, C. Stefanini, S. Gorini, G. Pernorio, P. Dario, B. Kim, J.O. Park: Legged locomotion in the gastrointestinal tract problem analysis and preliminary technological activity, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 937–942Google Scholar
  29. 63.29
    K. Ikuta, H. Ichikawa, K. Suzuki, D. Yajima: Multi-degree of freedom hydraulic pressure driven safety active catheter, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006) pp. 4161–4166Google Scholar
  30. 63.30
    S. Guo, J. Sawamoto, Q. Pan: A novel type of microrobot for biomedical application, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 1047–1052Google Scholar
  31. 63.31
    N. Patronik, C. Riviere, S.E. Qarra, M.A. Zenati: The heartlander: A novel epicardial crawling robot for myocardial injections, Proc. 19th Int. Congr. Comput. Assist. Radiol. Surg. (2005) pp. 735–739Google Scholar
  32. 63.32
    P. Dario, B. Hannaford, A. Menciassi: Smart surgical tools and augmenting devices, IEEE Trans. Robotics Autom. 19, 782–792 (2003)CrossRefGoogle Scholar
  33. 63.33
    L. Phee, D. Accoto, A. Menciassi, C. Stefanini, M.C. Carrozza, P. Dario: Analysis and development of locomotion devices for the gastrointestinal tract, IEEE Trans. Biomed. Eng. 49, 613–616 (2002)CrossRefGoogle Scholar
  34. 63.34
    N. Kalloo, V.K. Singh, S.B. Jagannath, H. Niiyama, S.L. Hill, C.A. Vaughn, C.A. Magee, S.V. Kantsevoy: Flexible transgastricperitoneoscopy: A novel approach to diagnostic and therapeutic interventions in the peritoneal cavity, Gastrointest. Endosc. 60, 114–117 (2004)CrossRefGoogle Scholar
  35. 63.35
    S.N. Shaikh, C.C. Thompson: Natural orifice translumenal surgery: Flexible platform review, World J. Gastrointest. Surg. 2(6), 210–216 (2010)CrossRefGoogle Scholar
  36. 63.36
    M. Neto, A. Ramos, J. Campos: Single port laparoscopic access surgery, Tech. Gastrointest. Endosc. 11, 84–93 (2009)CrossRefGoogle Scholar
  37. 63.37
  38. 63.38
    S.J. Phee, K.Y. Ho, D. Lomanto, S.C. Low, V.A. Huynh, A.P. Kencana, K. Yang, Z.L. Sun, S.C. Chung: Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER), Surg. Endosc. 24, 2293–2298 (2010)CrossRefGoogle Scholar
  39. 63.39
    M. Piccigallo, U. Scarfogliero, C. Quaglia, G. Petroni, P. Valdastri, A. Menciassi, P. Dario: Design of a novel bimanual robotic system for single-port laparoscopy, IEEE/ASME Trans. Mechatron. 15(6), 871–878 (2012)Google Scholar
  40. 63.40
    D.J. Scott, S.J. Tang, R. Fernandez, R. Bergs, M.T. Goova, I. Zeltser, F.J. Kehdy, J.A. Cadeddu: Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments, Surg. Endosc. 21, 2308–2316 (2007)CrossRefGoogle Scholar
  41. 63.41
    S. Tognarelli, M. Salerno, G. Tortora, C. Quaglia, P. Dario, A. Menciassi: An endoluminal robotic platform for Minimally Invasive Surgery, Proc. IEEE Int. Conf. Biomed. Robotics Biomechatronics (BIOROB), Pisa (2012) pp. 7–12Google Scholar
  42. 63.42
    M. Simi, R. Pickens, A. Menciassi, S.D. Herrell, P. Valdastri: Fine tilt tuning of a laparoscopic camera by local magnetic actuation: Two-Port Nephrectomy Experience on Human Cadavers, Surg. Innov. 20(4), 385–394 (2013)CrossRefGoogle Scholar
  43. 63.43
    T. Leuth: MIMED: 3D printing - Rapid technologies, http://www.mimed.mw.tum.de/research/3d-printing-rapid-technologies/ (2013)
  44. 63.44
    S. G. O’Reilly: Medical manufacturing technology: 3D printing and medical-device development, Medical Design, http://medicaldesign.com/Medical-Manufacturing-Technology-3D-printing-medical-device-development/index.html (2012)
  45. 63.45
    C. Plaskos, P. Cinquin, S. Lavallee, A.J. Hodgson: Praxiteles: A miniature bone-mounted robot for minimal access total knee arthroplasty, Int. J. Med. Robot. Comput. Assist. Surg. 1, 67–79 (2005)CrossRefGoogle Scholar
  46. 63.46
    P.J. Berkelman, L. Whitcomb, R. Taylor, P. Jensen: A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation, IEEE Trans. Robot. Autom. 19, 917–922 (2003)CrossRefGoogle Scholar
  47. 63.47
    D.P. Devito, L. Kaplan, R. Dietl, M. Pfeiffer, D. Horne, B. Silberstein, M. Hardenbrook, G. Kiriyanthan, Y. Barzilay, A. Bruskin, D. Sackerer, V. Alexandrovsky, C. Stüer, R. Burger, J. Maeurer, D.G. Gordon, R. Schoenmayr, A. Friedlander, N. Knoller, K. Schmieder, I. Pechlivanis, I.-S. Kim, B. Meyer, M. Shoham: Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot -- Retrospective study, Spine 35(24), 2109–2115 (2010)CrossRefGoogle Scholar
  48. 63.48
    K. Chinzei, R. Gassert, E. Burdet: Workshop on MRI/fMRI compatible robot technology - A critical tool for neuroscience and image guided intervention, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006)Google Scholar
  49. 63.49
    M. Jakopec, S.J. Harris, F.R.Y. Baena, P. Gomes, J. Cobb, B.L. Davies: The first clinical application of a hands-on robotic knee surgery system, Comput. Aided Surg. 6, 329–339 (2001)CrossRefGoogle Scholar
  50. 63.50
    D.F. Louw, T. Fielding, P.B. McBeth, D. Gregoris, P. Newhook, G.R. Sutherland: Surgical robotics: A review and neurosurgical prototype development, Neurosurgery 54, 525–537 (2004)CrossRefGoogle Scholar
  51. 63.51
    J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, S.E. Butner, M.K. Smith: Transatlantic robot-assisted telesurgery, Nature 413, 379–380 (2001)CrossRefGoogle Scholar
  52. 63.52
    M. Anvari, T. Broderick, H. Stein, T. Chapman, M. Ghodoussi, D.W. Birch, C. Mckinley, P. Trudeau, S. Dutta, C.H. Goldsmith: The impact of latency on surgical precision and task completion during robotic-assisted remote telepresence surgery, Comput. Aided Surg. 10, 93–99 (2005)CrossRefGoogle Scholar
  53. 63.53
    M. Li, M. Ishii, R.H. Taylor: Spatial motion constraints in medical robot using virtual fixtures generated by anatomy, IEEE Trans. Robotics 23, 4–19 (2007)CrossRefGoogle Scholar
  54. 63.54
    S. Park, R.D. Howe, D.F. Torchiana: Virtual fixtures for robotic cardiac surgery, Proc. 4th Int. Conf. Med. Image Comput. Comput. Interv. (2001)Google Scholar
  55. 63.55
    B. Davies: A discussion of safety issues for medical robots. In: Computer-Integrated Surgery, ed. by R. Taylor, S. Lavallée, G. Burdea, R. Moesges (MIT Press, Cambridge 1996) pp. 287–296Google Scholar
  56. 63.56
    P. Varley: Techniques of development of safety-related software in surgical robots, IEEE Trans. Inform. Technol. Biomed. 3, 261–267 (1999)CrossRefGoogle Scholar
  57. 63.57
    R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, T. Villa: Robotic surgery – Formal verification of plans, IEEE Robotics Autom. Mag. 18(3), 24–32 (2011)CrossRefGoogle Scholar
  58. 63.58
    J.B. Maintz, M.A. Viergever: A survey of medical image registration, Med. Image Anal. 2, 1–37 (1998)CrossRefGoogle Scholar
  59. 63.59
    S. Lavallee: Registration for computer-integrated surgery: methodology, state of the Art. In: Computer-Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G. Burdea, R. Mosges (MIT Press, Cambridge 1996) pp. 77–98Google Scholar
  60. 63.60
    P.J. Besl, N.D. McKay: A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)CrossRefGoogle Scholar
  61. 63.61
    R.J. Maciunas: Interactive Image-Guided Neurosurgery (AANS, Park Ridge 1993)Google Scholar
  62. 63.62
    G. Fichtinger, A. Degeut, K. Masamune, E. Balogh, G. Fischer, H. Mathieu, R.H. Taylor, S. Zinreich, L.M. Fayad: Image overlay guidance for needle insertion on CT scanner, IEEE Trans. Biomed. Eng. 52, 1415–1424 (2005)CrossRefGoogle Scholar
  63. 63.63
    T. Akinbiyi, C.E. Reiley, S. Saha, D. Burschka, C.J. Hasser, D.D. Yuh, A.M. Okamura: Dynamic augmented reality for sensory substitution in robot-assisted surgical systems, Proc. 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2006) pp. 567–570Google Scholar
  64. 63.64
    J. Leven, D. Burschka, R. Kumar, G. Zhang, S. Blumenkranz, X. Dai, M. Awad, G. Hager, M. Marohn, M. Choti, C. Hasser, R.H. Taylor: DaVinci canvas: A telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability, Proc. Med. Image Comput. Comput. Interv. Palm Springs (2005)Google Scholar
  65. 63.65
    R.H. Taylor, H.A. Paul, C.B. Cutting, B. Mittelstadt, W. Hanson, P. Kazanzides, B. Musits, Y.Y. Kim, A. Kalvin, B. Haddad, D. Khoramabadi, D. Larose: Augmentation of human precision in computer-integrated surgery, Innov. Technol. Biol. Med. 13, 450–459 (1992)Google Scholar
  66. 63.66
    J. Troccaz, M. Peshkin, B. Davies: The use of localizers, robots and synergistic devices in CAS, Lect. Notes Comput. Sci. 1205, 727–736 (1997)Google Scholar
  67. 63.67
    G. Brisson, T. Kanade, A.M. DiGioia, B. Jaramaz: Precision freehand sculptig of bone, Proc. Med. Image Comput. Comput.-Assist. Interv. (MICCAI) (2004) pp. 105–112Google Scholar
  68. 63.68
    R.A. Beasley: Medical Robots: Current systems and research directions, J. Robotics 2012, 401613 (2012)CrossRefGoogle Scholar
  69. 63.69
    S. Kuang, K.S. Leung, T. Wang, L. Hu, E. Chui, W. Liu, Y. Wang: A novel passive/active hybrid robot for orthopaedic trauma surgery, Int. J. Med. Robotics Comput. Assist, Surg. 8, 458–467 (2012)Google Scholar
  70. 63.70
    S. Solomon, A. Patriciu, R.H. Taylor, L. Kavoussi, D. Stoianovici: CT guided robotic needle biopsy: A precise sampling method minimizing radiation exposure, Radiology 225, 277–282 (2002)CrossRefGoogle Scholar
  71. 63.71
    K. Masamune, G. Fichtinger, A. Patriciu, R. Susil, R. Taylor, L. Kavoussi, J. Anderson, I. Sakuma, T. Dohi, D. Stoianovici: System for robotically assisted percutaneous procedures with computed tomography guidance, J. Comput. Assist. Surg. 6, 370–383 (2001)CrossRefGoogle Scholar
  72. 63.72
    A. Krieger, R.C. Susil, C. Menard, J.A. Coleman, G. Fichtinger, E. Atalar, L.L. Whitcomb: Design of a novel MRI compatible manipulator for image guided prostate intervention, IEEE Trans. Biomed. Eng. 52, 306–313 (2005)CrossRefGoogle Scholar
  73. 63.73
    T. Ungi, P. Abolmaesumi, R. Jalal, M. Welch, I. Ayukawa, S. Nagpal, A. Lasso, M. Jaeger, D. Borschneck, G. Fichtinger, P. Mousavi: Spinal needle navigation by tracked ultrasound snapshots, IEEE Trans. Biomed. Eng. 59(10), 2766–2772 (2012)CrossRefGoogle Scholar
  74. 63.74
    D. DallAlba, B. Maris, P. Fiorini: A compact navigation system for free hand needle placement in percutaneous procedures, Proc. IEEE/RSI Int. Conf. Intell. Robots Syst. (IROS), Vilamoura (2012) pp. 2013–2018Google Scholar
  75. 63.75
    G.A. Krombach, T. Schmitz-Rode, B.B. Wein, J. Meyer, J.E. Wildberger, K. Brabant, R.W. Gunther: Potential of a new laser target system for percutaneous CT-guided nerve blocks: Technical note, Neuroradiology 42, 838–841 (2000)CrossRefGoogle Scholar
  76. 63.76
    M. Rosenthal, A. State, J. Lee, G. Hirota, J. Ackerman, K. Keller, E.D. Pisano, M. Jiroutek, K. Muller, H. Fuchs: Augmented reality guidance for needle biopsies: A randomized, controlled trial in phantoms, Proc. 4th Int. Conf. Med. Image Comput. Comput. Interv. (2001) pp. 240–248Google Scholar
  77. 63.77
    G. Stetten, V. Chib: Overlaying ultrasound images on direct vision, J. Ultrasound Med. 20, 235–240 (2001)CrossRefGoogle Scholar
  78. 63.78
    H.F. Reinhardt: Neuronagivation: A ten years review. In: Computer-Integrated Surgery, ed. by R. Taylor, S. Lavallée, G. Burdea, R. Moegses (MIT Press, Cambridge 1996) pp. 329–342Google Scholar
  79. 63.79
    E. Hempel, H. Fischer, L. Gumb, T. Hohn, H. Krause, U. Voges, H. Breitwieser, B. Gutmann, J. Durke, M. Bock, A. Melzer: An MRI-compatible surgical robot for precise radiological interventions, Comput. Aided Surg. 8, 180–191 (2003)CrossRefGoogle Scholar
  80. 63.80
    Z. Wei, G. Wan, L. Gardi, G. Mills, D. Downey, A. Fenster: Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation, Med. Phys. 31, 539–548 (2004)CrossRefGoogle Scholar
  81. 63.81
    E. Boctor, G. Fischer, M. Choti, G. Fichtinger, R.H. Taylor: Dual-armed robotic system for intraoperative ultrasound guided hepatic ablative therapy: A prospective study, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2004) pp. 377–382Google Scholar
  82. 63.82
    J. Hong, T. Dohi, M. Hashizume, K. Konishi, N. Hata: An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy, Phys. Med. Biol. 49, 441–455 (2004)CrossRefGoogle Scholar
  83. 63.83
    G. Megali, O. Tonet, C. Stefanini, M. Boccadoro, V. Papaspyropoulis, L. Angelini, P. Dario: A computer-assisted robotic ultrasound-guided biopsy system for video-assisted surgery, Proc. Med. Image Comput. Comput. Interv. (MICCAI), Utrecht (2001) pp. 343–350Google Scholar
  84. 63.84
    R.J. Webster III, J.S. Kim, N.J. Cowan, G.S. Chirikjian, A.M. Okamura: Nonholonomic modeling of needle steering, Int. J. Robotics Res. 25(5-6), 509–525 (2006)CrossRefGoogle Scholar
  85. 63.85
    J.A. Engh, D.S. Minhas, D. Kondziolka, C.N. Riviere: Percutaneous intracerebral navigation by duty-cycled spinning of flexible bevel-tipped needles, Neurosurgery 67(4), 1117–1122 (2010)CrossRefGoogle Scholar
  86. 63.86
    N. Cowan, K. Goldberg, G. Chirikjian, G. Fichtinger, R. Alterovitz, K. Reed, V. Kallem, W. Park, S. Misra, A.M. Okamura: Robotic needle steering: Design, modeling, planning, and image guidance. In: Surgical Robotics – Systems Applications and Visions, ed. by J. Rosen, B. Hannaford, R.M. Satava (New York, Springer 2011)Google Scholar
  87. 63.87
    S. Okazawa, R. Ebrahimi, J. Chuang, S. Salcudean, R. Rohling: Hand-held steerable needle device, IEEE/ASME Trans. Mechatron. 10, 285–296 (2005)CrossRefGoogle Scholar
  88. 63.88
    P.E. Dupont, J. Lock, B. Itkowitz, E. Butler: Design and control of concentric-tube robots, IEEE Trans. Robotics 26(2), 209–225 (2010)CrossRefGoogle Scholar
  89. 63.89
    G.H. Ballantyne: Robotic surgery, telerobotic surgery, telepresence and telementoring, Surg, Endosc. 16, 1389 (2002)CrossRefGoogle Scholar
  90. 63.90
    A. Rovetta, R. Sala, R. Cosmi, X. Wen, S. Milassesi, D. Sabbadini, A. Togno, L. Angelini, A.K. Bejczy: A new telerobotic application: Remote laparscopic surgery using satellites and optical figer networks for data exchange, Int. J. Robotics Res. 15(3), 267–279 (1996)CrossRefGoogle Scholar
  91. 63.91
    J. Arata, H. Takahashi, S. Yasunaka, K. Onda, K. Tanaka, N. Sugita, K. Tanoue, K. Konishi, S. Ieiri, Y. Fujino, Y. Ueda, H. Fujimoto, M. Mitsuishi, M. Hashizume: Impact of network time-delay and force feedback on tele-surgery, Int. J. Comput. Assist. Radiol. Surg. 3(3–4), 371–378 (2008)CrossRefGoogle Scholar
  92. 63.92
    J.A. McEwen, C.R. Bussani, G.F. Auchinleck, M.J. Breault: Development and initial clinical evaluation of pre-robotic and robotic retraction systems for surgery, Proc. 2nd Workshop Med. Health Care Robotics, Newcastle (1989) pp. 91–101Google Scholar
  93. 63.93
    P. Berkelman, P. Cinquin, J. Troccaz, J. Ayoubi, C. Letoublon, F. Bouchard: A compact, compliant laparoscopic endoscope manipulator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1870–1875Google Scholar
  94. 63.94
    K. Olds, A. Hillel, J. Kriss, A. Nair, H. Kim, E. Cha, M. Curry, L. Akst, R. Yung, J. Richmon, R. Taylor: A robotic assistant for trans-oral surgery: The robotic endo-laryngeal fexible (Robo-ELF) scope, J. Robotic. Surg. 6(1), 13–18 (2012)CrossRefGoogle Scholar
  95. 63.95
    G.R. Sutherland, S. Lama, L.S. Gan, S. Wolfsberger, K. Zareinia: Merging machines with microsurgery: Clinical experience with neuroArm, J. Neurosurg. 118, 521–529 (2013)CrossRefGoogle Scholar
  96. 63.96
    A. Nishikawa, T. Hosoi, K. Koara, T. Dohi: FAce MOUSe: A novel human-machine interface for controlling the position of a laparoscope, IEEE Trans Robot. Autom. 19, 825–841 (2003)CrossRefGoogle Scholar
  97. 63.97
    A. Krupa, J. Gangloff, C. Doignon, M.F. deMathelin, G. Morel, J. Leroy, L. Soler, J. Marescaux: Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing, IEEE Trans. Robotics Autom. 19, 842–853 (2003)MATHCrossRefGoogle Scholar
  98. 63.98
    P. Green, R. Satava, J. Hill, I. Simon: Telepresence: Advanced teleoperator technology of minimally invasive surgery (abstract), Surg. Endosc. 6, 90 (1992)CrossRefGoogle Scholar
  99. 63.99
    T. Ahlering, D. Woo, L. Eichel, D. Lee, R. Edwards, D. Skarecky: Robot-assisted versus open radical prostatectomy: A comparison of one surgeon’s outcomes, Urology 63, 819–822 (2004)CrossRefGoogle Scholar
  100. 63.100
    J.D. Wright, C.V. Ananth, S.N. Lewin, W.M. Burke, Y.-S. Lu, A.I. Neugut, T.J. Herzog, D.L. Hershman: Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease, J. Am. Med. Assoc. 309(7), 689–698 (2013)CrossRefGoogle Scholar
  101. 63.101
    J. Rosen, J.D. Brown, L. Chang, M. Barreca, M. Sinanan, B. Hannaford: The BlueDRAGON – a system for measuring the kinematics and the dynamics of minimally invasive surgical tools in-vivo, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1876–1881Google Scholar
  102. 63.102
    H.C. Lin, I. Shafran, T.E. Murphy, A.M. Okamura, D.D. Yuh, G.D. Hager: Automatic detection and segmentation of robot-assisted surgical motions, Proc. Med. Image Comput. Comput.-Assist. Interv. (MICCAI) (2005) pp. 802–810Google Scholar
  103. 63.103
    H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, J. Schmidhuber: A system for robotic heart surgery that learns to tie knots using recurrent neural networks, Proc. Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 543–548Google Scholar
  104. 63.104
    C.E. Reiley, H.C. Lin, D.D. Yuh, G.D. Hager: A review of methods for objective surgical skill evaluation, Surg. Endosc. 25(2), 356–366 (2011)CrossRefGoogle Scholar
  105. 63.105
    N. Padoy, G. Hager: Human-machine collaborative surgery using learned models, Proc. IEEE Int. Conf Robotics Autom. (ICRA) (2011) pp. 5285–5292Google Scholar
  106. 63.106
    L.-M. Su, B.P. Vagvolgyi, R. Agarwal, C.E. Reiley, R.H. Taylor, G.D. Hager: Augmented reality during robot-assisted laparoscopic partial nephrectomy: Toward real-time 3D-CT to stereoscopic video registration, Urology 73(4), 896–900 (2009)CrossRefGoogle Scholar
  107. 63.107
    F. Volonté, N.C. Buchs, F. Pugin, J. Spaltenstein, B. Schiltz, M. Jung, M. Hagen, O. Ratib, P. Morel: Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console, Int. J. Med. Robotics Comput. Assist. Surg. 3(9), 34–38 (2013)CrossRefGoogle Scholar
  108. 63.108
    D. Cohen, E. Mayer, D. Chen, A. Anstee, J. Vale, G.-Z. Yang, A. Darzi, P.Ä.Ä. Edwards: Augmented reality image guidance in minimally invasive prostatectomy, Lect. Notes Comput. Sci. 6367, 101–110 (2010)CrossRefGoogle Scholar
  109. 63.109
    Y. Ida, N. Sugita, T. Ueta, Y. Tamaki, K. Tanimoto, M. Mitsuishi: Microsurgical robotic system for vitreoretinal surgery, Int. J. Comput. Assist. Radiol. Surg. 7(1), 27–34 (2012)CrossRefGoogle Scholar
  110. 63.110
    R. Taylor, J. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. Gehlbach, J. Handa: Recent work toward a microsurgical assistant for retinal surgery, Proc. Hamlyn Symp. Med. Robotics, London (2011) pp. 3–4Google Scholar
  111. 63.111
    B. Becker, S. Yang, R. MacLachlan, C. Riviere: Towards vision-based control of a handheld micromanipulator for retinal cannulation in an eyeball phantom, Proc. IEEE RAS EMBS Int. Conf. Biomed. Robotics Biomechatronics (BIOROB) (2012) pp. 44–49Google Scholar
  112. 63.112
    M. Balicki, T. Xia, M.Y. Jung, A. Deguet, B. Vagvolgyi, P. Kazanzides, R. Taylor: Prototyping a hybrid cooperative and tele-robotic surgical system for retinal microsurgery, Proc. MICCAI Workshop Syst. Archit. Comput. Assist. Interv. Tor. (2011), Insight, http://www.midasjournal.org/browse/publication/815 Google Scholar
  113. 63.113
    C. Bergeles, B.E. Kratochvil, B.J. Nelson: Visually servoing magnetic intraocular microdevices, IEEE Trans. Robotics 28(4), 798–809 (2012)CrossRefGoogle Scholar
  114. 63.114
    Patent N. Simaan, J. T. Handa, R. H. Taylor: A system for macro-micro distal dexterity enhancement in microsurgery of the eye, Patent US 20110125165 A1 (2011)Google Scholar
  115. 63.115
    X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, J. Handa, P. Gehlbach, R.H. Taylor, I. Iordachita: Toward a clinically applicable steady-hand eye robot for vitreoretinal surgery, Proc. ASME Int. Mech. Eng. Congr., Houston (2012) p. 88384Google Scholar
  116. 63.116
    J.K. Niparko, W.W. Chien, I. Iordachita, J.U. Kang, R.H. Taylor: Robot-assisted, sensor-guided cochlear implant electrode insertion (Abstract in Proceedings), Proc. 12th Int. Conf. Cochlear Implant. Other Implant. Auditory Technol., Baltimore (2012)Google Scholar
  117. 63.117
    D. Schurzig, R.F. Labadie, A. Hussong, T.S. Rau, R.J. Webster: Design of a tool integrating force sensing with automated insertion in cochlear implantation, IEEE/ASME Trans. Mechatron. 17(2), 381–389 (2012)CrossRefGoogle Scholar
  118. 63.118
    B. Bell, C. Stieger, N. Gerber, A. Arnold, C. Nauer, V. Hamacher, M. Kompis, L. Nolte, M. Caversaccio, S. Weber: A self-developed and constructed robot for minimally invasive cochlear implantation, Acta Oto-Laryngol. 132(4), 355–360 (2012)CrossRefGoogle Scholar
  119. 63.119
    J.R. Clark, L. Leon, F.M. Warren, J.J. Abbott: Magnetic guidance of cochlear implants: Proof-of-concept and initial feasibility study, Trans. ASME-W-J. Medical Devices 6(4), 35002 (2012)CrossRefGoogle Scholar
  120. 63.120
    J. Schiff, P. Li, M. Goldstein: Robotic microsurgical vasovasostomy and vasoepididymostomy: A prospective randomized study in a rat model, J. Urol. 171, 1720–1725 (2004)CrossRefGoogle Scholar
  121. 63.121
    S. Parekattil, M. Cohen: Robotic microsurgery. In: Robotic Urologic Surgery, ed. by V.R. Patel (Springer, London 2012) pp. 461–470Google Scholar
  122. 63.122
    P.S. Jensen, K.W. Grace, R. Attariwala, J.E. Colgate, M.R. Glucksberg: Toward robot assisted vascular microsurgery in the retina, Graefes Arch. Clin. Exp. Ophthalmol. 235, 696–701 (1997)CrossRefGoogle Scholar
  123. 63.123
    H. Das, H. Zak, J. Johnson, J. Crouch, D. Frambaugh: Evaluation of a telerobotic system to assist surgeons in microsurgery, Comput. Aided Surg. 4, 15–25 (1999)CrossRefGoogle Scholar
  124. 63.124
    K. Hongo, S. Kobayashi, Y. Kakizawa, J.I. Koyama, T. Goto, H. Okudera, K. Kan, M.G. Fujie, H. Iseki, K. Takakura: NeuRobot: Telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results, Neurosurgery 51, 985–988 (2002)Google Scholar
  125. 63.125
    A. Kapoor, R. Kumar, R. Taylor: Simple biomanipulation tasks with a steady hand cooperative manipulator, Proc. 6th Int. Conf. Med. Image Comput. Comput. Assist. Interv. (MICCAI), Montreal (2003) pp. 141–148Google Scholar
  126. 63.126
    R. MacLachlan, B. Becker, J. Cuevas-Tabarés, G. Podnar, L. Lobes, C. Riviere: Micron: An actively stabilized handheld tool for microsurgery, IEEE Trans. Robotics 28(1), 195–212 (2012)CrossRefGoogle Scholar
  127. 63.127
    B. Becker, R. MacLachlan, L. Lobes, G. Hager, C. Riviere: Vision-based control of a handheld surgical micromanipulator with virtual fixtures, IEEE Trans. Robotics 29(3), 674–683 (2013)CrossRefGoogle Scholar
  128. 63.128
    C. Riviere, J. Gangloff, M. de Mathelin: Robotic compensation of biological motion to enhance surgical accuracy, Proceedings IEEE 94(9), 1705–1716 (2006)CrossRefGoogle Scholar
  129. 63.129
    W. Armstrong, A. Karamzadeh, R. Crumley, T. Kelley, R. Jackson, B. Wong: A novel laryngoscope instrument stabilizer for operative microlaryngoscopy, Otolaryngol. Head Neck Surg. 132, 471–477 (2004)CrossRefGoogle Scholar
  130. 63.130
    L. Ascari, C. Stefanini, A. Menciassi, S. Sahoo, P. Rabischong, P. Dario: A new active microendoscope for exploring the sub-arachnoid space in the spinal cord, Proc. IEEE Conf. Robotics Autom. (ICRA) (2003) pp. 2657–2662Google Scholar
  131. 63.131
    U. Bertocchi, L. Ascari, C. Stefanini, C. Laschi, P. Dario: Human-robot shared control for robot-assisted endoscopy of the spinal cord, Proc. IEEE/RAS/EMBS Int. Conf. Biomed. Robot. Biomechatronics (2006) pp. 543–548Google Scholar
  132. 63.132
    A. Cuschieri, G. Buess, J. Perissat: Operative Manual of Endoscopic Surgery (Springer, Berlin, Heidleberg 1992)CrossRefGoogle Scholar
  133. 63.133
    Stereotaxis: The epoch (TM) solution: The heart of innovation, http://www.stereotaxis.com/ (2013)
  134. 63.134
    Endosense, TactiCath Quartz – The First Contact Force Ablation Catheter: http://neomed.net/portfolio/endosense_sa (2013)
  135. 63.135
    K.J. Rebello: Applications of MEMS in surgery, Proceedings IEEE 92(1), 43–55 (2004)CrossRefGoogle Scholar
  136. 63.136
    I. Kassim, W.S. Ng, G. Feng, S.J. Phee: Review of locomotion techniques for robotic colonoscopy, Proc. Int. Conf. Robotics Autom. (ICRA), Taipei (2003) pp. 1086–1091Google Scholar
  137. 63.137
    Endotics: The endotics system, http://www.endotics.com/en/product (2012)
  138. 63.138
    Gi-View: The AeroScope, http://www.giview.com/ (2013)
  139. 63.139
    Invendo-Medical: Gentle colonoscopy with invendoscopy, http://www.invendo-medical.com/ (2013)
  140. 63.140
    A. Loeve, P. Breeveld, J. Dankelman: Scopes too flexible … and too stiff, IEEE Pulse 1(3), 26–41 (2010)CrossRefGoogle Scholar
  141. 63.141
    G. Ciuti, A. Menciassi, P. Dario: Capsule endoscopy: From current achievements to open challenges, IEEE Rev. Biomed. Eng. 4, 59–72 (2011)CrossRefGoogle Scholar
  142. 63.142
    C. Stefanini, A. Menciassi, P. Dario: Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment, Int. J. Robotics Res. 25, 551–560 (2006)CrossRefGoogle Scholar
  143. 63.143
    G. Ciuti, P. Valdastri, A. Menciassi, P. Dario: Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures, Robotica 28, 199–207 (2010)CrossRefGoogle Scholar
  144. 63.144
    J.F. Rey, H. Ogata, N. Hosoe, K. Ohtsuka, N. Ogata, K. Ikeda, H. Aihara, I. Pangtay, T. Hibi, S. Kudo, H. Tajiri: Feasibility of stomach exploration with a guided capsule endoscope, Endoscopy 42, 541–545 (2010)CrossRefGoogle Scholar
  145. 63.145
    R.C. Ritter, M.S. Grady, M.A. Howard, G.T. Gilles: Magnetic stereotaxis: Computer assisted, image guided remote movement of implants in the brain. In: Computer Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G.C. Burdea, R. Mosges (MIT Press, Cambridge 1995) pp. 363–369Google Scholar
  146. 63.146
    C.R. Wagner, N. Stylopoulos, P.G. Jackson, R.D. Howe: The benefit of force feedback in surgery: Examination of blunt dissection, Presence: Teleoperators Virtual Environ. 16(3), 252–262 (2007)CrossRefGoogle Scholar
  147. 63.147
    P.F. Hokayem, M.W. Spong: Bilateral teleoperation: A historical survey, Automatica 42, 2035–2057 (2006)MathSciNetMATHCrossRefGoogle Scholar
  148. 63.148
    M. Quirini, A. Menciassi, S. Scapellato, C. Stefanini, P. Dario: Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract, IEEE/ASME Trans. Mechatron. 13(1), 169–179 (2008)CrossRefGoogle Scholar
  149. 63.149
    A.M. Okamura: Methods for haptic feedback in teleoperated robot-assisted surgery, Ind. Robot 31, 499–508 (2004)CrossRefGoogle Scholar
  150. 63.150
    M.J. Massimino: Improved force perception through sensory substitution, Contr. Eng. Pract. 3, 215–222 (1995)CrossRefGoogle Scholar
  151. 63.151
    P. Gupta, P. Jensen, E. de Juan: Quantification of tactile sensation during retinal microsurgery, Proc. 2nd Int. Conf. Med. Image Comput. Comput.-Assist. Interv. (MICCAI), Cambridge (1999)Google Scholar
  152. 63.152
    P.K. Poulose, M.F. Kutka, M. Mendoza-Sagaon, A.C. Barnes, C. Yang, R.H. Taylor, M.A. Talamini: Human versus robotic organ retraction during laparoscopic nissen fundoplication, Surg. Endosc. 13, 461–465 (1999)CrossRefGoogle Scholar
  153. 63.153
    J. Rosen, B. Hannaford, M. MacFarlane, M. Sinanan: Force controlled and teleoperated endoscopic grasper for minimally invasive surgery – Experimental performance evaluation, IEEE Trans. Biomed. Eng. 46, 1212–1221 (1999)CrossRefGoogle Scholar
  154. 63.154
    M. Siemionow, K. Ozer, W. Siemionow, G. Lister: Robotic assistance in microsurgery, J. Reconstr. Microsurg. 16(8), 643–649 (2000)CrossRefGoogle Scholar
  155. 63.155
    P.D.L. Roux, H. Das, S. Esquenazi, P.J. Kelly: Robot-assisted microsurgery: A feasibility study in the rat, Neurosurgery 48(3), 584–589 (2001)CrossRefGoogle Scholar
  156. 63.156
    A. Menciassi, A. Eisinberg, M.C. Carrozza, P. Dario: Force sensing microinstrument for measuring tissue properties and pulse in microsurgery, IEEE/ASME Trans. Mechatron. 8, 10–17 (2003)CrossRefGoogle Scholar
  157. 63.157
    S. Sunshine, M. Balicki, X. He, K. Olds, J. Kang, P. Gehlbach, R. Taylor, I. Iordachita, J. Handa: A Force-sensing microsurgical instruments that detects forces below human tactile sensation, Retina 33(1), 200–206 (2013)CrossRefGoogle Scholar
  158. 63.158
    I. Iordachita, Z. Sun, M. Balicki, J.U. Kang, S.J. Phee, J. Handa, P. Gehlbach, R. Taylor: A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery, Int. J. Comput. Assist. Radiol. Surg. 4(4), 383–390 (2009)CrossRefGoogle Scholar
  159. 63.159
    I. Kuru, B. Gonenc, M. Balicki, J. Handa, P. Gehlbach, R.H. Taylor, I. Iordachita: Force sensing micro-forceps for robot assisted retinal surgery, Proc. Eng. Med. Biol., San Diego (2012) pp. 1401–1404Google Scholar
  160. 63.160
    X. Liu, I.I. Iordachita, X. He, R.H. Taylor, J.U. Kang: Miniature fiber-optic force sensor for vitreoretinal microsurgery based on low-coherence Fabry-Perot interferometry, Biomed. Opt. Express 3, 1062–1076 (2012)CrossRefGoogle Scholar
  161. 63.161
    M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, R.H. Taylor, J. Kang: Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery, Proc. Med. Image Comput. Comput.-Assist. Interv. (MICCAI), London (2009) pp. 108–115Google Scholar
  162. 63.162
    M. Balicki, R. Richa, B. Vagvolgyi, J. Handa, P. Gehlbach, J. Kang, P. Kazanzides, R. Taylor: Interactive OCT annotation and visualization system for vitreoretinal surgery, Proc. MICCAI Workshop Augment. Environ. Comput. Interv. (AE-CAI), Nice (2012)Google Scholar
  163. 63.163
    X. Liu, Y. Huang, J.U. Kang: Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction, Opt. Express 20(15), 16567–16583 (2012)CrossRefGoogle Scholar
  164. 63.164
    N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, J. Handa: Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery, Investig. Ophthalmol. Vis. Sci. 4(2), 1316–1324 (2013)CrossRefGoogle Scholar
  165. 63.165
    R.D. Howe, W.J. Peine, D.A. Kontarinis, J.S. Son: Remote palpation technology, IEEE Eng. Med. Biol. 14(3), 318–323 (1995)CrossRefGoogle Scholar
  166. 63.166
    G. Fischer, T. Akinbiyi, S. Saha, J. Zand, M. Talamini, M. Marohn, R. Taylor: Ischemia and force sensing surgical instruments for augmenting available surgeon information, Proc. IEEE Int. Conf. Biomed. Robot. Biomechatronics (BioRob), Pisa (2006)Google Scholar
  167. 63.167
    F.J. Carter, M.P. Schijven, R. Aggarwal, T. Grantcharov, N.K. Francis, G.B. Hanna, J.J. Jakimowicz: Consensus guidelines for validation of virtual reality surgical simulators, Surg. Endosc. 19, 1523–1532 (2005)CrossRefGoogle Scholar
  168. 63.168
    A. Gavazzi, W.V. Haute, K. Ahmed, O. Elhage, P. Jaye, M.S. Khan, P. Dasgupta: Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP Robot), Ann. R. Coll. Surg. Engl. 93, 146–150 (2011)CrossRefGoogle Scholar
  169. 63.169
    F.H. Halvorsen, O.J. Elle, E. Fosse: Simulators in surgery, Minim. Invasive Ther. 14, 214–223 (2005)CrossRefGoogle Scholar
  170. 63.170
    T. Ungi, D. Sargent, E. Moult, A. Lasso, C. Pinter, R. McGraw, G. Fichtinger: Perk Tutor: An open-source training platform for ultrasound-guided needle insertions, IEEE Trans. Biomed. Eng. 59(12), 3475–3481 (2012)CrossRefGoogle Scholar
  171. 63.171
    E. Moult, T. Ungi, M. Welch, J. Lu, R. McGraw, G. Fichtinger: Ultrasound-guided facet joint injection training using Perk Tutor, Int. J. Comput. Assist. Radiol. Surg. 8(5), 831–836 (2013)CrossRefGoogle Scholar
  172. 63.172
    T.K.A. Kesavadas, G. Srimathveeravalli, S. Karimpuzha, R. Chandrasekhar, G. Wilding, G.K.Z. Butt: Efficacy of robotic surgery simulator (RoSS) for the davinci surgical system, J. Urol. 181(4), 823 (2009)CrossRefGoogle Scholar
  173. 63.173
    C. Perrenot, M. Perez, N. Tran, J.-P. Jehl, J. Felblinger, L. Bresler, J. Hubert: The virtual reality simulator dV-Trainer is a valid assessment tool for robotic surgical skills, Surg. Endosc. 26(9), 2587–2593 (2012)CrossRefGoogle Scholar
  174. 63.174
    R. Korets, J. Graversen, M. Gupta, J. Landman, K. Badani: Comparison of robotic surgery skill acquisition between DV-Trainer and da Vinci surgical system: A randomized controlled study, J. Urol. 185(4), e593 (2011)CrossRefGoogle Scholar
  175. 63.175
    K. Moorthy, Y. Munz, S.K. Sarker, A. Darzi: Objective assessment of technical skills in surgery, Br. Med. J. 327, 1032–1037 (2003)CrossRefGoogle Scholar
  176. 63.176
    C. Basdogan, S. De, J. Kim, M. Muniyandi, H. Kim, M.A. Srinivasan: Haptics in minimally invasive surgical simulation and training, IEEE Comput. Graph. Appl. 24(2), 56–64 (2004)CrossRefGoogle Scholar
  177. 63.177
    M. Altomonte, D. Zerbato, S. Galvan, P. Fiorini: Organ modeling and simulation using graphical processing, Poster Sess. Comput. Assist. Radiol. Surg., Berlin (2007)Google Scholar
  178. 63.178
    D. Zerbato, L. Vezzaro, L. Gasperotti, P. Fiorini: Virtual training for US guided needle insertion, Proc. Comput. Assist Radiol. Surg., Berlin (2012) pp. 27–30Google Scholar
  179. 63.179
  180. 63.180
    Surgical Education platform: http://www.meti.com
  181. 63.181
  182. 63.182
  183. 63.183
  184. 63.184
    Laparoscopic Trainer: http://www.reachin.se
  185. 63.185
  186. 63.186
  187. 63.187
  188. 63.188
    U. Verona: Xron - Surgical simulator by ALTAIR lab, http://metropolis.scienze.univr.it/xron/ (2013)
  189. 63.189
    F. Cavallo, G. Megali, S. Sinigaglia, O. Tonet, P. Dario: A biomechanical analysis of surgeon’s gesture in a laparoscopic virtual scenario. In: Medicine Meets Virtual Reality, Vol. 14, ed. by J.D. Westwood, R.S. Haluck, H.M. Hoffmann, G.T. Mogel, R. Phillips, R.A. Robb, K.G. Vosburgh (IOS, Amsterdam 2006) pp. 79–84Google Scholar
  190. 63.190
    S. Yule, R. Flin, S. Paterson-Brown, N. Maran: Non-technical skills for surgeons: A review of the literature, Surgery 139, 140–149 (2006)CrossRefGoogle Scholar
  191. 63.191
    K.T. Kavanagh: Applications of image-directed robotics in otolaryngologic surgery, Laryngoscope 194, 283–293 (1994)Google Scholar
  192. 63.192
    J. Wurm, H. Steinhart, K. Bumm, M. Vogele, C. Nimsky, H. Iro: A novel robot system for fully automated paranasal sinus surgery, Proc. Comput. Assist. Radiol. Surg. (CARS) (2003) pp. 633–638Google Scholar
  193. 63.193
    M. Li, M. Ishii, R.H. Taylor: Spatial motion constraints in medical robot using virtual fixtures generated by anatomy, IEEE Trans. Robot. 2, 1270–1275 (2006)Google Scholar
  194. 63.194
    G. Strauss, K. Koulechov, R. Richter, A. Dietz, C. Trantakis, T. Lueth: Navigated control in functional endoscopic sinus surgery, Int. J. Med. Robot. Comput. Assist. Surg. 1, 31–41 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Russell H. Taylor
    • 1
  • Arianna Menciassi
    • 2
  • Gabor Fichtinger
    • 3
  • Paolo Fiorini
    • 4
  • Paolo Dario
    • 5
  1. 1.Department of Computer ScienceThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.The BioRobotics InstituteSant’Anna School of Advanced StudiesPisaItaly
  3. 3.School of ComputingQueen’s UniversityKingstonCanada
  4. 4.Department of Computer ScienceUniversity of VeronaVeronaItaly
  5. 5.The BioRobotics InstituteSant’Anna School of Advanced StudiesPisaItaly

Personalised recommendations