Intelligent Vehicles

  • Alberto Broggi
  • Alex Zelinsky
  • Ümit Özgüner
  • Christian Laugier

Abstract

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

3-D

three-dimensional

ABRT

automated bus rapid transit

ACC

adaptive cruise control

ADAS

advanced driving assistance system

AHS

advanced highway system

automated highway system

AIST

Institute of Advanced Industrial Science and Technology

BRT

bus rapid transit

CACC

cooperative adaptive cruise control

CALM

communication access for land mobiles

CD

compact disc

CIE

International Commission on Illumination

CVIS

cooperative vehicle infrastructure system

DARPA

Defense Advanced Research Projects Agency

DGPS

differential global positioning system

DSRC

dedicated short-range communications

ECG

electrocardiogram

GCDC

Grand Cooperative Driving Challenge

GID

geometric intersection data

GLS

global navigation satellite system

GPRS

general packet radio service

GPS

global positioning system

HTAS

high tech automotive system

IETF

internet engineering task force

IMTS

intelligent multimode transit system

IMU

inertial measurement unit

IP

internet protocol

IST

Information Society Technologies

LED

light-emitting diode

MEL

Mechanical Engineering Laboratory

MHT

multihypothesis tracking

NEMO

network mobility

OBU

on board unit

OECD

Organization for Economic Cooperation and Development

PC

personal computer

RALPH

rapidly adapting lane position handler

RFID

radio frequency identification

RSU

road side unit

SLAM

simultaneous localization and mapping

SMS

short message service

SPaT

signal phase and timing

TRC

Transportation Research Center

UBM

Universität der Bundeswehr Munich

WAVE

wireless access in vehicular environments

References

  1. 62.1
    J. Ibañez-Guzmán, C. Laugier, J.-D. Yoder, S. Thrun: Autonomous Driving: Context and state-of-the Art. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012)Google Scholar
  2. 62.2
    R.E. Fenton, R.J. Mayhan: Automated highway studies at the Ohio State University – An overview, IEEE Trans. Veh. Technol. 40(1), 100–113 (1991)CrossRefGoogle Scholar
  3. 62.3
    Society of Automotive Engineers (SAE): J2735 Dedicated Short Range Communications (DSRC) Message Set Dictionary (2009)Google Scholar
  4. 62.4
    E.D. Dickmanns: The development of machine vision for road vehicles in the last decade, IEEE Intell. Veh. Symp., Vol. 1 (2002) pp. 268–281Google Scholar
  5. 62.5
    A. Broggi, M. Bertozzi, A. Fascioli, G. Conte: Automatic Vehicle Guidance: The Experience of the ARGO Autonomous Vehicle (World Scientific, Singapore 1999)CrossRefMATHGoogle Scholar
  6. 62.6
    C.E. Thorpe (Ed.): Vision and Navigation: The Carnegie Mellon Navlab (Kluwer, Boston 1990)Google Scholar
  7. 62.7
    E.D. Dickmanns, B.D. Mysliwetz: Recursive 3-D road and relative ego-state recognition, IEEE Trans. Pattern. Anal. Mach. Intell. 14(2), 199–213 (1992)CrossRefGoogle Scholar
  8. 62.8
    D. Pomerleau, T. Jochem: Rapidly adapting machine vision for automated vehicle steering, IEEE Intell. Syste. 11(2), 19–27 (1996)Google Scholar
  9. 62.9
    A. Eskandarian (Ed.): Handbook of Intelligent Vehicles (Springer, Berlin, Heidelberg 2012)Google Scholar
  10. 62.10
    Ü. Özgüner, T. Acarman, K. Redmill: Autonomous Ground Vehicles (Artech House, Boston 2011)Google Scholar
  11. 62.11
    S. Kato, S. Tsugawa, K. Tokuda, T. Matsui, H. Fujii: Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications, IEEE Trans. Intell. Transp. Syst. 3(3), 155–161 (2002)CrossRefGoogle Scholar
  12. 62.12
    US Department of Transport, Research and Innovative Technology Administration: Guide to federal intelligent transportation system (ITS) research, http://ntl.bts.gov/lib/48000/48300/48313/9E878E25.pdf (2013)
  13. 62.13
    DARPA Grand Challenge Web Site: http://archive.darpa.mil/grandchallenge05/
  14. 62.14
    K. Iagnemma, M. Buehler (Eds.): Journal of Field Robotics, Special issues on the DARPA Grand Challenge, Vol. 23, No. 8/9 (Wiley, Hoboken 2006)Google Scholar
  15. 62.15
    Department of Defense, Washington: Darpa Grand Challenge, http://archive.darpa.mil/grandchallenge/ (2007)
  16. 62.16
    J. Ploeg, S. Shladover, H. Nijmeijer, N. Van De Wouw: Introduction to the special issue on the 2011 grand cooperative driving challenge, IEEE Trans. Intell. Transp. Syst. 13(3), 989–993 (2012)CrossRefGoogle Scholar
  17. 62.17
    A. Broggi, P. Cerri, M. Felisa, M.C. Laghi, L. Mazzei, P.P. Porta: The VisLab intercontinental autonomous challenge: An extensive test for a platoon of intelligent vehicles, Intl. J. Veh. Auton. Syst. 10(3), 147–164 (2012)CrossRefGoogle Scholar
  18. 62.18
    M. Bertozzi, A. Broggi, A. Coati, R.I. Fedriga: A 13 000 km intercontinental trip with driverless vehicles: The VIAC experiment, IEEE Intell. Transp. Syst. Mag. 5(1), 28–41 (2013)CrossRefGoogle Scholar
  19. 62.19
    A. Broggi, P. Medici, P. Zani, A. Coati, M. Panciroli: Autonomous vehicles control in the VisLab intercontinental autonomous challenge, Annu. Rev. Control 36(1), 161–171 (2012)CrossRefGoogle Scholar
  20. 62.20
    L. Vlacic, M. Parent, F. Harashima: EDS Intelligent Vehicle Technologies, Theory and Applications (Butterworth-Heinemann, Oxford 2001)Google Scholar
  21. 62.21
    M. Hirota, Y. Nakajima, M. Saito, M. Uchiyama: Low-cost infrared imaging sensors for automotive application. In: Advanced Microsystems for Automotive Applications, VDI-Buch, ed. by J. Valldorf, W. Gessner (Springer, Berlin, Heidelberg 2004)Google Scholar
  22. 62.22
  23. 62.23
    M. Klotz, H. Rohling: 24 GHz radar sensors for automotive applications, Int. Conf. Microw. Radar Wirel. Commun. (MIKON), Vol. 1 (2000) pp. 359–362Google Scholar
  24. 62.24
    A. Ewald, V. Willhoeft: Laser scanners for obstacle detection in automotive applications, IEEE Intell. Veh. Symp. (2000) pp. 682–687Google Scholar
  25. 62.25
    C. Laugier, I. Paromtchik, M. Perrollaz, M. Yong, J. Yoder, C. Tay, K. Mekhnacha, A. Negre: Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety, IEEE Intell. Transp. Syst. Mag. 3(4), 4–19 (2011)CrossRefGoogle Scholar
  26. 62.26
    S. Lefèvre, C. Laugier, J. Ibañez-Guzmán: Risk assessment at road intersections: Comparing intention and expectation, IEEE Intell. Veh. Symp. (2012) pp. 165–171Google Scholar
  27. 62.27
    I. Skog, P. Handel: In-car positioning and navigation technologies – A survey, IEEE Trans. Intell. Transp. Syst. 10(1), 4–21 (2009)CrossRefGoogle Scholar
  28. 62.28
    TomTom: Manufacturer of navigation systems and how they work, http://www.tomtom.com/howdoesitwork/
  29. 62.29
    Ertico: ActMAP an EU Project for Dynamic Map Updating, http://www.ertico.com/actmap (2007)
  30. 62.30
    S. Rogers, W. Zhang: Development and evaluation of a curve rollover warning system for trucks, IEEE Intell. Veh. Symp. (2003) pp. 294–297Google Scholar
  31. 62.31
    D. Vaughan: Vehicle speed control based on GPS/MAP matching of posted speeds, Patent US 5485161 (1996)Google Scholar
  32. 62.32
    H. Sabel, M.R. Herbst: The map as a component in advanced driver assistance systems, Proc. 7th World Cong. Intell. Syst. (2000)Google Scholar
  33. 62.33
    Q. Ji, X. Yang: Real-time eye, gaze, and face pose tracking for monitoring driver vigilance, Real-Time Imaging 8(5), 357–377 (2002)CrossRefMATHGoogle Scholar
  34. 62.34
    J.B. Kenney: Dedicated short-range communications (DSRC) standards in the United States, Proceedings IEEE 99(7), 1162–1182 (2011)CrossRefGoogle Scholar
  35. 62.35
    Y. Ohshima: Control system for automatic driving, Proc. IFAC Tokyo Symp. Syst. Eng. Control Syst. Des. (1965)Google Scholar
  36. 62.36
    S. Biddlestone, K. Redmill, R. Miucic, Ü. Özgüner: An integrated 802.11p WAVE DSRC and vehicle traffic simulator with experimentally validated urban (LOS and NLOS) propagation models, IEEE Trans. Intell. Transp. Syst. 13(4), 1792–1802 (2012)CrossRefGoogle Scholar
  37. 62.37
    T. Schaffnit: Automotive standardization of vehicle networks. In: Vehicular Networking: Automotive Applications and Beyond, ed. by M. Emmelmann, B. Bochow, C.C. Kellum (Wiley, Chichester 2010)Google Scholar
  38. 62.38
    L. Le, A. Festag, R. Baldessari, W. Zhang: CAR-2-X Communication in Europe. In: Vehicular Networks: From Theory to Practice, ed. by S. Olariu, M.C. Weigle (CRC, Boca Raton 2008)Google Scholar
  39. 62.39
    T. Ernst: The information technology era of the vehicular industry, ACM SIGCOMM Comput. Commun. Rev. 36(2), 49–52 (2006)CrossRefGoogle Scholar
  40. 62.40
    CALM working group producing standards and specifications: http://calm.its-standards.eu/
  41. 62.41
    CVIS: Cooperative Vehicle-Infrastructure Systems, http://www.cvisproject.org/
  42. 62.42
    D.M. Gavrila, U. Franke, C. Wöhler, S. Görzig: Real-time vision for intelligent vehicles, IEEE Instr. Meas. Mag. 4(2), 22–27 (2001)CrossRefGoogle Scholar
  43. 62.43
    Japanese advanced safety vehicle project: http://www.mlit.go.jp/road/ITS/pdf/ITSinitiativesJapan.pdf
  44. 62.44
    J.C. McCall, M.M. Trivedi: Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation, IEEE Trans. Intell. Transp. Syst. 7(1), 20–37 (2006)CrossRefGoogle Scholar
  45. 62.45
    N.E. Apostoloff, A. Zelinsky: Robust vision based lane tracking using multiple cues and particle filtering, IEEE Intell. Veh. Symp. (2003) pp. 558–563Google Scholar
  46. 62.46
    Q. Baig, M. Perrollaz, C. Laugier: A robust motion detection technique for dynamic environment monitoring. A framework for grid-based monitoring of the dynamic environment, IEEE Robotics Autom. Mag. 21(1), 40–48 (2014)CrossRefGoogle Scholar
  47. 62.47
    M.R. Blas, M. Agrawal, A. Sundaresan, K. Konolige: Fast color/texture segmentation for outdoor robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008)Google Scholar
  48. 62.48
    D.M. Gavrila, V. Philomin: Real-time object detection for smart vehicles, Proc. 7th IEEE Int. Conf. Comp. Vis., Vol. 1 (1999) pp. 87–93Google Scholar
  49. 62.49
    G. Piccioli, E. De Micheli, P. Parodi, M. Campani: Robust method for road sign detection and recognition, Image Vis. Comput. 14(3), 209–223 (1996)CrossRefGoogle Scholar
  50. 62.50
    C. Bahlmann, Y. Zhu, R. Visvanathan, M. Pellkofer, T. Koehler: A system for traffic sign detection, tracking, and recognition using color, shape, and motion information, IEEE Intell. Veh. Symp. (2005) pp. 255–260Google Scholar
  51. 62.51
    U. Franke, A. Joos: Real-time stereo vision for urban traffic scene understanding, Proc. IEEE Intell. Veh. Symp. (2000) pp. 273–278Google Scholar
  52. 62.52
    Nissan safety vehicle that interacts with infrastructure: http://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/vii.html
  53. 62.53
    N. Hautiere, R. Labayrade, D. Aubert: Estimation of the visibility distance by stereovision: A Generic Approach, IEICE Trans. Inf. Syst. E89-D(7), 2084–2091 (2006)CrossRefGoogle Scholar
  54. 62.54
    A. Petrovskaya, M. Perrollaz, L. Oliveira, L. Spinello, R. Triebel, A. Makris, J.D. Yoder, C. Laugier, U. Nunes, P. Bessiere: Awareness of road scene participants for autonomous driving. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012)Google Scholar
  55. 62.55
    R. Labayrade, D. Aubert, J.P. Tarel: Real time obstacle detection in stereo vision on non flat road geometry through V-disparity representation, Proc. IEEE Intell. Veh. Symp., Vol. 2 (2002) pp. 646–651Google Scholar
  56. 62.56
    Z. Sun, G. Bebis, R. Miller: On-road vehicle detection: A review, IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 694–711 (2006)CrossRefGoogle Scholar
  57. 62.57
    E. Segawa, M. Shiohara, S. Sasaki, N. Hashiguchi, T. Takashima, M. Tohno: Preceding vehicle detection using stereo images and non-scanning millimeter-wave radar, IEICE Trans. Inf. Syst. E89-D(7), 2101–2108 (2006)CrossRefGoogle Scholar
  58. 62.58
    T. Kato, Y. Ninomiya, I. Masaki: An obstacle detection method by fusion of radar and motion stereo, IEEE Trans. Intell. Transp. Syst. 3(3), 182–188 (2002)CrossRefGoogle Scholar
  59. 62.59
    C. Coué, C. Pradalier, C. Laugier, T. Fraichard, P. Bessiere: Bayesian occupancy filtering for multitarget tracking: An automotive application, Int. J. Robotics Res. 25(1), 19–30 (2006)CrossRefGoogle Scholar
  60. 62.60
    M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T. Poggio: Pedestrian detection using wavelet templates, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (1997) pp. 193–199Google Scholar
  61. 62.61
    L. Zhao, C.E. Thorpe: Stereo- and neural network-based pedestrian detection, IEEE Trans. Intell. Transp. Syst. 01(3), 148–154 (2000)CrossRefGoogle Scholar
  62. 62.62
    D. Pomerleau: Ralph: Rapidly adapting lateral position handler, IEEE Symp. Intell. Veh. (1995) pp. 506–511Google Scholar
  63. 62.63
    US DOT: Intelligent vehicle initiative program, http://ntl.bts.gov/lib/jpodocs/repts_pr/14153.htm (2005)
  64. 62.64
  65. 62.65
    L. Matuszyk, A. Zelinsky, L. Nilsson, M. Rilbe: Stereo panoramic vision for monitoring vehicle blind-spots, IEEE Intell. Veh. Symp. (2004) pp. 31–36Google Scholar
  66. 62.66
    Volvo Blind Spot Information System (BLIS): http://www.gizmag.com/go/2937/
  67. 62.67
  68. 62.68
    Radar-vision fusion for pedestrian detection: http://www.mobileye.com/technology/applications/radar-vision-fusion/
  69. 62.69
    Large animal detection and collision avoidance product: http://www.telematics.com/telematics-blog/horse-avoidance-tech-latest-volvo-push/
  70. 62.70
    T.A. Williamson: A High-Performance Stereo Vision System for Obstacle Detection, Tech. Rep., Vol. CMU-RI-TR-98-24 (Carnegie Mellon Univ., Pittsburgh 1998)Google Scholar
  71. 62.71
    E. Li: Millimeter-Wave Polarimetric Radar System as an Advanced Vehicle Control and Warning Sensor, Ph.D. Thesis (Univ. Michigan, Michigan 1998)Google Scholar
  72. 62.72
    J.A. Hancock: Laser Intensity Based Obstacle Detection and Tracking, Ph.D. Thesis (Carnegie Mellon Univ., Pittsburgh 1999)Google Scholar
  73. 62.73
    European Union, 7th Framework Program: Interactive, http://www.interactive-ip.eu
  74. 62.74
    N.M. Oliver, B. Rosario, A.P. Pentland: A Bayesian computer vision system for modeling human interactions, IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)CrossRefGoogle Scholar
  75. 62.75
    D. Vasquez, C. Laugier: Modeling and learning behaviors. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012)Google Scholar
  76. 62.76
    J.C. McCall, M.M. Trivedi: Lane change intent analysis using robust operators and sparse Bayesian learning, IEEE Trans. Intell. Transp. Syst. 8(3), 431–440 (2007)CrossRefGoogle Scholar
  77. 62.77
    D. Meyer-Delius, C. Plagemann, W. Burgard: Probabilistic situation recognition for vehicular traffic scenarios, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 4161–4166Google Scholar
  78. 62.78
    H. Berndt, J. Emmert, K. Dietmayer: Continuous driver intention recognition with hidden Markov models, Proc. IEEE Intell. Transp. Syst. Conf. (2008) pp. 1189–1194Google Scholar
  79. 62.79
    G.S. Aoude, V.R. Desaraju, L.H. Stephens, J.P. How: Behavior classification algorithms at intersections and validation using naturalistic data, IEEE Intell. Veh. Symp. (2011) pp. 601–606Google Scholar
  80. 62.80
    G.S. Aoude, B.D. Luders, D.S. Levine, J.P. How: Threat-aware path planning in uncertain urban environments, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 6058–6063Google Scholar
  81. 62.81
    C. Tay, K. Mekhnacha, C. Laugier: Probabilistic vehicle motion modeling and risk estimation. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012)Google Scholar
  82. 62.82
    M. Althoff, O. Stursberg, M. Buss: Model-based probabilistic collision detection in autonomous driving, IEEE Trans. Intell. Transp. Syst. 10(2), 299–310 (2009)CrossRefGoogle Scholar
  83. 62.83
    S. Lefèvre, C. Laugier, J. Ibañez-Guzmán: Evaluating risk at road intersections by detecting conflicting intentions, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012)Google Scholar
  84. 62.84
    A. Molinero, H. Evdorides, C. Naing, A. Kirk, J. Tecl, J.M. Barrios, M.C. Simon, V. Phan, T. Hermitte: Accident causation and pre-accidental driving situations – In-depth accident causation analysis, Deliverable D2.2 (IST, Brussel 2008)Google Scholar
  85. 62.85
    Intelligent intersections and cooperation – Intersafe 2: http://www.cvisproject.org/
  86. 62.86
    W.D. Jones: Keeping cars from crashing, IEEE Spectrum 38(9), 40–45 (2001)CrossRefGoogle Scholar
  87. 62.87
    P. Venhovens, K. Naab, B. Adiprasito: Stop and go cruise control, Proc. FISTA World Automot. Congr. (2000)Google Scholar
  88. 62.88
    I.E. Paromtchik, C. Laugier: Motion generation and control for parking an autonomous vehicle, Proc. Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1996) pp. 3117–3122CrossRefGoogle Scholar
  89. 62.89
  90. 62.90
    V.R. Vuchic: O-Bahn: Description and evaluation of a new concept, 64th Annual Meet. Transport. Res. Board (Transportation Research Board, Washington DC 1985)Google Scholar
  91. 62.91
    S. Ishida, J.E. Gayko: Development, evaluation and introduction of a lane keeping assistance system, IEEE Intell. Veh. Symp. (2004) pp. 943–944Google Scholar
  92. 62.92
    C. Hatipoglu, Ü. Özgüner, K.A. Redmill: Automated lane change controller design, IEEE Trans. Intell. Transp. Syst. 4(1), 13–22 (2003)CrossRefGoogle Scholar
  93. 62.93
    A. Bartels, M.-M. Meinecke, S. Steinmeyer: Lane change assistance. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012) pp. 729–757CrossRefGoogle Scholar
  94. 62.94
    J. Treat, N. Tumbas, S. McDonald, D. Shinar, R. Hume, R. Mayer, R. Stansifer, N. Castellan: Tri-Level study of the causes of traffic accidents: Final report – Executive summary, Tech. Rep., Vol. DOT-HS-034-3-535-79-TAC(S) (Institute for Research in Public Safety, Bloomington 1979)Google Scholar
  95. 62.95
    K.A. Brookhuis, D. De Waard, W.H. Janssen: Behavioural impacts of advanced driver assistance systems – an overview, Eur. J. Transp. Infrastruct. Res. 1(3), 245–253 (2001)Google Scholar
  96. 62.96
    Q. Ji, Z. Zhu, P. Lan: Real-time nonintrusive monitoring and prediction of driver fatigue, IEEE Trans. Veh. Technol. 53(4), 1052–1068 (2004)CrossRefGoogle Scholar
  97. 62.97
    M. Carmen del Rio, J. Gomez, M. Sancho, F.J. Alvarez: Alcohol, illicit drugs and medicinal drugs in fatally injured drivers in Spain between 1991 and 2000, Forensic Sci. Int. 127(1/2), 63–70 (2002)CrossRefGoogle Scholar
  98. 62.98
    N.L. Haworth, T.J. Triggs, E.M. Grey: Driver Fatigue: Concepts, Measurement and Crash Countermeasures (Human Factors Group, Department of Psychology, Monash University 1988)Google Scholar
  99. 62.99
    N.L. Howarth, C.J. Heffernan, E.J. Horne: Fatigue in truck accidents, Tech. Rep., Vol. 3 (Monash University, Accident Research Centre 1989)Google Scholar
  100. 62.100
    W.W. Wierwille, L.A. Ellsworth: Evaluation of driver drowsiness by trained raters, Accid. Analysis Prev. 26(5), 571–581 (1994)CrossRefGoogle Scholar
  101. 62.101
    J. Stutts, D. Reinfurt, L. Staplin, E. Rodgman: The role of driver distraction in traffic crashes. Tech. Rep (AAA Foundation for Traffic Safety, Washington 2001)Google Scholar
  102. 62.102
    T. Victor: Keeping Eye and Mind on the Road, Ph.D. Thesis (Uppsala Univ., Uppsala 2005)Google Scholar
  103. 62.103
    L. Fletcher, A. Zelinsky: Driver inattention detection based on eye gaze – road event correlation, Int. J. Robotics Res. 28(6), 774–801 (2009)CrossRefGoogle Scholar
  104. 62.104
    L. Fletcher, L. Petersson, A. Zelinsky: Road scene monotony detection in a fatigue management driver assistance system, Proc. IEEE Intell. Veh. Symp. (2005) pp. 484–489Google Scholar
  105. 62.105
    Y. Owechko, N. Srinivasa, S. Medasani, R. Boscolo: Vision-based fusion system for smart airbag applications, IEEE Intell. Veh. Symp., Vol. 1 (2002) pp. 245–250Google Scholar
  106. 62.106
    F.J. Martinez, T. Chai-Keong, J.-C. Cano, C.T. Calafate, P. Manzoni: Emergency services in future intelligent transportation systems based on vehicular communication networks, IEEE Intell. Transp. Syst. Mag. 2(2), 6–20 (2010)CrossRefGoogle Scholar
  107. 62.107
    Emergency response and assistance to accidents product: https://www.splitsecnd.com/
  108. 62.108
    M. Schulze, J. Irion, T. Mäkinen, M. Flament: Accidentology as a basis for requirements and system architecture of preventive safety applications, 10th Int. Forum Adv. Microsyst. Automot. Appl. (AAA) (2006) pp. 407–426Google Scholar
  109. 62.109
    X.Y. Lu, H.S. Tan, S.E. Shladover, J.K. Heidrick: Implementation and comparison of nonlinear longitudinal controllers for car platooning, 5th Int. Symp. Adv. Veh. Control (AVEC) (2000)Google Scholar
  110. 62.110
    Cybercar: Cybercar – Automated Bus Rapid Transit vehicleGoogle Scholar
  111. 62.111
    European Commission: Intelligent Car Initiative, http://www.ertico.com/the-intelligent-car-initiative
  112. 62.112
  113. 62.113
    R. Cervero: Creating a Linear City with a Surface Metro: The Story of Curitiba, Institute of Urban and Regional Development, IURD Working Paper 643 (Univ. California, Berkeley 1995) Google Scholar
  114. 62.114
    H.S. Jacob Taso, J.L. Botha: Definition and Evaluation of Bus and Truck Automation Operations Concepts, Path Rep. UCB-ITS-PRR-2002-08 (Univ. California, Oakland 2002) Google Scholar
  115. 62.115
    Phileas advanced public transport: http://www.apts-phileas.com
  116. 62.116
    J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, C. Stiller: Making Bertha drive: An autonomous journey on a historic route, IEEE Intell. Transp. Syst. Mag. 6(2), 8–20 (2014)CrossRefGoogle Scholar
  117. 62.117
    A. Broggi, P. Cerri, S. Debattisti, M.C. Laghi, P. Medici, M. Panciroli, A. Prioletti: PROUD – Public ROad Urban Driverless test: Architecture and results, Proc. IEEE Intell. Veh. Symp. (2014) pp. 648–654Google Scholar
  118. 62.118
    US Department of Transportation, Research and Innovation Technology Administration, Intelligent Transportation Systems, Joint Program Office (DOT, Washington 2014): http://www.its.dot.gov/
  119. 62.119
    European Union Research on Transportation (European Commission, Brussels 2014) http://ec.europa.eu/research/transport/
  120. 62.120
    Japan Ministry of Land, Infrastructure and Transport: Road Bureau ITS Program, http://www.its.go.jp/ITS/(2007)
  121. 62.121
    EU Transport Research and Innovation Portal: http://www.transport-research.info/web/index.cfm

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alberto Broggi
    • 1
  • Alex Zelinsky
    • 2
  • Ümit Özgüner
    • 3
  • Christian Laugier
    • 4
  1. 1.Department of Information TechnologyUniversity of ParmaParmaItaly
  2. 2.DST Group HeadquartersDepartment of DefenceCanberraAustralia
  3. 3.Department of Electrical and Computer EngineeringOhio State UniversityColumbusUSA
  4. 4.INRIA Grenoble Rhône-AlpesSaint IsmierFrance

Personalised recommendations