Disaster Robotics

  • Robin R. Murphy
  • Satoshi Tadokoro
  • Alexander Kleiner

Abstract

Rescue robots have been used in at least 28 disasters in six countries since the first deployment to the 9/11 World Trade Center collapse. All types of robots have been used (land, sea, and aerial) and for all phases of a disaster (prevention, response, and recovery). This chapter will cover the basic characteristics of disasters and their impact on robotic design, and describe the robots actually used in disasters to date, with a special focus on Fukushima Daiichi, which is providing a rich proving ground for robotics. The chapter covers promising robot designs (e. g., snakes, legged locomotion) and concepts (e. g., robot teams or swarms, sensor networks), as well as progress and open issues in autonomy. The methods of evaluation in benchmarks for rescue robotics are discussed and the chapter concludes with a discussion of the fundamental problems and open issues facing rescue robotics, and their evolution from an interesting idea to widespread adoption.

2-D

two-dimensional

3-D

three-dimensional

AAAI

Association for the Advancement of Artificial Intelligence

AUV

autonomous underwater vehicle

CBRNE

chemical, biological, nuclear, radiological, or explosive

CMU

Carnegie Mellon University

CPU

central processing unit

CRASAR

Center for Robot-Assisted Search and Rescue

DHS

US Department of Homeland Security

GPS

global positioning system

HRI

human–robot interaction

IEEE

Institute of Electrical and Electronics Engineers

JAEA

Japan Atomic Energy Agency

MSHA

US Mine Safety and Health Administration

NASA

National Aeronautics and Space Agency

NERVE

New England Robotics Validation and Experimentation

NIST

National Institute of Standards and Technology

NZDF

New Zealand Defence Force

OOTL

human out of the loop control

RFID

radio frequency identification

ROV

remotely operated vehicle

SLAM

simultaneous localization and mapping

SWRI

Southwest Research Institute

UAV

unmanned aerial vehicle

UGV

unmanned ground vehicle

UMV

unmanned marine vehicle

USAR

urban search and rescue

USV

unmanned surface vehicle

UUV

unmanned underwater vehicle

WTC

World Trade Center

References

  1. 60.1
    A. Davids: Urban search and rescue robots: from tragedy to technology, IEEE Trans. Intell. Syst. 17(2), 81–83 (2002)Google Scholar
  2. 60.2
    A. Davids: Urban search and rescue robots: from tragedy to technology, IEEE Trans. Intell. Syst. 17(2), 1541–1672 (2002)Google Scholar
  3. 60.3
    D. McClean: World Disasters Report 2010. Focus on Urban Risks (IFCR, Geneva 2010)Google Scholar
  4. 60.4
    National Fire Protection Association: Standard on Operations and Training for Technical Rescue Incidents (NFPA, Avon 1999)Google Scholar
  5. 60.5
    United States Fire Administration: Technical Rescue Program Development Manual (USFA, Avon 1996)Google Scholar
  6. 60.6
    R.R. Murphy, A. Kleiner: A community-driver roadmap for the adoption of safety security and rescue robot, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics, Linköping (2013) pp. 1–4Google Scholar
  7. 60.7
    J.A. Barbera, C. DeAtley, A.G. Macintyre, D.H. Parks: Medical aspects of urban search and rescue, Fire Eng. 148, 88–92 (1995)Google Scholar
  8. 60.8
    R. Murphy, D. Riddle, E. Rasmussen: Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots, Proc. IEEE Int. Work. Human Robot Interact. Commun. (HRI) (2004) pp. 301–306Google Scholar
  9. 60.9
    R. Murphy, M. Konyo, P. Davalas, G. Knezek, S. Tadokoro, K. Sawata, M. Van Zomeren: Preliminary observation of HRI in robot-assisted medical response, Proc. 4th ACM/IEEE Int. Conf. Human Robot Interact. (HRI) (2009) pp. 201–202CrossRefGoogle Scholar
  10. 60.10
    R. Murphy, A. Rice, N. Rashidi, Z. Henkel, V. Srinivasan: A multi-disciplinary design process for affective robots: Case study of Survivor Buddy 2.0, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 701–706Google Scholar
  11. 60.11
    A.C. Yoo, G.R. Gilbert, T.J. Broderick: Military robotics combat casualty extraction and care. In: Surgical Robotics. Applications and Visions, ed. by J. Rosen, B. Hannaford, R.M. Satava (Springer, New York 2011) pp. 13–32CrossRefGoogle Scholar
  12. 60.12
    M. Yim, J. Laucharoen: Towards Small Robot Aided Victim Manipulation, J. Intell. Robotic Syst. 64, 119–139 (2011)CrossRefGoogle Scholar
  13. 60.13
    A. Kleiner: Mapping and Exploration for Search and Rescue with Humans and Mobile Robots (University of Freiburg, Freiburg 2008)Google Scholar
  14. 60.14
    R.R. Murphy, S. Stover: Gaps analysis for rescue robots, Proc. ANS Shar. Sol. Emerg. Hazard. Environ. (2006)Google Scholar
  15. 60.15
    C. Schlenoff, E. Messina: A robot ontology for urban search and rescue, ACM Work. Res. Knowl. Represent. Auton. Syst., New York (2005) pp. 27–34Google Scholar
  16. 60.16
    R. Murphy, J. Casper, J. Hyams, M. Micire, B. Minten: Mobility and sensing demands in USAR, Proc. IECON Sess. Rescue Eng., Vol. 1 (2000) pp. 138–142Google Scholar
  17. 60.17
    M. Angermann, M. Frassl, M. Lichtenstern: Mission review of aerial robotic assessment – ammunition explosion Cyprus 2011, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2012) pp. 1–6Google Scholar
  18. 60.18
    S. Kawatsuma, M. Fukushima, T. Okada: Emergency response to Fukushima-Daiichi accident: summary and lessons learned, Ind. Robot 39(5), 428–435 (2012)CrossRefGoogle Scholar
  19. 60.19
    S. Tadokoro, T. Takamori, S. Tsurutani, K. Osuka: On robotic rescue facilities for disastrous earthquakes – from the great Hanshin-Awaji (Kobe) earthquake, J. Robotics Mechatron. 9(1), 46–56 (1997)CrossRefGoogle Scholar
  20. 60.20
    R. Murphy: Human-robot interaction in rescue robotics, IEEE Trans. Syst. Man Cybern. 34(2), 138–153 (2004)CrossRefGoogle Scholar
  21. 60.21
    M.J. Micire: Evolution and field performance of a rescue robot, J. Field Robotics 25(1-2), 17–30 (2008)CrossRefGoogle Scholar
  22. 60.22
    R.R. Murphy: Disaster Robotics (MIT Press, Cambridge 2014)Google Scholar
  23. 60.23
    K. Pratt, R. Murphy, S. Stover, C. Griffin: Conops and autonomy recommendations for vtol small unmanned aerial systems based on Hurricane Katrina operations, J. Field Robotics 26(8), 636–650 (2009)CrossRefGoogle Scholar
  24. 60.24
    R. Murphy, E. Steimle, E. Griffin, C. Cullins, M. Hall, K. Pratt: Cooperative use of unmanned sea surface and micro aerial vehicle at hurricane Wilma, J. Field Robotics 25(3), 164–180 (2008)CrossRefGoogle Scholar
  25. 60.25
    V.G. Ambrosia, S. Wegener, T. Zajkowski, D.V. Sullivan, S. Buechel, F. Enomoto, B. Lobitz, S. Johan, J. Brass, E. Hinkley: The Ikhana unmanned airborne system (UAS) western states fire imaging missions: From concept to reality (2006–2010), Geocarto Int. 26(2), 85–101 (2011)CrossRefGoogle Scholar
  26. 60.26
    R.R. Murphy, E. Steimle, M. Hall, M. Lindemuth, D. Trejo, S. Hurlebas, Z. Medina-Cetina, D. Slocum: Robot-assisted bridge inspection, J. Intell. Robotic Syst. 64(1), 77–95 (2011)CrossRefGoogle Scholar
  27. 60.27
    P. Srivaree-Ratana: Lessons learned from the great Thailand flood 2011: How a UAV helped scientists with emergency response and disaster aversion, Proc. AUVSI Unmanned Syst. North Am. (2012)Google Scholar
  28. 60.28
    R. Murphy, S. Stover, H. Choset: Lessons learned on the uses of unmanned vehicles from the 2004 Florida hurricane season, AUVSI Unmanned Syst. North Am. (2005)Google Scholar
  29. 60.29
    J. Lester, A. Brown, J. Ingham: Christchurch cathedral of the blessed sacrament: Lessons learnt on the Stabilization of a significant heritage building, Proc. Annu. Conf. N. Z. Soc. for Earthq. Eng. (NZSEE) (2012) pp. 1–11Google Scholar
  30. 60.30
    N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, S. Tadokoro: Collaborative mapping of an earthquake-damaged building via ground and aerial robots, J. Field Robotics 29(5), 832–841 (2012)CrossRefGoogle Scholar
  31. 60.31
    R.R. Murphy, K.L. Dreger, S. Newsome, J. Rodocker, B. Slaughter, R. Smith, E. Steimle, T. Kimura, K. Makabe, F. Matsuno, S. Tadokoro, K. Kon: Marine heterogeneous multi-robot systems at the great eastern japan tsunami recovery, J. Field Robotics 29(5), 819–831 (2012)CrossRefGoogle Scholar
  32. 60.32
    F. Ferreira: ICRA Japan Forum: Preliminary report on the disaster and robotics in Japan, IEEE Robotics Autom. Mag. 18(3), 116 (2011)Google Scholar
  33. 60.33
    M. Shibuya: Using micro-rov's in the aftermath of japan's tsunami. Underwater Intervention (2012)Google Scholar
  34. 60.34
    G.-J. Kruijff, V. Tretyakov, T. Linder, F. Pirri, M. Gianni, P. Papadakis, M. Pizzoli, A. Sinha, E. Pianese, S. Corrao, F. Priori, S. Febrini, S. Angeletti: Rescue robots at earthquake-hit Mirandola, Italy: A field report, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2012) pp. 1–8Google Scholar
  35. 60.35
    R. Murphy, S. Stover: Rescue robots for mudslides: A descriptive study of the 2005 La Conchita mudslide response, J. Field Robotics 25(1–2), 3–16 (2008)CrossRefGoogle Scholar
  36. 60.36
    R.R. Murphy: Trial by fire, IEEE Robotics Autom. Mag. 11(3), 50–61 (2004)CrossRefGoogle Scholar
  37. 60.37
    L. Goldwert: Minneapolis honors bridge collapse victims, http://www.cbsnews.com/news/minneapolis-honors-bridge-collapse-victims/ (2007)
  38. 60.38
    FBI: Photo gallery FBI response to minneapolis bridge collapse, http://www2.fbi.gov/page2/august07/bridge1.htm (2007)
  39. 60.39
    K. Pratt, R. Murphy, J. Burke, J. Craighead, C. Griffin, S. Stover: Use of tethered small unmanned aerial system at Berkman Plaza II collapse, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2009) pp. 134–139Google Scholar
  40. 60.40
    S. Tadokoro, R. Murphy, S. Stover, W. Brack, M. Konyo, T. Nishimura, O. Tanimoto: Application of active scope camera to forensic investigation of construction accident, Proc. IEEE Int. Work. Adv. Robotics Its Soc. Impacts (ARSO) (2009) pp. 47–50Google Scholar
  41. 60.41
    K. Ohno, S. Kawatsuma, T. Okada, E. Takeuchi, K. Higashi, S. Tadokoro: Robotic control vehicle for measuring radiation in Fukushima Daiichi nuclear power plant, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2011) pp. 38–43CrossRefGoogle Scholar
  42. 60.42
    ROV World: Raising the Costa Concordia live – ROVworld subsea information (2012)Google Scholar
  43. 60.43
    Hydro International: ROV survey of the Costa Concordia grounding site, http://www.hydro-international.com/news/id5324-ROV_Survey_of_the_Costa_Concordia_Grounding_Site_video.html (2012)
  44. 60.44
    Draganfly: RCMP corporal Doug Green interviewed on CKOM John Gormley Live – Draganflyer X4-ES used in life-saving mission, http://www.draganfly.com/news/2013/05/13/rcmp-corporal-doug-green-interviewed-on-ckom-john-gormley-live-draganflyer-x4-es-used-in-life-saving-mission/ (2013)
  45. 60.45
    T. Linder, V. Tretyakov, S. Blumenthal, P. Molitor, D. Holz, R. Murphy, S. Tadokoro, H. Surmann: Rescue robots at the collapse of the municipal archive of Cologne city: A field report, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2010) pp. 1–6Google Scholar
  46. 60.46
    R.R. Murphy, R. Shoureshi: Emerging Mining Communication and Mine Rescue Technologies (Mine Safety and Health Administration, Arlington 2008)Google Scholar
  47. 60.47
    R.R. Murphy, J. Kravitz, S. Stover, R. Shoureshi: Mobile robots in mine rescue and recovery, IEEE Robotics Autom. Mag. 16(2), 91–103 (2009)CrossRefGoogle Scholar
  48. 60.48
    K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, S. Kawatsuma: Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots, J. Field Robotics 30(1), 44–63 (2013)CrossRefGoogle Scholar
  49. 60.49
    G.M. Kulali, M. Gevher, A.M. Erkmen, I. Erkmen: Intelligent gait synthesizer for serpentine robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1513–1518Google Scholar
  50. 60.50
    A. Wolf, H.B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, H. Choset: A Mobile hyper redundant mechanism for search and rescue tasks, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol. 3 (2003) pp. 2889–2895Google Scholar
  51. 60.51
    D. Campbell, M. Buehler: Stair descent in the simple hexapod “RHex”, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 1380–1385Google Scholar
  52. 60.52
    R.M. Voyles, A.C. Larson: Terminatorbot: A novel robot with dual–use mechanism for locomotion and manipulation, IEEE/ASME Trans. Mechatron. 10(1), 17–25 (2005)CrossRefGoogle Scholar
  53. 60.53
    J. Tanaka, K. Suzumori, M. Takata, T. Kanda, M. Mori: A mobile jack robot for rescue operation, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2005) pp. 99–104Google Scholar
  54. 60.54
    R. Murphy, T. Vestgaarden, H. Huang, S. Saigal: Smart lift/shore agents for adaptive shoring of collapse structures: A feasibility study, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2006)Google Scholar
  55. 60.55
    W.E. Green, P.Y. Oh: A fixed-wing aircraft for hovering in caves, tunnels, and buildings, Proc. Am. Control Conf. (2006) pp. 1–6Google Scholar
  56. 60.56
    V. Kumar, D. Rus, S. Singh: Robot and sensor networks for first responders, IEEE Pervasive Comput. 3(4), 24–33 (2004)CrossRefGoogle Scholar
  57. 60.57
    D. Kurabayashi, H. Tsuchiya, I. Fujiwara, H. Asama, K. Kawabata: Motion algorithm for autonomous rescue agents based on information assistance system, Proc. IEEE Int. Symp. Comput. Intell. Robotics Autom. (2003) pp. 1132–1137Google Scholar
  58. 60.58
    K.W. Sevcik, W.E. Green, P.Y. Oh: Exploring search-and-rescue in near-earth environments for aerial robots, Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2005) pp. 693–698Google Scholar
  59. 60.59
    A. Birk, S. Carpin: Rescue robotics: a crucial milestone on the road to autonomous systems, Adv. Robotics 20(5), 596–605 (2006)CrossRefGoogle Scholar
  60. 60.60
    A. Kleiner, C. Dornhege, R. Kuemmerle, M. Ruhnke, B. Steder, B. Nebel, P. Doherty, M. Wzorek, P. Rudol, G. Conte, S. Durante, D. Lundstrom: RoboCupRescue – Robot league team RescueRobots Freiburg (Germany), Proc. 10th RoboCup 2006 (2006)Google Scholar
  61. 60.61
    J. Pellenz, D. Paulus: Stable mapping using a hyper particle filter, Proc. 13th RoboCup 2006 (2010) pp. 252–263Google Scholar
  62. 60.62
    A. Nuchter, K. Lingemann, J. Hertzberg: Mapping of rescue environments with kurt3d, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2005) pp. 158–163Google Scholar
  63. 60.63
    A. Kleiner, C. Dornhege: Mapping for the support of first responders in critical domains, J. Intell. Robotic Syst. 64(1), 7–31 (2011)CrossRefGoogle Scholar
  64. 60.64
    B. Yamauchi: A frontier-based approach for autonomous exploration, Proc. IEEE Int. Symp. Comput. Intell. Robotics Autom. (1997) pp. 146–151Google Scholar
  65. 60.65
    C. Dornhege, A. Kleiner: A frontier-void-based approach for autonomous exploration in 3d, Adv. Robotics 27(6), 459–468 (2013)CrossRefGoogle Scholar
  66. 60.66
    A. Jacoff, E. Messina, B. Weiss, S. Tadokoro, Y. Nakagawa: Test arenas and performance metrics for urban search and rescue robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2003) pp. 3396–3403Google Scholar
  67. 60.67
    S. Wirth, J. Pellenz: Exploration transform: A stable exploring algorithm for robots in rescue environments, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2007) pp. 1–5Google Scholar
  68. 60.68
    Y. Okada, K. Nagatani, K. Yoshida, S. Tadokoro, T. Yoshida, E. Koyanagi: Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning, J. Field Robotics 28(6), 875–893 (2011)CrossRefGoogle Scholar
  69. 60.69
    E. Magid, T. Tsubouchi, E. Koyanagi, T. Yoshida, S. Tadokoro: Controlled balance losing in random step environment for path planning of a teleoperated crawler-type vehicle, J. Field Robotics 28(6), 932–949 (2011)CrossRefGoogle Scholar
  70. 60.70
    R. Sheh, B. Hengst, C. Sammut: Behavioural cloning for driving robots over rough terrain, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011) pp. 732–737Google Scholar
  71. 60.71
    C. Dornhege, A. Kleiner: Behavior maps for online planning of obstacle negotiation and climbing on rough terrain, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2007) pp. 3005–3011Google Scholar
  72. 60.72
    M. Andriluka, P. Schnitzspan, J. Meyer, S. Kohlbrecher, K. Petersen, O. Von Stryk, S. Roth, B. Schiele: Vision based victim detection from unmanned aerial vehicles, Proc.  IEEE/RSJ Int. Conf. Intell. Robots Syst. (2010) pp. 1740–1747Google Scholar
  73. 60.73
    A. Kleiner, R. Kummerle: Genetic mrf model optimization for real-time victim detection in search and rescue, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2007) pp. 3025–3030Google Scholar
  74. 60.74
    R. Hahn, D. Lang, M. Haselich, D. Paulus: Heat mapping for improved victim detection, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2011) pp. 116–121CrossRefGoogle Scholar
  75. 60.75
    A. Birk, S. Markov, I. Delchev, K. Pathak: Autonomous rescue operations on the iub rugbot, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2006)Google Scholar
  76. 60.76
    R.R. Murphy, J. Burke: The safe human-robot ratio, Human-Robot Interactions in Future Military Operations, ed. by M. Barnes, F. Deutsch (Ashgate, Farnham 2010) pp. 31–49Google Scholar
  77. 60.77
    M. Endsley: Design and evaluation for situation awareness enhancement, Proc. 32nd Annual Meet. Hum. Factors Soc. (1988) pp. 97–101Google Scholar
  78. 60.78
    J.L. Drury, J. Scholtz, H.A. Yanco: Awareness in human-robot interactions, Proc. IEEE Int. Conf. Syst. Man Cybern. (2003) pp. 912–918Google Scholar
  79. 60.79
    J. Casper, R. Murphy: Workflow study on human-robot interaction in usar, Proc. IEEE Int. Conf. Robotics Autom. (2002) pp. 1997–2003Google Scholar
  80. 60.80
    J. Burke, R. Murphy, M. Coovert, D. Riddle: Moonlight in miami: An ethnographic study of human-robot interaction in usar, Hum.-Comput. Interact. 19(1/2), 85–116 (2004)CrossRefGoogle Scholar
  81. 60.81
    R. Murphy, J. Burke, S. Stover: Field Studies of Safety Security Rescue Technologies Through Training and Response Activities, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol. 2 (2004) pp. 1089–1095Google Scholar
  82. 60.82
    N. Sato, F. Matsuno, T. Yamasaki, T. Kamegawa, N. Shiroma, H. Igarashi: Cooperative Task Execution by a Multiple Robot Team and its Operators in Search and Rescue Operations, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol. 2 (2004) pp. 1083–1088Google Scholar
  83. 60.83
    T. Arai, E. Pagello, L. Parker: Editorial: Advances in multi-robot systems, IEEE Trans. Robotics Autom. 18(5), 655–661 (2002)CrossRefGoogle Scholar
  84. 60.84
    D.P. Stormont, A. Bhatt, B. Boldt, S. Skousen, M.D. Berkemeier: Building better swarms through competition: Lessons learned from the AAAI/Robocup rescue robot competition, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2003) pp. 2870–2875Google Scholar
  85. 60.85
    J. Suarez, R. Murphy: A survey of animal foraging for directed, persistent search by rescue robotics, Proc. IEEE Int. Symp. Saf. Secur. Rescue Robotics (2011) pp. 314–320CrossRefGoogle Scholar
  86. 60.86
    A. Ferworn, A. Sadeghian, K. Barnum, H. Rahnama, H. Pham, C. Erickson, D. Ostrom, L. Dell'Agnese: Urban search and rescue with canine augmentation technology, Proc. IEEE/SMC Int. Conf. System Syst. Eng. (2006) pp. 334–338Google Scholar
  87. 60.87
    L. Yihan, S.S. Panwar, S. Burugupalli: A mobile sensor network using autonomously controlled animals, Proc. 1st Int. Conf. Broadband Netw. (BROADNETS) (2004) pp. 742–744CrossRefGoogle Scholar
  88. 60.88
    R. Murphy: Rats, robots, and rescue, IEEE Intell. Syst. 17(5), 7–9 (2002)CrossRefGoogle Scholar
  89. 60.89
    S. Tadokoro, H. Kitano, T. Takahashi, I. Noda, H. Matsubara, A. Hinjoh, T. Koto, I. Takeuchi, H. Takahashi, F. Matsuno, M. Hatayama, J. Nobe, S. Shimada: The robocup-rescue project: A robotic approach to the disaster mitigation problem, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 4089–4094Google Scholar
  90. 60.90
    T. Takahashi, S. Tadokoro: Working with robots in disasters, IEEE Robotics Autom. Mag. 9(3), 34–39 (2002)CrossRefGoogle Scholar
  91. 60.91
    I.R. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, S. Burion: Human-robot teaming for search and rescue, IEEE Pervasive Comput. 4(1), 72–79 (2005)CrossRefGoogle Scholar
  92. 60.92
    H. Kitano, S. Tadokoro: Robocup-rescue: A grand challenge for multi-agent and intelligent systems, AI Magazine 22(1), 39–52 (2001)Google Scholar
  93. 60.93
    J. Scholtz, B. Antonishek, J. Young: A field study of two techniques for situation awareness for robot navigation in urban search and rescue, Proc. IEEE Int. Work. Robot-Hum. Interact. Commun. (2005) pp. 131–136Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Robin R. Murphy
    • 1
  • Satoshi Tadokoro
    • 2
  • Alexander Kleiner
    • 3
  1. 1.Department of Computer Science and EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  3. 3.Department of Computer ScienceLinköping UniversityLinköpingSweden

Personalised recommendations