Robotics in Hazardous Applications

  • James Trevelyan
  • William R. Hamel
  • Sung-Chul Kang

Abstract

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

3-D

three-dimensional

AP

antipersonnel

ASM

advanced servomanipulator

AT

anti-tank mine

AV

anti-vehicle

CB

cluster bomb

CEA

Commissariat à l’Énergie Atomique

D&D

deactivation and decommissioning

EMS

electrical master–slave manipulator

EOD

explosive ordnance disposal

GICHD

Geneva International Centre for Humanitarian Demining

GPS

global positioning system

HD

high definition

HMD

head-mounted display

HSTAMIDS

handheld standoff mine detection system

ICBL

International Campaign to Ban Landmines

IED

improvised explosive device

MACA

Afghanistan Mine Action Center

MEMS

microelectromechanical system

MR

magnetorheological

MSM

master–slave manipulator

NASA

National Aeronautics and Space Agency

ROV

remotely operated vehicle

RRSD

Robotics and Remote Systems Division

SNS

spallation neutron source

TNT

trinitrotoluene

TSEE

teleoperated small emplacement excavator

UAV

unmanned aerial vehicle

UXO

unexploded ordnance

References

  1. 58.1
    S. Kang, C. Cho, J. Lee, D. Ryu, C. Park, K.-C. Shin, M. Kim: ROBHAZ-DT2: Design and integration of passive double tracked mobile manipulator system for explosive ordnance disposal, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2003)Google Scholar
  2. 58.2
    A. Kron, G. Schmidt, B. Petzold, M.I. Zah, P. Hinterseer, E. Steinbach: Disposal of explosive ordnances by use of a bimanual haptic telepresence system, IEEE Int. Conf. Robotics Autom. (2004)Google Scholar
  3. 58.3
    W.R. Hamel, R.L. Cress: Elements of Telerobotics Necessary for Waste Clean Up Automation, IEEE Int. Conf. Robotics Autom. (2001)Google Scholar
  4. 58.4
    J.C. Ralston, D.W. Hainsworth, D.C. Reid, D.L. Anderson, R.J. McPhee: Recent advances in remote coal mining machine sensing, guidance, teleoperation and field robotics, Robotica 19(5), 513–526 (2001)CrossRefGoogle Scholar
  5. 58.5
    GICHD: A Study of Manual Mine Clearance (International Centre for Humanitarian Demining, Geneva 2005)Google Scholar
  6. 58.6
    GICHD: A Study of Mechanical Application in Demining (Generva International Centre for Humanitarian Demining, Geneva 2004)Google Scholar
  7. 58.7
    J.P. Trevelyan, S. Tilli, B. Parks, H.C. Teng: Farming minefields: Economics of remediating land with moderate landmine and UXO concentrations, Demining Technol. Inform. Forum J. 1(3), (2002)Google Scholar
  8. 58.8
    C.G. Bruschini, B. Gross: A survey on sensor technology for landmine detection, J. Mine Action 2(1), (1998)Google Scholar
  9. 58.9
    A. Göth, I.G. McLean, J.P. Trevelyan: How do dogs detect landmines? A summary of research results. In: Mine Detection Dogs: Training, Operations and Odour Detection, ed. by I.G. McLean (Geneva International Centre for Humanitarian Demining, Geneva 2003)Google Scholar
  10. 58.10
    S. Havlik: A modular concept of the robotic vehicle for demining operations, Autonom. Robots 18(3), 253–262 (2005)CrossRefGoogle Scholar
  11. 58.11
    J.P. Wetzel: Robotic applications in humanitarian demining, Proc. 9th Bienn. Conf. Eng. Constr. Oper. Chall. Environ. Earth Sp. (2004)Google Scholar
  12. 58.12
    R. Bogue: Detecting mines and IEDs: What are the prospects for robots?, Ind. Robot 38(5), 456–460 (2011)MathSciNetCrossRefGoogle Scholar
  13. 58.13
    J.P. Trevelyan: A suspended device for humanitarian demining, EUREL Int. Conf. Detect. Abandoned Land Mines Humanit. Imperative Seek. Tech. Solut. (1996)Google Scholar
  14. 58.14
    J. Trevelyan: Robots: A premature solution for the land mine problem, Proc. 8th Int. Symp. Robotics Res. (1998)Google Scholar
  15. 58.15
    J.-D. Nicoud: Vehicles and robots for humanitarian demining, Ind. Robot 24(2), 164–168 (1997)CrossRefGoogle Scholar
  16. 58.16
    J.P. Trevelyan: Landmine research: Technology solutions looking for problems, Proc. SPIE Detect. Remediat. Technol. Mines Minelike Targets IX (2004)Google Scholar
  17. 58.17
    H.M. Choset, E.U. Acar, A.A. Rizzi, J.E. Luntz: Sensor-based planning: exact cellular decompositions in terms of critical points, Proc. SPIE Mobile Robots XV Telemanip. Telepresence Technol. VII (2000)Google Scholar
  18. 58.18
    Y. Zhang, M. Schervish, E.U. Acar, H. Choset: Probabilistic methods for robotic landmine search, Proc. RSJ/IEEE Int. Conf. Intell. Robots Syst. (2001)Google Scholar
  19. 58.19
    S. Singh, S. Thayer: Inspired by immunity, Nature 415, 468–470 (2002)CrossRefGoogle Scholar
  20. 58.20
    S. Sathyanath, F. Sahin: Application of artificial immune system based intelligent multi agent model to a mine detection problem, IEEE Int. Conf. Syst. Man Cybern. (2002)Google Scholar
  21. 58.21
    D. Goldberg, M.J. Mataric: Maximizing reward in a non-stationary mobile robot environment, Autonom. Agents Multi-Agent Syst. 6(3), 287–316 (2003)CrossRefGoogle Scholar
  22. 58.22
    R.A. Russell: Locating underground chemical sources by tracking chemical gradients in 3 dimensions, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004)Google Scholar
  23. 58.23
    D.C. Conner, P.R. Kedrowski, C.F. Reinholtz, J.S. Bay: Improved dead reckoning using caster wheel sensing on a differentially steered three-wheeled autonomous vehicle, Proc. SPIE Mobile Robots XV Telemanip. Telepresence Technol. VII (2000)Google Scholar
  24. 58.24
    S.-D. Kim, C.-H. Lee, S.-J. Yoon, H.-K. Jeong, S.-C. Kang, M.-S. Kim, Y.-K. Kwak: Variable configuration tracked mobile robot for demining operations, ASME Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. (2004)Google Scholar
  25. 58.25
    K. Nonami, R. Yuasa, D. Waterman, S. Amano, H. Ono: Preliminary design and feasibility study of a 6-degree of freedom robot for excavation of unexploded landmine, Autonom. Robots 18(3), 293–301 (2005)CrossRefGoogle Scholar
  26. 58.26
    Y.-J. Lee, S. Hirose: Three-legged walking for fault-tolerant locomotion of demining quadruped robots, Adv. Robotics 16(5), 415–426 (2002)CrossRefGoogle Scholar
  27. 58.27
    T. Wojtara, K. Nonami, H. Shao, R. Yuasa, S. Amano, D. Waterman, Y. Nobumoto: Hydraulic master-slave land mine clearance robot hand controlled by pulse modulation, Mechatronics 15(5), 589–609 (2005)CrossRefGoogle Scholar
  28. 58.28
    N. Furihata, S. Hirose: Development of mine hands: Extended prodder for protected demining operation, Autonom. Robots 18(3), 337–350 (2005)CrossRefGoogle Scholar
  29. 58.29
    P. Debenest, E.F. Fukushima, Y. Tojo, S. Hirose: A new approach to humanitarian demining: Part 2: Development and analysis of pantographic manipulator, Autonom. Robots 18(3), 323–336 (2005)CrossRefGoogle Scholar
  30. 58.30
    H. Yabushita, M. Kanehama, Y. Hirata, K. Kosuge: 3-D ground adaptive synthetic aperture radar for landmine detection, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005)Google Scholar
  31. 58.31
    A.A. Faust, R.H. Chesney, Y. Das, J.E. McFee, K.L. Russel: Canadian teleoperated landmine detection systems. Part I: The improved landmine detection project, Int. J. Syst. Sci. 36(9), 511–528 (2005)CrossRefMATHGoogle Scholar
  32. 58.32
    A.A. Faust, R.H. Chesney, Y. Das, J.E. McFee, K.L. Russel: Canadian teleoperated landmine detection systems. Part II: Antipersonnel landmine detection, Int. J. Syst. Sci. 36(9), 529–543 (2005)CrossRefMATHGoogle Scholar
  33. 58.33
    K.N. Zachery, G.M. Schultz, L.M. Collins: Force protection demining system (FPDS) detection subsystem, Proc. SPIE Detect. Remediat. Technol. Mines Minelike Targets X (2005)Google Scholar
  34. 58.34
    J. Coronado-Vergara, G. Avina-Cervantes, M. Devy, C. Parra: Towards landmine detection using artificial vision, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2005)Google Scholar
  35. 58.35
    J.P. Trevelyan: Demining Research at the University of Western Australia, http://www.mech.uwa.edu.au/jpt/demining (Univ. Western Australia, Perth 2000)
  36. 58.36
    S. Rajasekharan, C. Kambhampati: The current opinion on the use of robots for landmine detection, IEEE Int. Conf. Robotics Autom. (2003)Google Scholar
  37. 58.37
    J.P. Trevelyan: Reducing Accidents in Demining: Achievements in Afghanistan, J. Mine Action 1, 10–17 (2000)Google Scholar
  38. 58.38
    T. Lardner (Ed.): A Study of Manual Mine Clearance: Part 4 – Risk Assessment and Risk Management (Geneva International Centre for Humanitarian Demining, Geneva 2005)Google Scholar
  39. 58.39
    P. Newnham, D. Daniels: The market for advanced humanitarian mine detectors, Proc. SPIE Detect. Remediat. Technol. Mines Minelike Targets VI (2001)Google Scholar
  40. 58.40
    J. Vertut, P. Coiffet: Teleoperation and robotics, evolution and development, Robot Technol. 3A, 302–307 (1985)Google Scholar
  41. 58.41
    L.I. Slutski: Remote Manipulation Systems: Quality Evaluation and Improvement (Kluwer, Dordrecht 1998)CrossRefGoogle Scholar
  42. 58.42
    K.F. Kraiss: Advanced Man–Machine Interaction: Fundamentals and Implementation (Springer, Berlin, Heidelberg 2006)CrossRefGoogle Scholar
  43. 58.43
    E.G. Johnsen, W.R. Corliss: Human Factors Applications in Teleoperator Design and Operation (Wiley, New York 1971)Google Scholar
  44. 58.44
    T.B. Sheridan: Telerobotics, Automation, and Human Supervisory Control, Technology and Industrial Arts (MIT Press, Cambridge 1992) p. 432Google Scholar
  45. 58.45
    W.R. Hamel: Sensor-based planning and control in telerobotics. In: Control in Robotics and Automation, Sensor-Based Integration, ed. by B.K. Ghosh, N. Xi, T.J. Tarn (Academic, New York 1999) pp. 285–309CrossRefGoogle Scholar
  46. 58.46
    J.V. Draper: Effects of force reflection on servomanipulator performance, Int. Top. Meet. Robotics Remote Handl. Hostile Environ. (1987)Google Scholar
  47. 58.47
    R. Goertz: Manipulator system development at ANL, 12th Conf. Remote Syst. Technol. (1962)Google Scholar
  48. 58.48
    R. Goertz: Some work on manipulator systems at ANL, past, present and a look at the future, Sem. Remot. Oper. Spec. Equip. (1964)Google Scholar
  49. 58.49
    D.P. Kuban, H.L. Martin: An advanced remotely maintainable servomanipulator concept, Natl. Top. Meet. Robotics Remote Handl. Hostile Environ. (1984)Google Scholar
  50. 58.50
    D. Sands: Cost effective robotics in the nuclear industry, Ind. Robot 33(3), 170–173 (2006)CrossRefGoogle Scholar
  51. 58.51
    S. Sanders: Remote operations for fusion using teleoperation, Ind. Robot 33(3), 174–177 (2006)MathSciNetCrossRefGoogle Scholar
  52. 58.52
    B.L. Luk, K.P. Liu, A.A. Collie, D.S. Cooke, S. Chen: Teleoperated climbing and mobile service robots for remote inspection and maintenance in nuclear industry, Ind. Robot 33(3), 194–204 (2006)CrossRefGoogle Scholar
  53. 58.53
    P. Desbats, F. Geffard, G. Piolain, A. Coudray: Force-feedback teleoperation of an industrial robot in a nuclear spent fuel reprocessing plant, Ind. Robot 33(3), 178–186 (2006)CrossRefGoogle Scholar
  54. 58.54
    B. De Jong, E. Faulring, J.E. Colgate, M. Peshkin, H. Kang, Y.S. Park, T. Ewing: Lessons learned from a novel teleoperation testbed, Ind. Robot 33(3), 187–193 (2006)CrossRefGoogle Scholar
  55. 58.55
    M. Rennich, E. Bradley, T. Burgess, V. Graves: Spallation neutron source remote handling implementation, 1st Jt. Emerg. Prep. Response/Robotics Remote Syst. Top. Meet. (2006)Google Scholar
  56. 58.56
    S. Kawatsuma, M. Fukushima, T. Okada: Emergency response by robots to Fukushima-Daiichi accident: Summary and lessons learned, Ind. Robot 39(5), 428–435 (2012)CrossRefGoogle Scholar
  57. 58.57
    S. Hirose, H. Kuwahara, Y. Wakabayashi, N. Yoshioka: The Mobility Design Concepts/Characteristics and Ground Testing of an Offset-Wheel Rover Vehicle, Int. Conf. Mobile Planet. Robots Rover Roundup (1997)Google Scholar
  58. 58.58
    T. Kagiwada: Robot design for stair navigation, Jpn. Soc. Mech. Eng. Int. J. C 39(3), 629–635 (1996)Google Scholar
  59. 58.59
    R. Volpe, R. Ohm, R. Petras, J. Welch, J. Blaram, R. Ivlev: A prototype manipulation system for Mars rover, IEEE/RSJ Int. Conf. Intell. Robots Syst. (1997)Google Scholar
  60. 58.60
    R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet: Innovative design for wheeled locomotion in rough terrain, Robot. Autonom. Syst. 40, 151–162 (2002)CrossRefGoogle Scholar
  61. 58.61
    K. Yoneda, Y. Ota, S. Hirose: Development of a hi-grip stair climbing crawler with hysteresis compliant blocks, 4th Int. Conf. Climbing Walk. Robots (CLAWAR) (2001)Google Scholar
  62. 58.62
    S. Hirose, T. Sensu, S. Aoki: The TAQT carrier: A practical terrain-adaptive quadru-track carrier robot, IEEE/RSJ Int. Conf. Intell. Robots Syst. (1992)Google Scholar
  63. 58.63
    H. Schempf, E. Mutschler, C. Piepgras, J. Warwick, B. Chemel, S. Boehmke, W. Crowley, R. Fuchs, J. Guyot: Pandora: Autonomous Urban Robotic Reconnaissance System, IEEE Int. Conf. Robotics Autom. (1999)Google Scholar
  64. 58.64
    J.B. Coughlan: Small All Terrain Mobile Robot (Remo Tec, Clinton 1991)Google Scholar
  65. 58.65
    T. Takayama, S. Hirose: Development of Souryu-I connected crawler vehicle for inspection of narrow and winding space, 26th Annu. Conf. IEEE Ind. Electron. Soc. (2000)Google Scholar
  66. 58.66
    C.H. Cho, W.S. Lee, S. Kang, M.S. Kim, J.B. Song: Rough-terrain negotiable mobile platform with passively adaptive double-tracks and its application to rescue missions, Adv. Robotics 19(4), 459–475 (2005)CrossRefGoogle Scholar
  67. 58.67
    K. Kato, S. Hirose: Development of the quadruped walking robot, TITAN-IX-mechanical design concept and application for the humanitarian de-mining robot, Adv. Robotics 15(2), 191–204 (2001)CrossRefGoogle Scholar
  68. 58.68
  69. 58.69
    E. Cheung, V.J. Lumelsky: Proximity sensing in robot manipulator motion planning: System and implementation issues, IEEE Trans. Robot. Autom. 5, 740–751 (1989)CrossRefGoogle Scholar
  70. 58.70
    B.R. Shetty, M.H. Ang Jr.: Active compliance control of a PUMA 560 robot, IEEE Int. Conf. Robotics Autom. (1996)Google Scholar
  71. 58.71
    B.-S. Kim, S.-K. Yun, S. Kang, C.-S. Hwang, M.-S. Kim, J.-B. Song: Development of a joint torque sensor fully integrated with an actuator, Int. Conf. Control Autom. Syst. (2005)Google Scholar
  72. 58.72
    M. Uebel, M.S. Ali, I. Minis: The Effect of Bandwidth on Telerobot System Performance (Goddard Spaceflight Center, Greenbelt 1991)Google Scholar
  73. 58.73
    G. Niemeyer: Telemanipulation with time delays, Int. J. Robotics Res. 23(9), 873–890 (2004)CrossRefGoogle Scholar
  74. 58.74
    D. Ryu, S. Kang, M. Kim, J.-B. Song: Multi-modal user interface for teleoperation of ROBHAZ-DT2 field robot system, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004)Google Scholar
  75. 58.75
    A.K. Skula, A.S. Arico, V. Antonucci: An appraisal of electric automobile power sources, Renew. Sustain. Energy Rev. 5, 137–155 (2001)CrossRefGoogle Scholar
  76. 58.76
    K.W. Ong, G. Seet, S.K. Sim: Sharing and trading in a human-robot system. In: Cutting Edge Robotics, ed. by V. Kordic, A. Lazinica, M. Merdan (pro literatur, Augsburg 2005) pp. 467–496Google Scholar
  77. 58.77
    J. Trevelyan: Redefining robotics for the new millennium, Int. J. Robotics Res. 18(12), 1211–1223 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • James Trevelyan
    • 1
  • William R. Hamel
    • 2
  • Sung-Chul Kang
    • 3
  1. 1.School of Mechanical and Chemical EngineeringThe University of Western AustraliaCrawleyAustralia
  2. 2.Mechanical, Aerospace, and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Center for BionicsKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations