Robotics in Construction

  • Kamel S. SaidiEmail author
  • Thomas Bock
  • Christos Georgoulas
Part of the Springer Handbooks book series (SHB)


This chapter introduces various construction automation concepts that have been developed over the past few decades and presents examples of construction robots that are in current use (as of 2006) and/or in various stages of research and development. Section 57.1 presents an overview of the construction industry, which includes descriptions of the industry, the types of construction, and the typical construction project. The industry overview also discusses the concept of automation versus robotics in construction and breaks down the concept of robotics in construction into several levels of autonomy as well as other categories. Section 57.2 discusses some of the offsite applications of robotics in construction (such as for prefabrication), while Sect. 57.3 discusses the use of robots that perform a single task at the construction site. Section 57.4 introduces the concept of an integrated robotized construction site in which multiple robots/machines collaborate to build an entire structure. Section 57.5 discusses unsolved technical problems in construction robotics, which include interoperability, connection systems, tolerances, and power and communications. Finally, Sect. 57.6 discusses future directions in construction robotics and Sect. 57.7 gives some conclusions and suggests resources for further reading.


Construction Industry Construction Project Construction Site Material Handling Building Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





automatic constructions building system


advanced technology for large structural systems


computer-aided design


computer-aided manufacturing


computer integrated construction


computer numerical control


enterprise resource planning


European Union


gross domestic product


global positioning system


gross value added


industrialized, integrated, intelligent, construction


information and communication technology


magazining, cleaning, plotting


programmable construction machine


robot construction system for computer integrated construction


robot oriented design


solid material assembly system


  1. 57.1
    E. Ginzberg: The mechanization of work, Sci. Am. 247(3), 66–75 (1982)CrossRefGoogle Scholar
  2. 57.2
    US Census Bureau: Value of Construction Put in Place – Seasonally Adjusted Annual Rate (U.S. Census Bureau, Washington DC 2012),
  3. 57.3
    Bureau of Labor Statistics: Industries at a Glance: Construction: NAICS 23 (US Department of Labor, Washington DC 2012), http://www.bls. gov/iag/tgs/iag23.htm
  4. 57.4
    US Census Bureau: Statistics of U.S. Businesses (U.S. Census Bureau, Washington DC 2012),
  5. 57.5
    European Commission: Eurostat Regional Yearbook 2012 (Publications Office of the European Union, Luxembourg 2012),
  6. 57.6
    Statistics Bureau, Ministry of Internal Affairs and Communications: Statistical Handbook of Japan (Statistics Bureau, Tokyo 2012),
  7. 57.7
    National Bureau of Statistics of China: The Results of Preliminary Verified GDP for the First Three Quarters in 2012 (National Bureau of Statistics of China, Beijing 2012)
  8. 57.8
    National Bureau of Statistics of China: China Statistical Yearbook (China Statistics Press, Beijing 2012),
  9. 57.9
    D. Crosthwaite: The global construction market: A cross-sectional analysis, Constr. Manag. Econ. 18(5), 619–627 (2000)CrossRefGoogle Scholar
  10. 57.10
    D.W. Halpin, R.W. Woodhead: Construction Management, 2nd edn. (Wiley, New York 1998)Google Scholar
  11. 57.11
    K.S. Saidi: Possible Applications of Handheld Computers to Quantity Surveying, Dissertation (Univ. Texas, Austin 2002)Google Scholar
  12. 57.12
    T. Greaves, B. Jenkins: Capturing Existing Conditions with Terrestrial Laser Scanning: A Report on Opportunities, Challenges and Best Practices for Owners, Operators, Engineering/Construction Contractors and Surveyors of Built Assets and Civil Infrastructure (Spar Point Research, Danvers 2004)Google Scholar
  13. 57.13
    J.G. Everett, A.H. Slocum: Automation and robotics opportunities – Construction versus manufacturing, J. Constr. Eng. Manag. ASCE 120(2), 443–451 (1994)CrossRefGoogle Scholar
  14. 57.14
    L.A. Demsetz: Task identification for construction automation, 6th Int. Symp. Autom. Robotics Constr. (1989) pp. 95–102Google Scholar
  15. 57.15
    R. Kangari, D.W. Halpin: Potential robotics utilization in construction, J. Constr. Eng. Manag. 115(1), 126–143 (1989)CrossRefGoogle Scholar
  16. 57.16
    R.L. Tucker: High payoff areas for automation applications, 6th Int. Symp. Autom. Robotics Constr. (1988) pp. 9–16Google Scholar
  17. 57.17
    L. Cousineau, N. Miura: Construction Robots: The Search for New Building Technology in Japan (ASCE, Reston 1998)Google Scholar
  18. 57.18
    J.G. Everett, H. Saito: Construction automation: Demands and satisfiers in the United States and Japan, J. Constr. Eng. Manag. ASCE 122(2), 147–151 (1996)CrossRefGoogle Scholar
  19. 57.19
    M. Taylor, S. Wamuziri, I. Smith: Automated construction in Japan, Proc. ICE Civil Eng. 156(1), 34–41 (2003)Google Scholar
  20. 57.20
    J. Maeda: Current research and development and approach to future automated construction in Japan, Proc. Constr. Res. Congr. (2005) p. 2403Google Scholar
  21. 57.21
    C. Balaguer, M. Abderrahim, J.M. Navarro, S. Boudjabeur, P. Aromaa, K. Kahkonen, S. Slavenburg, D. Seward, T. Bock, R. Wing, B. Atkin: FutureHome: An integrated construction automation approach, IEEE Robotics Autom. Mag. 9(1), 55–66 (2002)CrossRefGoogle Scholar
  22. 57.22
    Y. Maruyama, Y. Iwase, K. Koga, J. Yagi, H. Takada, N. Sunaga, S. Nishigaki, T. Ito, K. Tamaki: Development of virtual and real-field construction management systems in innovative, intelligent field factory, Autom. Constr. 9(5/6), 503–514 (2000)CrossRefGoogle Scholar
  23. 57.23
    C. Balaguer: Soft robotics concept in construction industry, World Autom. Congr. (2004) pp. 517–522Google Scholar
  24. 57.24
    K.A. Reed: The role of the CIMSteel integration standards in automating the erection and surveying of structural steelwork, 19th Int. Symp. Autom. Robotics Constr. SP989 (NIST, Gaithersburg 2002)Google Scholar
  25. 57.25
    N.J. Shih: The application of a 3-D scanner in the representation of building construction site, ISARC 2002: 19th Int. Symp. Autom. Robotics Constr. (2002) pp. 337–342Google Scholar
  26. 57.26
    B. Akinci, F. Boukamp, C. Gordon, D. Huber, C. Lyons, K. Park: A formalism for utilization of sensor systems and integrated project models for active construction quality control, Autom. Constr. 15(2), 124–138 (2006)CrossRefGoogle Scholar
  27. 57.27
    G.S. Cheok, W.C. Stone: Non-intrusive scanning technology for construction assessment, IAARC/IFAC/IEEE. Int. Symp. (1999) pp. 645–650Google Scholar
  28. 57.28
    K. McKinney, M. Fischer: Generating, evaluating and visualizing construction schedules with CAD tools, Autom. Constr. 7(6), 433–447 (1998)CrossRefGoogle Scholar
  29. 57.29
    B. Akinci, M. Fischer, J. Kunz: Automated generation of work spaces required by construction activities, J. Constr. Eng. Manag. ASCE 128(4), 306–315 (2002)CrossRefGoogle Scholar
  30. 57.30
    V. Kamat, R. Lipman: Evaluation of standard product models for supporting automated erection of structural steelwork, Autom. Constr. 16(2), 232–241 (2006)CrossRefGoogle Scholar
  31. 57.31
    C.M. Eastman: Building Product Models (CRC, Boca Raton 1999)Google Scholar
  32. 57.32
    T. Bock, A. Malone: The Integrated Project ManuBuild of the EU, ISARC 2006 23rd Int. Symp. Autom. Robotics Constr. (2006) pp. 361–364Google Scholar
  33. 57.33
    G. Aouad, J. Kirkham, P. Brandon, F. Brown, G. Cooper, S. Ford, R. Oxman, M. Sarshar, B. Young: Information modeling in the construction industry – The information engineering approach, Constr. Manag. Econ. 11(5), 384–397 (1993)CrossRefGoogle Scholar
  34. 57.34
    G. Beer: Tunconstruct: A new european initiative, T&T Int. FEV (2006) pp. 21–23Google Scholar
  35. 57.35
    H.M. Huang: Autonomy Levels for Unmanned Systems (ALFUS) Framework Volume I: Terminology Version 2.0, NIST Special Publication 1011-I-2.0 (NIST, Gaithersburg 2008), CrossRefGoogle Scholar
  36. 57.36
    Y.F. Ho, H. Masuda, H. Oda, L.W. Stark: Distributed control for tele-operations, IEEE/ASME Trans. Mechatron. 5(2), 100–109 (2000)CrossRefGoogle Scholar
  37. 57.37
    S. Singh: State of the art in automation of earthmoving, ASCE J. Aerosp. Eng. 10(4), 179–188 (2002)CrossRefGoogle Scholar
  38. 57.38
    H. Quang, M. Santos, N. Quang, D. Rye, H. Durrant-Whyte: Robotic excavation in construction automation, IEEE Robotics Autom. Mag. 9(1), 20–28 (2002)CrossRefGoogle Scholar
  39. 57.39
    J. Albus, R. Bostelman, N. Dagalakis: The NIST RoboCrane, J. Robotic Syst. 10(5), 709–724 (1993)CrossRefGoogle Scholar
  40. 57.40
    K.S. Saidi, A.M. Lytle, W.C. Stone, N.A. Scott: Developments toward automated construction, NIST Interagency Rep. 7264 (NIST, Gaithersburg 2005)Google Scholar
  41. 57.41
    S.C. Kang, E. Miranda: Physics based model for simulating the dynamics of tower cranes, 10th Int. Conf. Comput. Civil Build. Eng. (ICCCBE) (2004)Google Scholar
  42. 57.42
    Weckenmann LLC: Machinery and plant systems for the production of precast concrete elements,
  43. 57.43
    M. Damlund, S. Goth, P. Hasle, K. Munk: Low back pain and early retirement among Danish semi-skilled construction workers, Scand. J. Work, Environ. Health 8(1982), 100–104 (1982)Google Scholar
  44. 57.44
    S. Schneider, P. Susi: Ergonomics and construction: A review of potential hazards in new construction, Am. Ind. Hyg. Assoc. J. 55, 635–649 (1994)CrossRefGoogle Scholar
  45. 57.45
    T. Bock: Robot Oriented Design (Shokokusha Publishing, Tokyo 1988)Google Scholar
  46. 57.46
    T. Bock: A study on Robot-Oriented Construction and Building System, Thesis for Doctorate of Engineering, Report Number 108066 (University of Tokyo, Tokyo 1989)Google Scholar
  47. 57.47
    T. Bock, T. Linner: Robot-Oriented Design and Management (Cambridge Univ. Press, Cambridge 2014)Google Scholar
  48. 57.48
    T. Bock: The Japanese approach of SMAS-solid material assembly system and the European approach of ROCCO-robotic assembly system for computer integrated construction, EC-Japan Conf. (Reading University, Reading 1995)Google Scholar
  49. 57.49
    G. Wickström, T. Niskanen, H. Riihimäki: Strain on the back in concrete reinforcement work, Br. J. Ind. Med. 42(4), 233–239 (1985)Google Scholar
  50. 57.50
    H. Benckert: Mechydronic for boom control on truck-mounted concrete pumps, Tech. Symp. Constr. Equip. Technol. 2003 (2003)Google Scholar
  51. 57.51
    F. Gebhart, G. Mayer, F. Ott, A. Barren, B. Heid, W. Schencking, E. Andres Puente, T. Bock, A. Delchambre: Final report of the ROCCO project, ESPRIT III program of the European Union (1998)Google Scholar
  52. 57.52
    T. Bock: Plenary paper: State of the art of automation and robotics in construction in Germany ROCCO: Robotic assembly system for computer integrated construction, 13th ISARC, Int. Conf. Autom. Robotics Constr., Tokio (1996)Google Scholar
  53. 57.53
    F. Peyret: The Achievements of the computer integrated road construction project, 17th IAARC/CIB/ IEEE/IFAC/IFR Int. Symp. Autom. Robotics Constr. (ISARC) (2000)Google Scholar
  54. 57.54
    Commonwealth Scientific, Industrial Research Organisation: Mining Robotics Project (CSIRO, Clayton South 2006),
  55. 57.55
    D.A. Bradley, D.W. Seward: The development, control and operation of an autonomous robotic excavator, J. Intell. Robotic Syst. 21(1), 73–97 (1998)CrossRefGoogle Scholar
  56. 57.56
    P. Coal, C. Hughes: Project C8001: Introduction of Autonomous Haul Trucks. Final Report (Australian Coal Research, Brisbane 1997)Google Scholar
  57. 57.57
    C. Haas, K. Saidi, Y. Cho, W. Fagerlund, H. Kim, Y. Kim: Implementation of an Automated Road Maintenance Machine (ARMM), Center for Transportation Research, Project Summary Report (NIST Interagency Rep., 7264 2005)Google Scholar
  58. 57.58
    D.A. Bennett, X. Feng, S.A. Velinsky: AHMCT automated crack sealing program and the operator controlled crack sealing machine, Transp. Res. Board Annu. Meet. (2003)Google Scholar
  59. 57.59
    A.M. Lytle, K.S. Saidi: NIST research in autonomous construction, Auton. Robots 22(3), 211–221 (2007)CrossRefGoogle Scholar
  60. 57.60
    T. Linner: Automated and Robotic Construction: Integrated Automated Construction Sites, Dissertation (Universität München, München 2013)Google Scholar
  61. 57.61
    T. Bock, T. Linner: Logistics, Site Automation and Robotics: Automated/Robotic On-site Factories (Cambridge Univ. Press, Cambridge 2014)Google Scholar
  62. 57.62
    M.P. Gallaher, R.E. Chapman: Cost Analysis of Inadequate Interoperability in the US Capital Facilities Industry (National Institute of Standards and Technology, Gaithersburg 2004), US Dept. of Commerce, Technology AdministrationCrossRefGoogle Scholar
  63. 57.63
    K.B. Lee, M.E. Reichardt: Open standards for homeland security sensor networks, Instrum. Meas. Mag. IEEE 8(5), 14–21 (2005)CrossRefGoogle Scholar
  64. 57.64
    E.F. Begley, M.E. Palmer, K.A. Reed: Semantic Mapping Between IAI ifcXML and FIATECH AEX Models for Centrifugal Pumps (National Institute of Standards and Technology, Gaithersburg 2005)CrossRefGoogle Scholar
  65. 57.65
    R. Fleischman, B.V. Viscomi, L.W. Lu: Development, analysis and experimentation of ATLSS connections for automated construction, Proc. 1st World Conf. Steel Struct. (1992)Google Scholar
  66. 57.66
    S. Garrido, M. Abderrahim, A. Gimenez, C. Balaguer: Anti-swinging input shaping control of an automatic construction crane, IEEE Trans. Autom. Sci. Eng. 5(3), 549–557 (2007)CrossRefGoogle Scholar
  67. 57.67
    T. Bock: Montage und Demontage im Holzbau mittels Schnellverschlüssen, BMBF Projektnummer: 0339835/5Google Scholar
  68. 57.68
    J.K. Latta: Inaccuracies in Construction, Canadian Building Digest 171 (Institute for Construction, National Research Council Canada, Ottawa 1975), Google Scholar
  69. 57.69
    A.M. Lytle, K.S. Saidi (Eds.): Proceedings of the 23rd ISARC (International Association for Automation and Robotics in Construction, Tokyo 2006)Google Scholar
  70. 57.70
    A.M. Lytle, K.S. Saidi (Eds.): Automated Steel Construction Workshop 2002 (National Institute of Standards and Technology, Gaithersburg 2004)Google Scholar
  71. 57.71
    Y. Miyatake: SMART system: A full-scale implementation of computer integrated construction, 10th Int. Symp. Autom. Robotics Constr. (1993)Google Scholar
  72. 57.72
    C. Lindfors, P. Chang, W. Stone: Survey of construction metrology options for AEC industry, J. Aerosp. Eng. 12, 58 (1999)CrossRefGoogle Scholar
  73. 57.73
    S. Kang, D. Tesar: A novel 6-DoF measurement tool with indoor GPS for metrology and calibration of modular reconfigurable robots, IEEE ICM Int. Conf. Mechatron., Istanbul (2004)Google Scholar
  74. 57.74
    L.E. Bernold, L. Venkatesan, S. Suvarna: Equipment mounted multi-sensory system to locate pipes, Pipelines 130, 112 (2004)Google Scholar
  75. 57.75
    D.A. Willett, K.C. Mahboub, B. Rister: Accuracy of ground-penetrating radar for pavement-layer thickness analysis, J. Transp. Eng. 132, 96–103 (2006)CrossRefGoogle Scholar
  76. 57.76
    C.L. Barnes, J.F. Trottier: Effectiveness of ground penetrating radar in predicting deck repair quantities, J. Infrastruct. Syst. 10, 69 (2004)CrossRefGoogle Scholar
  77. 57.77
    J.A. Huisman, S.S. Hubbard, J.D. Redman, A.P. Annan: Measuring soil water content with ground penetrating radar – A review, Vadose Zone J. 2(4), 476–491 (2003)CrossRefGoogle Scholar
  78. 57.78
    G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, R.E. Skelton, T.T. Soong, B.F. Spencer, J.T.P. Yao: Structural control: Past, present, and future, J. Eng. Mech. 123(9), 897–971 (1997)CrossRefGoogle Scholar
  79. 57.79
    US Department of Transportation: Maturity Meters: A Concrete Success, ed. by L. Pope (Federal Highway Administration (FHWA), Washington 2002) Google Scholar
  80. 57.80
    S.V. Ramaiah, B.F. McCullough, T. Dossey: Estimating in situ Strength of Concrete Pavements Under Various Field Conditions (Univ. of Texas, Austin 2001), Center Transport. Res.Google Scholar
  81. 57.81
    J. Song, C. Haas, C. Caldas, E. Ergen, B. Akinci, C.R. Wood, J. Wadephul: Field Trials of RFID Technology for Tracking Fabricated Pipe – Phase II (FIATECH, Austin 2003), Google Scholar
  82. 57.82
    J. Song, C.T. Haas, C. Caldas, E. Ergen, B. Akinci: Automating the task of tracking the delivery and receipt of fabricated pipe spools in industrial projects, Autom. Constr. 15(2), 166–177 (2006)CrossRefGoogle Scholar
  83. 57.83
    J. Aksoy, I. Chan, K. Guidry, J. Jones, C. R. Wood: Materials and Asset Tracking Using RFID: A Preparatory Field Pilot Study (FIATECH, Austin 2004),
  84. 57.84
    J. Kang, P. Woods, J. Nam, C.R. Wood: Field Tests of RFID Technology for Construction Tool Management (FIATECH, Austin 2005), Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kamel S. Saidi
    • 1
    Email author
  • Thomas Bock
    • 2
  • Christos Georgoulas
    • 3
  1. 1.Building and Fire Research LaboratoryNational Institute of Standards and TechnologyGaitherbsurgUSA
  2. 2.Department of ArchitectureTechnical University MunichMunichGermany
  3. 3.Department of ArchitectureTechnical University MunichMunichGermany

Personalised recommendations