Robotics in Agriculture and Forestry

  • Marcel Bergerman
  • John Billingsley
  • John Reid
  • Eldert van Henten

Abstract

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

2-D

two-dimensional

3-D

three-dimensional

4-D

four-dimensional

A&F

agriculture and forestry

CCD

charge-coupled device

DOF

degree of freedom

GARNICS

gardening with a cognitive system

GLS

global navigation satellite system

GPS

global positioning system

HMI

human–machine interaction

N&G

nursery and greenhouse

NLIS

national livestock identification scheme

OCPP

optimal coverage path planning

PID

proportional–integral–derivative

PWM

pulse-width modulation

RTK

real-time kinematics

SLAM

simultaneous localization and mapping

TFP

total factor productivity

TOF

time-of-flight

UAV

unmanned aerial vehicle

WDVI

weighted difference vegetation index

WSN

wireless sensor network

References

  1. 56.1
    J.A. Foley, N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O'Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D.P.M. Zaks: Solutions for a cultivated planet, Nature 478, 337–342 (2011)CrossRefGoogle Scholar
  2. 56.2
    A. Alleyne: Editor's note: Agriculture and information technology, Natl. Acad. Eng. Bridge, Issue Agric. Inf, Technol. 41(3), 3–4 (2011)Google Scholar
  3. 56.3
    Global Harvest Initiative: The 2012 Global Agricultural Productivity Report, http://goo.gl/GBPvjK
  4. 56.4
    J. Reid: The impact of mechanization on agriculture, Nat. Acad. Eng. Bridge, Issue Agric. Inf. Technol. 41(3), 22–29 (2011)Google Scholar
  5. 56.5
    E.J. Van Henten: Greenhouse mechanization: State of the art and future perspective, Acta Hortic. 710, 55–69 (2006)CrossRefGoogle Scholar
  6. 56.6
    S.T. Nuske, S. Achar, T. Bates, S.G. Narasimhan, S. Singh: Yield estimation in vineyards by visual grape detection, IEEE/RSJ Int. Conf. Intell. Robots Syst., San Francisco (2011)Google Scholar
  7. 56.7
    Q. Wang, S.T. Nuske, M. Bergerman, S. Singh: Automated crop yield estimation for apple orchards, Int. Symp. Exp. Robotics, Quebec City (2012)Google Scholar
  8. 56.8
    J. Deere: Integrated AutoTrac System, http://goo.gl/CsxxfL
  9. 56.9
    K. Gallardo, M. Taylor, H. Hinman: 2009 Cost estimates of establishing and producing gala apples in Washington, Washington State University Extension Fact Sheet FS005E, http://goo.gl/BHBZrb (2010)
  10. 56.10
    B. Hamner, M. Bergerman, S. Singh: Results with autonomous vehicles operating in specialty crops, IEEE Int. Conf. Robotics Autom., St. Paul, MN (2012)Google Scholar
  11. 56.11
    G. Giacomelli, N. Castilla, E.J. Van Henten, D.R. Mears, S. Sase: Innovation in greenhouse engineering, Acta Hortic. 801, 75–88 (2008)CrossRefGoogle Scholar
  12. 56.12
    C.W. Bac, E.J. Henten van, J. Hemming, Y. Edan: Harvesting robots for high-value crops: State-of-the-art review and challenges ahead, J. Field Robotics 31(6), 888–911 (2012)CrossRefGoogle Scholar
  13. 56.13
    J.C. Noordam, J. Hemming, C. Heerde van, F. Golbach, R. Soest van, E. Wekking: Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection, Acta Hortic. 691, 885–892 (2005)CrossRefGoogle Scholar
  14. 56.14
    T. Rath, M. Kawollek: Robotic harvesting of Gerbera Jamesonii based on detection and three-dimensional modeling of cut flower pedicels, Comput. Electron. Agric. 66, 85–92 (2009)CrossRefGoogle Scholar
  15. 56.15
    R. Berenstein, O.B. Shahar, A. Shapiro, Y. Edan: Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer, Intell. Serv. Robotics 3, 233–243 (2010)CrossRefGoogle Scholar
  16. 56.16
    E.J. Van Henten, B.A.J. Van Tuijl, G.J. Hoogakker, M.J. Van Der Weerd, J. Hemming, J.G. Kornet, J. Bontsema: An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system, Biosyst. Eng. 94, 317–323 (2006)CrossRefGoogle Scholar
  17. 56.17
    M. Monta, N. Kondo, Y. Shibano: Agricultural robot in grape production system, Int. Conf. Robotics Autom. (1995)Google Scholar
  18. 56.18
    Wikipedia: Controlled Traffic Farming, http://goo.gl/FODY04
  19. 56.19
    J. Jin, L. Tang: Coverage path planning on three-dimensional terrain for arable farming, J. Field Robotics 28(3), 424–440 (2011)CrossRefGoogle Scholar
  20. 56.20
    D.C. Slaughter, D.K. Giles, D. Downey: Autonomous robotic weed control systems: A review, Comput. Electron. Agric. 61, 63–78 (2008)CrossRefGoogle Scholar
  21. 56.21
    F.K. Van Evert, J. Samsom, G. Polder, M. Vijn, H.-J. Dooren van, A. Lamaker, G.W.A.M. Heijden van der, C. Kempenaar, T. Zalm van der, B. Lotz: A robot to detect and control broad-leaved dock (Rumex obtusifolius L.) in grassland, J. Field Robotics 28, 264–277 (2011)CrossRefGoogle Scholar
  22. 56.22
    G. Polder, F.K. Van Evert, A. Lamaker, A. De Jong, G.W.A.M. Van der Heijden, L.A.P. Lotz, T. Van der Zalm, C. Kempenaar: Weed detection using textural image analysis, 6th Bienn. Conf. Eur. Fed. IT Agric. (EFITA), Glasgow (2007), available online at http://edepot.wur.nl/28203 Google Scholar
  23. 56.23
    F.K. Van Evert, G. Polder, G.W.A.M. Van der Heijden, C. Kempenaar, L.A.P. Lotz: Real-time, vision-based detection of Rumex obtusifolius L. in grassland, Weed Res. 49, 164–174 (2009)CrossRefGoogle Scholar
  24. 56.24
    H. Böhm, J. Finze: Überprüfung der Effektivität der maschinellen Ampferregulierung im Grünland mittels WUZI unter differenzierten Standortbedingungen [Testing the effectiveness of mechanical control of docks in grassland with the WUZI under a variety of conditions.], http://goo.gl/BVdqgy (2004)
  25. 56.25
    A.T. Nieuwenhuizen, J.W. Hofstee, E.J. Henten van: Adaptive detection of volunteer potato plants in sugar beet fields, Precis. Agric. 11, 433–447 (2009)CrossRefGoogle Scholar
  26. 56.26
    A.T. Nieuwenhuizen, J.W. Hofstee, J.C. Zande van de, J. Meuleman, E.J. Henten van: Classification of sugar beet and volunteer potato reflection spectra with a neural network and statistical discriminant analysis to select discriminative wavelengths, Comput. Electron. Agric. 73, 146–153 (2010)CrossRefGoogle Scholar
  27. 56.27
    A.T. Nieuwenhuizen, J.W. Hofstee, E.J. Henten van: Performance evaluation of an automated detection and control system for volunteer potatoes in sugar beet fields, Biosyst. Eng. 107, 46–53 (2010)CrossRefGoogle Scholar
  28. 56.28
    T. Bakker, H. Wouters, K. Van Asselt, J. Bontsema, L. Tang, J. Müller, G. Van Straten: A vision based row detection system for sugar beet, Comput. Electron. Agric. 60(1), 87–95 (2008)CrossRefGoogle Scholar
  29. 56.29
    T. Bakker, K. Van Asselt, J. Bontsema, J. Müller, G. Van Straten: A path following algorithm for mobile robots, Auton. Robots 29(1), 85–97 (2010)CrossRefGoogle Scholar
  30. 56.30
    T. Bakker, K. Asselt van, J. Bontsema, J. Müller, G. Straten van: Autonomous navigation using a robot platform in a sugar beet field, Biosyst. Eng. 109(4), 357–368 (2011)CrossRefGoogle Scholar
  31. 56.31
    J. Katupitiya, R. Eaton, T. Yaqub: Systems engineering approach to agricultural automation: New developments, 1st Annual IEEE Syst. Conf. (2007) pp. 298–304Google Scholar
  32. 56.32
    D. Kohanbash, A. Valada, G.A. Kantor: Irrigation control methods for wireless sensor network, Am. Soc. Agric. Biol. Eng. Annual Meeting (2012), available online at http://goo.gl/3NJyXb Google Scholar
  33. 56.33
    S. Singh, M. Bergerman, J. Cannons, B. Grocholsky, B. Hamner, G. Holguin, L. Hull, V. Jones, G. Kantor, H. Koselka, G. Li, J. Owen, J. Park, W. Shi, J. Teza: Comprehensive automation for specialty crops: Year 1 results and lessons learned, J. Intell. Serv. Robotics, Special Issue Agric, Robotics 3(4), 245–262 (2010)Google Scholar
  34. 56.34
    B. Davis: CMU-led automation program puts robots in the field, AUVSI's Unmanned Syst.: Mission Crit. 2, 38–40 (2012) Google Scholar
  35. 56.35
    R. Lenain, J. Preynat, B. Thuilot, P. Avanzini, P. Martinet: Adaptive formation control of a fleet of mobile robots: Application to autonomous field operations, Int. Conf. Robotics Autom. (2010) pp. 1241–1246Google Scholar
  36. 56.36
    A. Shapiro, E. Korkidi, A. Demri, R. Riemer, Y. Edan, O. Ben-Shahar: Toward elevated agrobotics: An autonomous field robot for spraying and pollinating date palm trees, J. Field Robotics 26(6/7), 572–590 (2009)CrossRefGoogle Scholar
  37. 56.37
    S. Foix, G. Alenyà, C. Torras: Lock-in time-of-flight (ToF) cameras: A survey, IEEE Sensors J. 11(9), 1917–1926 (2011)CrossRefGoogle Scholar
  38. 56.38
    R. Klose, J. Penlington, A. Ruckelshausen: Usability study of 3D time-of-flight cameras for automatic plant phenotyping, Workshop Comput. Image Anal. Agric. (2009) pp. 93–105Google Scholar
  39. 56.39
    G. Alenyà, B. Dellen, S. Foix, C. Torras: Leaf segmentation from ToF data for robotized plant probing, IEEE Robotics Autom. Mag. 20(3), 50–59 (2013)CrossRefGoogle Scholar
  40. 56.40
    G. Alenyà, B. Dellen, S. Foix, C. Torras: Robotic leaf probing via segmentation of range data into surface patches, IROS Workshop Agric. Robotics, Villamura (2012)Google Scholar
  41. 56.41
    G. Alenyà, B. Dellen, C. Torras: 3D modelling of leaves from color and ToF data for robotized plant measuring, IEEE Int. Conf. Robotics Autom., Shanghai (2011) pp. 3408–3414Google Scholar
  42. 56.42
    B. Dellen, G. Alenyà, S. Foix, C. Torras: Segmenting color images into surface patches by exploiting sparse depth data, IEEE Workshop Appl. Comput. Vis., Kona (2011) pp. 591–598Google Scholar
  43. 56.43
    E.J. Van Henten, B.A.J. Van Tuijl, J. Hemming, J.G. Kornet, J. Bontsema, E.A. Van Os: Field test of an autonomous cucumber picking robot, Biosyst. Eng. 86, 305–313 (2003)CrossRefMATHGoogle Scholar
  44. 56.44
    E.J. Van Henten, J. Hemming, B.A.J. Van Tuijl, J.G. Kornet, J. Bontsema: Collision-free motion planning for a cucumber picking robot, Biosyst. Eng. 86, 135–144 (2003)CrossRefGoogle Scholar
  45. 56.45
    E.J. Van Henten, J. Hemming, B.A.J. Van Tuijl, J.G. Kornet, J. Meuleman, J. Bontsema, E.A. Van Os: An autonomous robot for harvesting cucumbers in greenhouses, Auton. Robots 13, 241–258 (2002)CrossRefMATHGoogle Scholar
  46. 56.46
    S. Hayashi, K. Shigematsu, S. Yamamoto, K. Kobayashi, Y. Kohno, J. Kamata, M. Kurita: Evaluation of a strawberry-harvesting robot in a field test, Biosyst. Eng. 105, 160–171 (2010)CrossRefGoogle Scholar
  47. 56.47
    S. Hayashi, S. Yamamoto, S. Saito, Y. Ochiai, Y. Kohno, K. Yamamoto, J. Kamata, M. Kurita: Development of a movable strawberry-harvesting robot using a travelling platform, Proc. Int. Conf. Agric. Eng. CIGR-AgEng 2012, Valencia, Spain (2012)Google Scholar
  48. 56.48
    F. Georgsson, T. Hellström, T. Johansson, K. Prorok, O. Ringdahl, U. Sandström: Development of an autonomous path tracking forest machine – a status report. In: Field and Service Robotics: Results of the 5th International Conference, ed. by P. Corke, S. Sukkarieh (Springer, Berlin, Heidelberg 2006) pp. 603–614Google Scholar
  49. 56.49
    M. Miettinen, M. Öhman, A. Visala, P. Forsman: Simultaneous localization and mapping for forest harvesters, IEEE Int. Conf. Robotics Autom. (2007) pp. 517–522Google Scholar
  50. 56.50
    J. Roßmann, M. Schluse, C. Schlette, A. Bücken, P. Krahwinkler, M. Emde: Realization of a highly accurate mobile robot system for multi purpose precision forestry applications, The 14th Int. Conf. Adv. Robotics (2009) pp. 133–138Google Scholar
  51. 56.51
    J. Roßmann, P. Krahwinkler, A. Bücken: Mapping and navigation of mobile robots in natural environments. In: Advances in Robotics Research - Theory, Implementation, Application. German Workshop on Robotics, ed. by T. Kröger, F.M. Wahl (Springer, Berlin, Heidelberg 2009) pp. 43–52Google Scholar
  52. 56.52
    S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)MATHGoogle Scholar
  53. 56.53
    P. Krahwinkler, J. Roßmann, B. Sondermann: Support vector machine based decision tree for very high resolution multispectral forest mapping, IEEE Int. Geosci. Remote Sens. Symp. (2011) pp. 43–46Google Scholar
  54. 56.54
    A. Bücken, J. Roßmann: From the volumetric algorithm for single-tree delineation towards a fully-automated process for the generation of virtual forests. In: Progress and New Trends in 3D Geoinformation Sciences. Lecture Notes in Geoinformation and Cartography, ed. by J. Pouliot, S. Daniel, F. Hubert, A. Zamyadi (Springer, Berlin, Heidelberg 2013) pp. 79–99CrossRefGoogle Scholar
  55. 56.55
    J. Roßmann, T. Jung, M. Rast: Developing virtual testbeds for mobile robotic applications in the woods and on the moon, The IEEE/RSJ 2010 Int. Conf. Intell. Robots Syst. (2010) pp. 4952–4957CrossRefGoogle Scholar
  56. 56.56
    A. Shiriaev, L. Freidovich, I. Manchester, U. Mettin, P. La Hera, S. Westerberg: Status of Smart Crane Lab Project: Modeling and Control for a Forwarder Crane, Department of Applied Physics and Electronics (Umeå University, Umeå 2008)Google Scholar
  57. 56.57
    U. Mettin, P.X. La Hera, D.O. Morales, A.S. Shiriaev, L.B. Freidovich, S. Westerberg: Trajectory planning and time-independent motion control for a kinematically redundant hydraulic manipulator, Int. Conf. Adv. Robotics (2009)Google Scholar
  58. 56.58
    U. Mettin, S. Westerberg, P.X. La Hera, A. Shiriaev: Analysis of human-operated motions and trajectory replanning for kinematically redundant manipulators, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2009)Google Scholar
  59. 56.59
    D. Morales, S. Westerberg, P. La Hera, U. Mettin, L. Freidovich, A. Shiriaev: Open-loop control experiments on driver assistance for crane forestry machines, IEEE Int. Conf. Robotics Autom. (2011)Google Scholar
  60. 56.60
    A. Hansson, M. Servin: Semi-autonomous shared control of large-scale manipulator arms, Control Eng. Pract. 18(9), 1069–1076 (2010)CrossRefGoogle Scholar
  61. 56.61
    S. Westerberg, I. Manchester, U. Mettin, P. La Hera, A. Shiriaev: Virtual environment teleoperation of a hydraulic forestry crane, IEEE Int. Conf. Robotics Autom. (2008)Google Scholar
  62. 56.62
    Y.-C. Park, A. Shiriaev, S. Westerberg, S. Lee: 3D log recognition and pose estimation for robotic forestry machine, IEEE Int. Conf. Robotics Autom. (2011)Google Scholar
  63. 56.63
    NLIS: National Livestock Identification System, NSW Department of Primary Industries, http://goo.gl/WoHUi2
  64. 56.64
    Lely home page: http://goo.gl/JCl8CI
  65. 56.65
    Juno feed-pusher: http://goo.gl/V5H2Ye
  66. 56.66
    Lely Vector feeder: http://goo.gl/dLiL3q
  67. 56.67
    M. Dunn, J. Billingsley, N. Finch: Machine vision classification of animals, Mechatron. Mach. Vis. 2003: Future Trends: Proc. 10th Annual Conf. Mechatron. Mach. Vis. Pract. (Research Studies, Baldock 2003)Google Scholar
  68. 56.68
    C. McCarthy, J. Billingsley, N. Finch, P. Murray, J. Gaughan: Cattle liveweight estimation using machine vision assessment of objective body measurements: First results, Proc. 28th Bienn. Aust. Soc. Anim. Production Conf., Vol. 28 (Australian Society of Animal Production, Wagga Wagga 2010)Google Scholar
  69. 56.69
    Y. Wang, W. Yang, P. Winter, L.T. Walker: Non-contact sensing of hog weights by machine vision, Appl. Eng. Agric. 22(4), 577 (2006)CrossRefGoogle Scholar
  70. 56.70
    W. Zhu, F. Zhong, X. Li: Automated monitoring system of pig behavior based on RFID and ARM-LINUX, Third Int. Symp. Intell. Inf. Technol. Secur. Inf. (2010) pp. 431–434Google Scholar
  71. 56.71
    S. Barry, D. Cook, R. Duthie, D. Clifford, D. Anderson: Future Surveillance Needs for Honeybee Biosecurity, RIRDC Publication No. 10/107, http://goo.gl/MUrPLo
  72. 56.72
    Lely Astronaut A4 milking system: http://goo.gl/wYhUVH
  73. 56.73
    J.P. Trevelyan: Sensing and control for sheep-shearing robots, IEEE J. Robotics Autom. 5(6), 716–727 (1989)CrossRefGoogle Scholar
  74. 56.74
    Robotics in the Poultry Industry, Poultry CRC: http://goo.gl/xH5vy6
  75. 56.75
    A. J. Bubb, T. K. Driver, C. D. James: CASE STUDY - Redefining the cowboy: Precision pastoral decision making from remote monitoring and control of cattle, http://goo.gl/Vu0FlQ (2010)
  76. 56.76
    R. Rankin: Further automation, Meat '93, Aust. Meat Ind. Res. Conf., Gold Coast. (1993), available online at http://goo.gl/lv2yjh Google Scholar
  77. 56.77
    Performance Audit, Management of Project Fututech, The Meat Research Corporation, http://goo.gl/C5jMgm
  78. 56.78
    Robotic Technologies Limited: RTL – Scott and Silver Fern Farms, http://goo.gl/xZxLOZ
  79. 56.79
    Automated Boning Room System, Scott Group: http://goo.gl/0zFVqi
  80. 56.80
    Chicken Whole Leg Deboning Machine, Mayekawa: http://goo.gl/xhj2Lf
  81. 56.81
    Poultry slaughtering, Hyfoma: http://goo.gl/dzTfVT
  82. 56.82
    Association for Unmanned Vehicle Systems International: The Economic Impact of Unmanned Aircraft Systems Integration in the United States, http://goo.gl/http://goo.gl/NS5EkT (2013)
  83. 56.83
    J. Dong, L. Carlone, G.C. Rains, T. Coolong, F. Dellaert: 4D mapping of fields using autonomous ground and aerial vehicles, ASABE Int. Conf., Montreal (2014), Paper No. 141912258Google Scholar
  84. 56.84
    F.K. Evert van, P. Voet van der, E. Valkengoed van, L. Kooistra, C. Kempenaar: Satellite-based herbicide rate recommendation for potato haulm killing, Eur. J. Agron. 43, 49–57 (2012)CrossRefGoogle Scholar
  85. 56.85
    C. Kempenaar, F.K. Evert van, T. Been: Use of vegetation indices in variable rate application of potato haulm killing herbicides, Proc. ICPA Conf., Sacramento, USA 2014 (2014)Google Scholar
  86. 56.86
    C. Pugh, M. Jarman, S. Keyworth, J. Webber, I. Cameron: URSULA Agriculture, http://goo.gl/HzGkRT (2013)
  87. 56.87
    S. Singh, S. Nuske, M. Bergerman, T. Bates, J. M. Peltier: Vineyard efficiency through high-resolution, spatiotemporal crop load measurement and management, http://goo.gl/iqXgWy
  88. 56.88
    S. Blackmore: New concepts in agricultural automation, HGCA Conf. (2009)Google Scholar
  89. 56.89
    J.L. Glancey, W.E. Kee: Engineering aspects of production and harvest mechanization for fresh and processed vegetables, HortTechnology 15, 76–79 (2005)Google Scholar
  90. 56.90
    T. Burks, F. Villegas, M. Hannan, S. Flood, B. Sivaraman, V. Subramanian, J. Sikes: Engineering and horticultural aspects of robotic fruit harvesting: Opportunities and constraints, HortTechnology 15, 79–87 (2005)Google Scholar
  91. 56.91
    K. Ellis, T.A. Baugher, K. Lewis: Use of survey instruments to assess technology adoption for tree fruit production, HortTechnology 20, 1043–1048 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marcel Bergerman
    • 1
  • John Billingsley
    • 2
  • John Reid
    • 3
  • Eldert van Henten
    • 4
  1. 1.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Faculty of Engineering and SurveyingUniversity of Southern QueenslandToowoombaAustralia
  3. 3.Moline Technology Innovation CenterJohn Deere Co.MolineUSA
  4. 4.Wageningen UR Greenhouse HorticultureWageningen UniversityWageningenNetherlands

Personalised recommendations