Space Robotics

  • Kazuya Yoshida
  • Brian Wilcox
  • Gerd Hirzinger
  • Roberto Lampariello

Abstract

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

3-D

three-dimensional

ASTRO

autonomous space transport robotic operations

CARD

computer-aided remote driving

DLR

German Aerospace Center

DOF

degree of freedom

ECU

electronics controller unit

ERA

European robotic arm

ESA

European Space Agency

ETS-VII

Engineering Test Satellite VII

EVA

extravehicular activity

FPGA

field-programmable gate array

GEO

geostationary Earth orbit

GF

grapple fixture

GJM

generalized Jacobian matrix

HST

Hubble space telescope

ISS

international space station

JAXA

Japan Aerospace Exploration Agency

JEM

Japan Experiment Module

JEMRMS

Japanese experiment module remote manipulator system

JPL

Jet Propulsion Laboratory

LEO

low Earth orbit

MBS

mobile base system

MESUR

Mars environmental survey

MRSR

Mars rover sample return

NASDA

National Space Development Agency of Japan

NLP

nonlinear programming problem

ORU

orbital replacement unit

PDGF

power data grapple fixture

RBT

robot experiment

RNS

reaction null-space

ROKVISS

robotics components verification on the ISS

RVD

rendezvous/docking

RWS

robotic workstation

SAN

semiautonomous navigation

SEE

standard end effector

SGM

semiglobal matching

SLRV

surveyor lunar rover vehicle

SPDM

special purpose dexterous manipulator

SQP

sequential quadratic programming

SRMS

shuttle remote manipulator system

SSRMS

space station remote manipulator system

SVD

singular value decomposition

VM

virtual manipulator

References

  1. 55.1
    D.L. Akin, M.L. Minsky, E.D. Thiel, C.R. Kurtzman: Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Phase II (NASA, Washington 1983)Google Scholar
  2. 55.2
    C.G. Wagner-Bartak, J.A. Middleton, J.A. Hunter: Shuttle remote manipulator system hardware test facility, 11th Space Simulat. Conf. (1980) pp. 79–94, NASA CP-2150Google Scholar
  3. 55.3
    S. Greaves, K. Boyle, N. Doshewnek: Orbiter boom sensor system and shuttle return to flight: Operations analyses, AIAA Guidance Navigation Contr. Conf. Exhibit. San Francisco (2005)Google Scholar
  4. 55.4
    C. Crane, J. Duffy, T. Carnahan: A kinematic analysis of the space station remote manipulator system (SSRMS), J. Robotic Syst. 8, 637–658 (1991)MATHCrossRefGoogle Scholar
  5. 55.5
    M.F. Stieber, C.P. Trudel, D.G. Hunter: Robotic systems for the International Space Station, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 3068–3073CrossRefGoogle Scholar
  6. 55.6
    D. Bassett, A. Abramovici: Special purpose dexterous manipulator (SPDM) requirements verification, Proc. 5th Int. Symp. Artif. Intell. Robotics Autom. Space (1999) pp. 43–48, ESA SP-440Google Scholar
  7. 55.7
    R. Boumans, C. Heemskerk: The European robotic arm for the International Space Station, Robotics Auton. Syst. 23(1), 17–27 (1998)CrossRefGoogle Scholar
  8. 55.8
    P. Laryssa, E. Lindsay, O. Layi, O. Marius, K. Nara, L. Aris, T. Ed: International Space Station robotics: A comparative study of ERA, JEMRMS and MSS, Proc. 7th ESA Workshop Adv. Space Technol. Robotics Autom. (ASTRA) (2002)Google Scholar
  9. 55.9
    T. Matsueda, K. Kuraoka, K. Goma, T. Sumi, R. Okamura: JEMRMS system design and development status, Proc. IEEE Natl. Telesyst. Conf. (NTC) (1991) pp. 391–395CrossRefGoogle Scholar
  10. 55.10
    S. Doi, Y. Wakabayashi, T. Matsuda, N. Satoh: JEM remote manipulator system, J. Aeronaut. Space Sci. Jpn. 50(576), 7–14 (2002)Google Scholar
  11. 55.11
    H. Morimoto, N. Satoh, Y. Wakabayashi, M. Hayashi, Y. Aiko: Performance of Japanese robotic arms of the International Space Station, 15th IFAC World Congr. (2002)Google Scholar
  12. 55.12
    G. Hirzinger, B. Brunner, J. Dietrich, J. Heindl: Sensor-based space robotics – ROTEX and its telerobotic features, IEEE Trans. Robotics Autom. 9(5), 649–663 (1993)CrossRefGoogle Scholar
  13. 55.13
    M. Oda, K. Kibe, F. Yamagata: ETS-VII – Space robot in-orbit experiment satellite, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 739–744CrossRefGoogle Scholar
  14. 55.14
    K. Yoshida: Engineering test satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit, Int. J. Robotics Res. 22(5), 321–335 (2003)CrossRefGoogle Scholar
  15. 55.15
    K. Landzettel, B. Brunner, G. Hirzinger, R. Lampariello, G. Schreiber, B.-M. Steinmetz: A unified ground control and programming methodology for space robotics applications – demonstrations on ETS-VII, Proc. Int. Symp. Robotics (ISR) (2000) pp. 422–427Google Scholar
  16. 55.16
    J.C. Parrish, D.L. Akin, G.G. Gefke: The ranger telerobotic shuttle experiment: Implications for operational EVA/robotic cooperation, Proc. SAE Int. Conf. Environ. Syst. (2000)Google Scholar
  17. 55.17
    J. Shoemaker, M. Wright: Orbital express space operations architecture program, Proc. SPIE 5088, 1–9 (2003)CrossRefGoogle Scholar
  18. 55.18
    C. Preusche, D. Reintsema, K. Landzettel, G. Hirzinger: Robotics component verification on ISS ROKVISS – Preliminary results for telepresence, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 4595–4601Google Scholar
  19. 55.19
    K. Landzettel, A. Albu-Schaffer, C. Preusche, D. Reintsema, B. Rebele, G. Hirzinger: Robotic on-orbit servicing – DLR’s experience and perspective, Proc. IEEE/RSJ Int. Conf. Intell. Robots Systems (IROS) (2006) pp. 4587–4594Google Scholar
  20. 55.20
    J.-H. Ryu, J. Artigas, C. Preusche: A passive bilateral control scheme for a teleoperator with time-varying communication delay, Mechatronics 20(7), 812–823 (2010)CrossRefGoogle Scholar
  21. 55.21
    J. Artigas, J.-H. Ryu, C. Preusche, G. Hirzinger: Network representation and passivity of delayed teleoperation systems, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 177–183Google Scholar
  22. 55.22
    E. Stoll, U. Walter, J. Artigas, C. Preusche, P. Kremer, G. Hirzinger, J. Letschnik, H. Pongrac: Ground verification of the feasibility of telepresent on-orbit servicing, J. Field Robotics 26(3), 287–307 (2009)CrossRefGoogle Scholar
  23. 55.23
    C. Ott, J. Artigas, C. Preusche, G. Hirzinger: Subspace-oriented energy distribution for the time domain passivity approach, Proc. IEEE/RSJ Int. Conf. Intell. Robots Systems (IROS’11) (2011) pp. 665–671Google Scholar
  24. 55.24
    A.P. Vinogradov: Lunokhod 1 Mobile Lunar Laboratory (JPRS, Washington 1971), JPRS identification number 54525Google Scholar
  25. 55.25
    A. Mishkin: Sojourner: An Insider’s View of the Mars Pathfinder Mission (Berkley Books, New York 2004)Google Scholar
  26. 55.26
    B. Wilcox, T. Nguyen: Sojourner on mars and lessons learned for future planetary rovers, 28th Int. Conf. Environ. Syst. (1998)Google Scholar
  27. 55.27
    M. Maimone, A. Johnson, Y. Cheng, R. Willson, L. Matthies: Autonomous navigation results from the Mars exploration rover (MER) mission, Proc. 9th Int. Symp. Exp. Robotics (ISER) (2004)Google Scholar
  28. 55.28
    M. Maimone, Y. Cheng, L. Matthies: Two years of visual odometry on the Mars exploration rovers, J. Field Robotics 24(3), 169–186 (2007)CrossRefGoogle Scholar
  29. 55.29
    M.G. Bekker: Off-The-Road Locomotion (Univ. Michigan Press, Ann Arbor 1960)Google Scholar
  30. 55.30
    M.G. Bekker: Introduction to Terrain-Vehicle Systems (Univ. Michigan Press, Ann Arbor 1969)Google Scholar
  31. 55.31
    R.A. Lewis, A.K. Bejczy: Planning considerations for a roving robot with arm, Int. Jt. Conf. Artif. Intell. (IJCAI) (1973) pp. 308–316Google Scholar
  32. 55.32
    A. Thompson: The navigation system of the JPL Robot, Int. Jt. Conf. Artif. Intell. (IJCAI) (1977) pp. 749–757Google Scholar
  33. 55.33
    Y. Yakimovsky, R.T. Cunningham: A system for extracting three-dimensional measurements from a stereo pair of TV cameras, Comp. Graph. Image Process. 7, 195–210 (1978)CrossRefGoogle Scholar
  34. 55.34
    D. Dooling: Planetary rovers might roam better with an elastic loop mobility system, NASA Science News, http://science.nasa.gov/newhome/ headlines/msad28apr98_1b.htm 1989)Google Scholar
  35. 55.35
    B.H. Wilcox: Computer-Aided Remote Driving, NASA Tech Briefs 18; 3 (NASA, Washington 1994) Google Scholar
  36. 55.36
    E. Krotkov, J. Bares, T. Kanade, T. Mitchell, R. Simmons, W. Whittaker: Ambler: a six-legged planetary rover, 5th Int. Conf. Adv. Robotics, Robots Unstructured Environ. (ICAR), Vol. 1 (1991) pp. 717–722CrossRefGoogle Scholar
  37. 55.37
    J. Bares, W. Whittaker: Walking robot with a circulating gait, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (1990) pp. 809–816Google Scholar
  38. 55.38
    B. Wilcox, D. Gennery: A Mars rover for the 1990s, J. Br. Interplanet. Soc. 40, 484–488 (1987)Google Scholar
  39. 55.39
    B. Wilcox, L. Matthies, D. Gennery: Robotic vehicles for planetary exploration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992)Google Scholar
  40. 55.40
    D. Gennery, T. Litwin, B. Wilcox, B. Bon: Sensing and perception research for space telerobotics at JPL, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 311–317Google Scholar
  41. 55.41
    J. Balaram, S. Hayati: A supervisory telerobotics testbed for unstructured environments, J. Robotics Syst. 9(2), 261–280 (1992)CrossRefGoogle Scholar
  42. 55.42
    G. Giralt, L. Boissier: The French planetary rover VAP: concept and current developments, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1992) pp. 1391–1398, LAAS Report No. 92227Google Scholar
  43. 55.43
    R. Chatila, S. Lacroiz, G. Giralt: A case study in machine intelligence: Adaptive autonomous space rovers, Int. Conf. Field Serv. Robotics (FSR) (1997) pp. 101–108, LAAS Report No. 97463Google Scholar
  44. 55.44
    A. Castano, A. Fukunaga, J. Biesiadecki, L. Neakrase, P. Whelley, R. Greeley, M. Lemmon, R. Castano, S. Chien: Autonomous detection of dust devils and clouds on Mars, Proc. IEEE Int. Conf. Image Process. (2006) pp. 2765–2768Google Scholar
  45. 55.45
    L. Matthies: Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation, Int. J. Comput. Vis. 8(1), 71–91 (1992)CrossRefGoogle Scholar
  46. 55.46
    K. Yoshida, D.N. Nenchev, M. Uchiyama: Moving base robotics and reaction management control, 7th Int. Symp. Robotics Res., ed. by G. Giralt, G. Hirzinger (Springer, New York 1996) pp. 101–109Google Scholar
  47. 55.47
    J. Russakow, S.M. Rock, O. Khatib: An operational space formulation for a free-flying multi-arm space robot, 4th Int. Symp. Exp. Robotics (1995) pp. 448–457Google Scholar
  48. 55.48
    Y. Xu, T. Kanade (Eds.): Space Robotics: Dynamics and Control (Kluwer, Boston 1993)Google Scholar
  49. 55.49
    Y. Umetani, K. Yoshida: Continuous path control of space manipulators mounted on OMV, Acta Astronaut. 15(12), 981–986 (1987), presented at the 37th IAF Conf, Oct. 1986 Google Scholar
  50. 55.50
    Y. Umetani, K. Yoshida: Resolved motion rate control of space manipulators with generalized Jacobian matrix, IEEE Trans. Robotics Autom. 5(3), 303–314 (1989)CrossRefGoogle Scholar
  51. 55.51
    K. Yoshida: Impact dynamics representation and control with extended inversed inertia tensor for space manipulators, 6th Int. Symp. Robotics Res. (1994) pp. 453–463Google Scholar
  52. 55.52
    K. Yoshida: Experimental study on the dynamics and control of a space robot with the experimental free-floating robot satellite (EFFORTS) simulators, Adv. Robotics 9(6), 583–602 (1995)CrossRefGoogle Scholar
  53. 55.53
    Y. Nakamura, R. Mukherjee: Nonholonomic path planning of space robots via a bidirectional approach, IEEE Trans. Robotics Autom. 7(4), 500–514 (1991)CrossRefGoogle Scholar
  54. 55.54
    S. Dubowsky, M. Torres: Minimizing attitude control fuel in space manipulator systems, Proc. Int. Symp. Artif. Intell. Robotics Autom. (i-SAIRAS) (1990) pp. 259–262Google Scholar
  55. 55.55
    S. Dubowsky, M. Torres: Path planning for space manipulators to minimize spacecraft attitude disturbances, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (1991) pp. 2522–2528Google Scholar
  56. 55.56
    K. Yoshida: Practical coordination control between satellite attitude and manipulator reaction dynamics based on computed momentum concept, Proc. 1994 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1578–1585CrossRefGoogle Scholar
  57. 55.57
    M. Oda: Coordinated control of spacecraft attitude and its manipulator, Proc. 1996 IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 732–738Google Scholar
  58. 55.58
    Z. Vafa, S. Dubowsky: On the dynamics of manipulators in space using the virtual manipulator approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 579–585Google Scholar
  59. 55.59
    E. Papadopoulos, S. Dubowsky: Dynamic singularities in the control of free-floating space manipulators, ASME J. Dyn. Syst. Meas. Control 115(1), 44–52 (1993)CrossRefGoogle Scholar
  60. 55.60
    Y. Umetani, K. Yoshida: Workspace and manipulability analysis of space manipulator, Trans. Soc. Instrum. Contr. Eng. E-1(1), 116–123 (2001)Google Scholar
  61. 55.61
    D.N. Nenchev, Y. Umetani, K. Yoshida: Analysis of a redundant free-flying spacecraft/manipulator system, IEEE Trans. Robotics Autom. 8(1), 1–6 (1992)CrossRefGoogle Scholar
  62. 55.62
    D.N. Nenchev, K. Yoshida, P. Vichitkulsawat, M. Uchiyama: Reaction null-space control of flexible structure mounted manipulator systems, IEEE Trans. Robotics Autom. 15(6), 1011–1023 (1999)CrossRefGoogle Scholar
  63. 55.63
    V.H. Schulz: Reduced SQP Methods for Large Scale Optimal Control Problems in DAE with Application to Path Planning Problems for Satellite Mounted Robots, Ph.D. Thesis (Univ. Heidelberg, Heidelberg 1995)Google Scholar
  64. 55.64
    E. Papadopoulos, S. Moosavian: Dynamics and control of multi-arm space robots during chase and capture operations, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1554–1561CrossRefGoogle Scholar
  65. 55.65
    K. Yoshida, D. Dimitrov, H. Nakanishi: On the capture of tumbling satellite by a space robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006)Google Scholar
  66. 55.66
    C.G. Henshaw: A unification of artificial potential function guidance and optimal trajectory planning, 15th Space Flight Mech. Meet. (2005)Google Scholar
  67. 55.67
    F. Aghili: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics, IEEE Trans. Robotics 28(3), 634–649 (2012)CrossRefGoogle Scholar
  68. 55.68
    R. Lampariello, G. Hirzinger: Generating feasible trajectories for autonomous on-orbit grasping of spinning debris in a useful time, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013)Google Scholar
  69. 55.69
    T. Binder, L. Blank, R. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder, W. Marquardt, J.P. Schloeder, O. von Stryk: Introduction to model based optimization of chemical processes on moving horizons. In: Online Optimization of Large Scale Systems, ed. by M. Grotschel, S.O. Krumke, J. Rambau (Springer, Berlin, Heidelberg 2001) pp. 295–339CrossRefGoogle Scholar
  70. 55.70
    S. Jacobsen, C. Lee, C. Zhu, S. Dubowsky: Planning of safe kinematic trajectories for free-flying robots approaching an uncontrolled spinning satellite, ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. (DETC) (2002)Google Scholar
  71. 55.71
    S.K. Agrawal, K. Pathak, J. Franch, R. Lampariello, G. Hirzinger: A differentially flat open-chain space robot with arbitrarily oriented joint axes and two momentum wheels at the base, IEEE Trans. Autom. Contr. 54(9), 2185–2191 (2009)MathSciNetCrossRefGoogle Scholar
  72. 55.72
    D.N. Nenchev, K. Yoshida, M. Uchiyama: Reaction null-space based control of flexible structure mounted manipulator systems, IEEE 35th Conf. Decis. Control (1996) pp. 4118–4123Google Scholar
  73. 55.73
    W.J. Book, S.H. Lee: Vibration control of a large flexible manipulator by a small robotic arm, Proc. Am. Control Conf. (1989)Google Scholar
  74. 55.74
    M.A. Torres: Modelling, Path-Planning and Control of Space Manipulators: The Coupling Map Concept, Ph.D. Thesis (MIT, Cambridge 1993)Google Scholar
  75. 55.75
    S. Abiko, K. Yoshida: An effective control strategy of japanese experimental module remote manipulator system (JEMRMS) using coupled and un-coupled dynamics, Proc. 7th Int. Symp. Artif. Intell. Robotics Autom. Space (2003), Paper AS18 (CD-ROM)Google Scholar
  76. 55.76
    S. Abiko: Dynamics and Control for a Macro-Micro Manipulator System Mounted on the International Space Station, Ph.D. Thesis (Tohoku Univ., Tokyo 2005)Google Scholar
  77. 55.77
    S. Abiko, K. Yoshida: On-line parameter identification of a payload handled by flexible based manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 2930–2935Google Scholar
  78. 55.78
    S. Abiko, K. Yoshida: An adaptive control of a space manipulator for vibration suppression, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005)Google Scholar
  79. 55.79
    G. Gilardi, I. Shraf: Literature survey of contact dynamics modeling, Mech. Mach. Theory 37, 1213–1239 (2002)MathSciNetMATHCrossRefGoogle Scholar
  80. 55.80
    K. Yoshida, H. Nakanishi, H. Ueno, N. Inaba, T. Nishimaki, M. Oda: Dynamics, control, and impedance matching for robotic capture of a non-cooperative satellite, Adv. Robotics 18(2), 175–198 (2004)CrossRefGoogle Scholar
  81. 55.81
    H. Nakanishi, K. Yoshida: Impedance control of free-flying space robot for orbital servicing, J. Robotics Mechatron. 18(5), 608–617 (2006)CrossRefGoogle Scholar
  82. 55.82
    P.M. Pathak, A. Mukherjee, A. DasGupta: Impedance control of space robots using passive degrees of freedom in controller domain, J. Dyn. Syst. Meas. Control 127, 564–578 (2006)CrossRefGoogle Scholar
  83. 55.83
    S. Abiko, R. Lampariello, G. Hirzinger: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006)Google Scholar
  84. 55.84
    K. Iagnemma, H. Shibly, S. Dubowsky: On-line traction parameter estimation for planetary rovers, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)Google Scholar
  85. 55.85
    K. Yoshida, H. Hamano: Motion dynamics of a rover with slip-based traction model, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)Google Scholar
  86. 55.86
    A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, R. Steele: Roams: Planetary surface rover simulation environment, Proc. 7th Int. Symp. Artif. Intell. Robotics Autom. Space (i-SAIRAS) (2003)Google Scholar
  87. 55.87
    K. Yoshida, T. Watanabe, N. Mizuno, G. Ishigami: Terramechanics-based analysis and traction control of a lunar/planetary rover, Proc. Int. Conf. Field Serv. Robotics (FSR) (2003)Google Scholar
  88. 55.88
    K. Iagnemma, S. Dubowsky: Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control With Application to Planetary Rovers, Springer Tracts in Advanced Robotics, Vol. 12 (Springer, Berlin, Heidelberg 2004)Google Scholar
  89. 55.89
    K. Yoshida, G. Ishigami: Steering characteristics of a rigid wheel for exploration on loose soil, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004)Google Scholar
  90. 55.90
    H. Shibly, K. Iagnemma, S. Dubowsky: An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers, J. Terramech. 42(1), 1–13 (2005)CrossRefGoogle Scholar
  91. 55.91
    R. Bauer, W. Leung, T. Barfoot: Experimental and simulation results of wheel-soil interaction for planetary rovers, Proc. 2005 IEEE Int. Conf. Intell. Robots Syst. (IROS) (2005)Google Scholar
  92. 55.92
    A. Ellery, N. Patel, R. Bertrand, J. Dalcomo: Exomars rover chassis analysis and design, Proc. 8th Int. Symp. Artif. Intell. Robotics Autom. Space (i-SAIRAS) (2005)Google Scholar
  93. 55.93
    A. Gibbesch, B. Schäfer: Multibody system modelling and simulation of planetary rover mobility on soft terrain, Proc. 8th Int. Symp. Artif. Intell. Robotics Autom. Space (i-SAIRAS) (2005)Google Scholar
  94. 55.94
    G. Ishigami, K. Yoshida: Steering characteristics of an exploration rover on loose soil based on all-wheel dynamics model, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005)Google Scholar
  95. 55.95
    G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil, J. Field Robotics 24(3), 233–250 (2007)CrossRefGoogle Scholar
  96. 55.96
    V.K. Tiwari, K.P. Pandey, P.K. Pranav: A review on traction prediction equations, J. Terramech. 47(3), 191–199 (2010)CrossRefGoogle Scholar
  97. 55.97
    L. Ding, H. Gao, Z. Deng, K. Nagatani, K. Yoshida: Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil, J. Terramech. 48(1), 27–45 (2011)CrossRefGoogle Scholar
  98. 55.98
    G. Meirion-Griffith, M. Spenko: A modified pressure-sinkage model for small, rigid wheels on deformable terrains, J. Terramech. 48(2), 149–155 (2011)CrossRefGoogle Scholar
  99. 55.99
    J.Y. Wong: Theory of Ground Vehicles (Wiley, New York 1978)Google Scholar
  100. 55.100
    J.Y. Wong, A.R. Reece: Prediction of rigid wheel preformance based on the analysis of soil-wheel stresses. Part I, Preformance of driven rigid wheels, J. Terramech. 4, 81–98 (1967)CrossRefGoogle Scholar
  101. 55.101
    Z. Janosi, B. Hanamoto: The analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils, Proc 1st Int. Conf. Terrain-Veh. Syst. (1961)Google Scholar
  102. 55.102
    E. Hegedus: A Simplified Method for the Determination of Bulldozing Resistance, Land Locomotion Laboratory, Rep. No. 61U.S. (Army Tank Automotive Command, Warren 1960) Google Scholar
  103. 55.103
    I. Rekleitis, E. Martin, G. Rouleau, R. L’Archeveque, K. Parsa, E. Dupuis: Autonomous capture of a tumbling satellite, J. Field Robotics 24(4), 275–296 (2007)CrossRefGoogle Scholar
  104. 55.104
    J. Blamont: Balloons on other planets, Adv. Space Res. 1, 63–69 (1981)CrossRefGoogle Scholar
  105. 55.105
    J.A. Cutts, K.T. Nock, J.A. Jones, G. Rodriguez, J. Balaram, G.E. Powell, S.P. Synott: Aerovehicles for planetary exploration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995)Google Scholar
  106. 55.106
    M.K. Heun, J.A. Jones, J.L. Hall: Gondola design for Venus deep-atmosphere aerobot operations, AIAA 36th Aerosp. Sci. Meeting Exhibit. ASME Wind Energy Symp. (1998)Google Scholar
  107. 55.107
    S. Miller, J. Essmiller, D. Beaty: Mars deep drill – A mission concept for the next decade, Space Conf. Exhibit. (2004) pp. 2004–6048Google Scholar
  108. 55.108
    S. Mukherjee, P. Bartlett, B. Glass, J. Guerrero, S. Stanley: Technologies for exploring the martian subsurface, Proc. IEEE Aerosp. Conf. (2006), Paper No. 1349Google Scholar
  109. 55.109
    C.F. Ruoff, S.B. Skaar (Eds.): Teleoperation and Robotics in Space, Progress in Astronautics and Aeronautics Series (AIAA, Notre Dame 1994)Google Scholar
  110. 55.110
    J. Field Robot. Special Issue on Space Robotics, Part I–Part III, 24(3–5), 167–434 (2007) Google Scholar
  111. 55.111
    G.F. Bekey (Ed.): International Assessment of Research and Development in Robotics (WTEC, Baltimore 2006), http://www.wtec.org/robotics/ Google Scholar
  112. 55.112
    NSRC (Ed.): Assessment of Options for Extending the Life of the Hubble Space Telescope, National Research Council: Final Rep. (National Academies Press, Washington 2005) Google Scholar
  113. 55.113
    A.M. Howard, E.W. Tunstel: Intelligence for Space Robotics (TSI, San Antonio 2006)Google Scholar
  114. 55.114
    T.B. Sheridan: Space teleoperation through time delay: Review and prognosis, IEEE Trans. Robotics Autom. 9(5), 592–606 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kazuya Yoshida
    • 1
  • Brian Wilcox
    • 2
  • Gerd Hirzinger
    • 3
  • Roberto Lampariello
    • 4
  1. 1.Department of Aerospace EngineeringTohoku UniversitySendaiJapan
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)WesslingGermany
  4. 4.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)WesslingGermany

Personalised recommendations