Industrial Robotics

  • Martin HägeleEmail author
  • Klas Nilsson
  • J. Norberto Pires
  • Rainer Bischoff
Part of the Springer Handbooks book series (SHB)


Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1.5 million units, some 171000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with different mechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be outlined. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.


Robot System Industrial Robot Automate Guide Vehicle Parallel Robot Programmable Logic Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







automated guided vehicle


computer-aided design


computer-aided manufacturing


committee draft


carbon fiber


computer numerical control


continuous path


cyber physical system


direct current


design for assembly




Deutsches Zentrum für Luft- und Raumfahrt


degree of freedom


flexible manufacturing system


friction stir welding


gas-shielded metal arc welding




International Federation of Robotics


International Organization for Standardization


information technology




mobile robot


mean time between failures


numerical control


offline programming


personal computer


parallel kinematic machine

parallel kinematics machine


programmable logic controller


point of interest


programmable universal machine for assembly


research and development


robot controller


selective compliance assembly robot arm


serial kinematic machines


video cassette recorder


  1. 54.1
    The International Federation of Robotics (IFR): World Robotics 2015. Statistics, Market Analysis, Forecasts, Case Studies and Profitability of Robot Investments (International Federation of Robotics, Frankfurt 2015) Google Scholar
  2. 54.2
    D. Bourne: My Boss the Robot, Scientific American 308(5), 37–41 (2013)CrossRefGoogle Scholar
  3. 54.3
    M.P. Groover: Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd edn. (Prentice-Hall, Upper Saddle River 2007)Google Scholar
  4. 54.4
    International Organization for Standardization: Standards catalogue, 25.040.30: Industrial robots. Manipulators, (2014)
  5. 54.5
    International Organization for Standardization: ISO 10218-1:2011. Robots and robotic devices – Safety requirements for industrial robots – Part 1: Robots, (2011)
  6. 54.6
    International Organization for Standardization: ISO 10218-2:2011. Robots and robotic devices – Safety requirements for industrial robots – Part 2: Robot systems and integration, (2011)
  7. 54.7
    L. Westerlund: The Extended Arm of Man. A History of the Industrial Robot (Informationsförlaget, Stockholm 2000)Google Scholar
  8. 54.8
    D. Hunt: Industrial Robotics Handbook (Industrial, New York 1983)Google Scholar
  9. 54.9
    V.D. Scheinman: Design of a Computer Controlled Manipulator, Ph.D. Thesis (Stanford Univ., Stanford 1969)Google Scholar
  10. 54.10
    International Federation of Robotics (IFR): History of Industrial Robots. From the first installation until today (International Federation of Robotics, Frankfurt 2012),
  11. 54.11
    H. Makino: Assembly robot, US4341502 A (1982)Google Scholar
  12. 54.12
    G. Boothroyd, P. Dewhurst, W. Knight: Product Design for Manufacture and Assembly, 3rd edn. (CRC, Boca Raton 2011)Google Scholar
  13. 54.13
    R. Curran, G. Mayer: The architecture of the AdeptOne${}^{{\text{\textregistered}}}$ direct-drive robot, Am. Control Conf., Boston (1985)Google Scholar
  14. 54.14
    X.-J. Liu, J. Wang: Performance evaluation of parallel mechanisms. In: Parallel Kinematics, Springer Tracts in Mechanical Engineering, (Springer, Berlin, Heidelberg 2014) pp. 185–238CrossRefGoogle Scholar
  15. 54.15
    S. Haddadin, S. Parusel, R. Belder, A. Albu-Schaeffer: It is (almost) all about human safety: A novel paradigm for robot design control and planning, Lect. Notes Comput. Sci. 8153, 202–215 (2013)CrossRefGoogle Scholar
  16. 54.16
    R. Bloss: Innovations like two arms, cheaper prices, easier programming, autonomous and collaborative operation are driving automation deployment in manufacturing and elsewhere, Assem. Autom. 33(4), 312–316 (2013)CrossRefGoogle Scholar
  17. 54.17
    S. Kock, T. Vitor, M. Björn, H. Jerregard, M. Källmann, I. Lundberg: Robot concept for scalable, flexible assembly automation, Proc. IEEE Int. Symp. Assem. Manuf. (ISAM), Tampere (2011)Google Scholar
  18. 54.18
    S. Bogh, M. Hvilshoj, M. Kristiansen, O. Madsen: Identifying and evaluating suitable tasks for autonomous industrial mobile manipulators (AIMM), Int. J. Adv. Manuf. Technol. 61(5-8), 713–726 (2012)CrossRefGoogle Scholar
  19. 54.19
    C.Y.K. Smith, L. Nalpantidis, X. Gratal, P. Qi, D. Dimarogonas, D. Kragic: Dual arm manipulation – a survey, Robot. and Auton. Syst. 60(10), 1340–1353 (2012)CrossRefGoogle Scholar
  20. 54.20
    P. Gorle, A. Clive: Positive Impact of Industrial Impacts on Employment (International Federation of Robotics, Frankfurt 2013)Google Scholar
  21. 54.21
    J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, A. Marrs: Disruptive technologies: Advances that will transform life, business, and the global economy, (2013)
  22. 54.22
    E. Westkämper: Towards the Re-Industrialization of Europe: A Concept for Manufacturing for 2030 (Springer, Berlin, Heidelberg, 2014)CrossRefGoogle Scholar
  23. 54.23
    M. Hedelind, M. Jackson: How to improve the use of industrial robots in lean manufacturing systems, J. Manuf. Technol. Manag. 22(7), 891–905 (2011)CrossRefGoogle Scholar
  24. 54.24
    H. Kagermann, W. Wahlster, J. Helbig: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. (Forschungsunion/acatech, Frankfurt 2013)
  25. 54.25
    R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe: The KUKA-DLR lightweight robot arm – a new reference platform for robotics research and manufacturing, 41st Int. Symp. Robot. 6th Ger. Conf. Robot. (ROBOTIK), Munich (2010)Google Scholar
  26. 54.26
    M. Hedelind, S. Kock: Requirements on flexible robot systems for small parts assembly: A case study, Proc. 2011 IEEE Int. Symp. Assem. Manuf. (ISAM), Tampere (2011) pp. 1–7Google Scholar
  27. 54.27
    S. Kinkel, E. Kirner, H. Armbruster, A. Jäger: Relevance and innovation of production-related services in manufacturing industry, Int. J. Technol. Manag. 55(3/4), 263–273 (2011)CrossRefGoogle Scholar
  28. 54.28
    International Organization for Standardization: ISO 8373. Robots and robotic devices – Vocabulary, (2012)
  29. 54.29
    R. Bloss: Review of manufacturing cells as they achieve high levels of autonomy and flexibility, Assem. Autom. 33(2), 112–116 (2013)CrossRefGoogle Scholar
  30. 54.30
    A. Kahn: The Encyclopedia of Work-related Illnesses, Injuries, and Health Issues (Facts On File, New York 2004)Google Scholar
  31. 54.31
    M. Wilson: Developments in robot applications for food manufacturing, Ind. Robot Int. J. 37(6), 498–502 (2010)CrossRefGoogle Scholar
  32. 54.32
    R. Moreno Masey, J. Gray, T. Dodd, D. Caldwell: Guidelines for the design of low-cost robots for the food industry, Ind. Robot Int. J. 37(6), 509–517 (2010)CrossRefGoogle Scholar
  33. 54.33
    K. Mathia: Principles and Applications in Cleanroom Automation (Cambridge Univ. Press, Cambridge 2010)Google Scholar
  34. 54.34
    D. Rossi, E. Bertolini, M. Fenaroli, F. Marciano, M. Alberti: A multi-criteria ergonomic and performance methodology for evaluating alternatives in “manuable” material handling, Int. J. Ind. Ergon. 43(4), 314–327 (2013)CrossRefGoogle Scholar
  35. 54.35
    D. Caldwell: Robotics and Automation in the Food Industry: Current and Future Technologies (Woodhead, Cambridge 2012)Google Scholar
  36. 54.36
    M. Palzkill, A. Verl: Object pose detection in industrial environment, Proc. 7th Ger. Conf. Robot. (ROBOTIK), Munich (2012)Google Scholar
  37. 54.37
    R. Mattone, M. Divona, A. Wolf: Sorting of items on a moving conveyor belt. Part 2: Performance evaluation and optimization of pick-and-place operations, Robot. Comput.-Integr. Manuf. 16(2/3), 81–90 (2000)CrossRefGoogle Scholar
  38. 54.38
    A. Grzesiak, R. Becker, A. Verl: The bionic handling assistant: A success story of additive manufacturing, Assem. Autom. 4, 329–333 (2011)CrossRefGoogle Scholar
  39. 54.39
    K. Ikeuchi, B. Horn, S. Nagata, T. Callahan, O. Fein: Picking up an object from a pile of objects, A.I. Memo No. 726 (Artif. Intell. Lab./MIT, Cambridge 1983)Google Scholar
  40. 54.40
    M.-Y. Liu, O. Tuzel, A. Veeraraghavan, T. Marks, R. Chellappa: Fast object localization and pose estimation in heavy clutter for robotic bin picking, Int. J. Robotics Res. 31(8), 951–973 (2012)CrossRefGoogle Scholar
  41. 54.41
    J.J. Rodrigues, J.-S. Kim, M. Furukawa, J. Xavier, P. Aguiar, T. Kanade: 6D pose estimation of textureless shiny objects using random ferns for bin picking, IEEE/RSJ Int. Conf. Intell. Robots Syst., Vilamoura (2012)Google Scholar
  42. 54.42
    Z. Pan, J. Polden, N. Larkin, S. Van Duin, J. Norrish: Recent progress on programming methods for industrial robots, Robot. Comput.-Integr. Manuf. 28(2), 87–94 (2012)CrossRefGoogle Scholar
  43. 54.43
    P. Klüger: Future body-in-white concepts. Increased sustainability with reduced investment and life-cycle-cost, Automot. Manuf. Solut., Shanghai (2013)Google Scholar
  44. 54.44
    M. Shah, R.D. Eastman, T. Hong: An overview of robot-sensor calibration methods for evaluation of perception systems, Workshop Perform. Metr. Intell. Syst., New York (2012)Google Scholar
  45. 54.45
    Deutsches Institut für Normung: DIN8593-0:2003-09: Manufacturing processes joining – Part 0: General; classification, subdivision, terms and definitions, (2003)
  46. 54.46
    N. Lohse, H. Hirani, S. Ratchev, M. Turitto: An ontology for the definition and validation of assembly processes for evolvable assembly systems, Proc. 6th IEEE Int. Symp. Assem. Task Plan. (2005) pp. 242–247Google Scholar
  47. 54.47
    K. Malecki: Vehicle body mounted door seals on a roll, Adhesion Adhesives Sealants 6(1), 23–25 (2009)Google Scholar
  48. 54.48
    S. Kock, T. Vittor, B. Matthias: Robot concept for scalable, flexible assembly automation, Proc. IEEE Int. Symp. Assem. Manuf. (ISAM), Tampere (2011)Google Scholar
  49. 54.49
    H. Chen, J. Wang, G. Zhang, T. Fuhlbrigge, S. Kock: High-precision assembly automation based on robot compliance, Int. J. Adv. Manuf. Technol. 45(9/10), 999–1006 (2009)CrossRefGoogle Scholar
  50. 54.50
    A. Stolt, M. Linderoth, A. Robertsson, R. Johansson: Force controlled robotic assembly without a force sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Saint Paul (2012)Google Scholar
  51. 54.51
  52. 54.52
    J. Domnick, Z. Yang, Q. Ye: Simulation of the film formation at a high-speed rotary bell atomizer used in automotive spray painting processes, Proc. 22nd Eur. Conf. Liq. At. Spray Syst. ILASS Eur., Como (2008)Google Scholar
  53. 54.53
    M. Jonsson, A. Stolt, A. Robertsson, S. von Gegerfelt, K. Nilsson: On force control for assembly and deburring of castings, Prod. Eng. 7(4), 351–360 (2013)CrossRefGoogle Scholar
  54. 54.54
    Z. Pan, H. Zhanh, Z. Zhu, J. Wang: Chatter analysis of robotic machining process, J. Mater. Process. Technol. 173(3), 301–309 (2006)CrossRefGoogle Scholar
  55. 54.55
    M. Weck, C. Brecher: Werkzeugmaschinen 2 – Konstruktion und Berechnung (Springer, Berlin, Heidelberg 2006)Google Scholar
  56. 54.56
    U. Schneider, M. Ansaloni, M. Drust, F. Leali, A. Verl: Experimental investigation of sources of error in robot machining, Int. Workshop Robot. Smart Manuf., Porto (2013)Google Scholar
  57. 54.57
    J. Wang, H. Zhang, T. Fuhlbrigge: Improving machining accuracy with robot deformation compensation, Int. Conf. Intell. Robots Syst., St. Louis (2009)Google Scholar
  58. 54.58
    C. Lehmann, B. Olofsson, K. Nilsson, M. Halbauer, M. Haage, A. Robertsson, O. Sornmo, U. Berger: Robot joint modeling and parameter identification using the clamping method, IFAC Conf. Manuf. Modell. Manag. Control, Saint Petersburg (2013)Google Scholar
  59. 54.59
    B. Saund, R. DeVlieg: High accuracy articulated robots with CNC control system, SAE Int. J. Aerosp. 6(2), 780–784 (2013)CrossRefGoogle Scholar
  60. 54.60
    U. Schneider, J.R. Diaz Posada, M. Drust, A. Verl: Position control of an industrial robot using an optical measurement system for machining purposes, Proc. 11th Int. Conf. Manuf. Res. (2013) pp. 307–312Google Scholar
  61. 54.61
    U. Schneider, B. Olofsson, O. Sörnmo, M. Drust, A. Robertsson, M. Hägele, R. Johansson: Integrated approach to robotic machining with macro/micro actuation, Robotics Comput.-Integr. Manuf. 30(6), 636–647 (2014)CrossRefGoogle Scholar
  62. 54.62
    International Organization for Standardization: ISO 12100:2010. Safety of machinery – General principles for design – Risk assessment and risk reduction, (2010)
  63. 54.63
    European Parliament: Directive 2006/42/EC of the European Parliament and the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast), (2006)
  64. 54.64
    Siemens: Easy Implementation of the European Machinery Directive, Functional Safety of Machines and Systems (Siemens, Fürth 2012) Google Scholar
  65. 54.65
    International Organization for Standardization: ISO 13849-1:2006. Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design, (2006)
  66. 54.66
    International Electrotechnical Commission: IEC 62061 ed1.0. Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems:!opendocument (2005)
  67. 54.67
    International Electrotechnical Commission: IEC 61508 ed2.0. Functional safety of electrical/electronic/programmable electronic safety-related systems, (2010)
  68. 54.68
    International Organization for Standardization: ISO 13855:2010. Safety of machinery – Positioning of safeguards with respect to the approach speeds of parts of the human body, (2010)
  69. 54.69
    International Organization for Standardization: ISO 13857:2008. Safety of machinery – Safety distances to prevent hazard zones being reached by upper and lower limbs, (2008)
  70. 54.70
    R. Hollmann, A. Rost, M. Hägele, A. Verl: A HMM-based approach to learning probability models of programming strategies for industrial robots, 2010 IEEE Int. Conf. Robotics Autom., Anchorage (2010)Google Scholar
  71. 54.71
    B. Lacevic, P. Rocco, A. Zanchettin: Safety assessment and control of robotic manipulators using danger field, IEEE Trans. Robotics 29(5), 1257–1270 (2013)CrossRefGoogle Scholar
  72. 54.72
    International Organization for Standardization: ISO/TC 184/SC 2. Robots and robotic devices, (2014)
  73. 54.73
    S. Oberer-Treitz, A. Puzik, A. Verl: Measuring the collision potential of industrial robots, 41st Int. Symp. Robot. 6th Germ. Conf. Robot. (2010)Google Scholar
  74. 54.74
    R. Behrens, N. Elkmann: Study on meaningful and verified thresholds for minimizing the consequences of human-robot collisions, IEEE Int. Conf. Robotics Autom. (ICRA) (2014) pp. 3378–3383Google Scholar
  75. 54.75
    S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, A. Albu-Schaeffer: On making robots understand safety: Embedding injury knowledge into control, Int. J. Robotics Res. 31(13), 1578–1602 (2012)CrossRefGoogle Scholar
  76. 54.76
    J. Marvel, J. Falco: Best practices and performance metrics using force control for robot assembly (Nat. Inst. Stand. Technol., Gaithersburg 2012)CrossRefGoogle Scholar
  77. 54.77
    R. Zurawski: Integration Technologies for Industrial Automated Systems (CRC, Boca Raton 2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Hägele
    • 1
    Email author
  • Klas Nilsson
    • 2
  • J. Norberto Pires
    • 3
  • Rainer Bischoff
    • 4
  1. 1.Robot SystemsFraunhofer IPAStuttgartGermany
  2. 2.Department of Computer ScienceLund Institute of TechnologyLundSweden
  3. 3.Department of Mechanical EngineeringUniversity of CoimbraCoimbraPortugal
  4. 4.Technology DevelopmentKUKA Roboter GmbHAugsburgGermany

Personalised recommendations