Multiple Mobile Robot Systems

  • Lynne E. ParkerEmail author
  • Daniela Rus
  • Gaurav S. Sukhatme
Part of the Springer Handbooks book series (SHB)


Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.


Mobile Robot Task Allocation Modular Robot Robot Team Individual Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







automated synthesis of multirobot task solutions through software reconfiguration


broadcast of local eligibility


coverage configuration protocol


cooperative multirobot observation of multiple moving target


contract net protocol


Cramér–Rao lower bound


Defense Advanced Research Projects Agency


distributed autonomous robotic systems


distributed robot architecture


Ecole Polytechnique Fédérale de Lausanne


European Union


global positioning system


gradient-based win or learn fast


instantaneous allocation


Institute of Electrical and Electronics Engineers


Laboratory for Analysis and Architecture of Systems


microelectromechanical system


maximum likelihood estimate


multirobot task


multirobot task allocation




networked infomechanical systems


probing environment and adaptive sleeping protocol


Rensselaer Polytechnic Institute


software for distributed robotics


shape memory alloy


single-robot task




time-extended assignment


transmission control protocol


unmanned aerial vehicle


University of California, Los Angeles


user datagram protocol


unmanned ground vehicle


University of Southern California


  1. 53.1
    T. Arai, E. Pagello, L.E. Parker: Editorial: Advances in multi-robot systems, IEEE Trans. Robotics Autom. 18(5), 655–661 (2002)CrossRefGoogle Scholar
  2. 53.2
    Y. Cao, A. Fukunaga, A. Kahng: Cooperative mobile robotics: Antecedents and directions, Auton. Robots 4, 1–23 (1997)CrossRefGoogle Scholar
  3. 53.3
    R.G. Brown, J.S. Jennings: A pusher/steerer model for strongly cooperative mobile robot manipulation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (1995) pp. 562–568Google Scholar
  4. 53.4
    D. Milutinović, P. Lima: Modeling and optimal centralized control of a large-size robotic population, IEEE Trans. Robotics 22(6), 1280–1285 (2006)CrossRefGoogle Scholar
  5. 53.5
    B. Khoshnevis, G.A. Bekey: Centralized sensing and control of multiple mobile robots, Comput. Ind. Eng. 35(3/4), 503–506 (1998)CrossRefGoogle Scholar
  6. 53.6
    M.J. Matarić: Issues and approaches in the design of collective autonomous agents, Robotics Auton. Syst. 16, 321–331 (1995)CrossRefGoogle Scholar
  7. 53.7
    E. Ostergaard, G.S. Sukhatme, M.J. Matarić: Emergent bucket brigading, 5th Int. Conf. Auton. Agents (2001)Google Scholar
  8. 53.8
    M. Matarić: Reinforcement learning in the multi-robot domain, Auton. Robots 4, 73–83 (1997)CrossRefGoogle Scholar
  9. 53.9
    L.E. Parker: ALLIANCE: An architecture for fault-tolerant multi-robot cooperation, IEEE Trans. Robotics Autom. 14(2), 220–240 (1998)MathSciNetCrossRefGoogle Scholar
  10. 53.10
    L.E. Parker: Lifelong adaptation in heterogeneous teams: Response to continual variation in individual robot performance, Auton. Robots 8(3), 239–267 (2000)CrossRefGoogle Scholar
  11. 53.11
    R. Simmons, S. Singh, D. Hershberger, J. Ramos, T. Smith: First results in the coordination of heterogeneous robots for large-scale assembly, Proc. ISER 7th Int. Symp. Exp. Robotics (2000)Google Scholar
  12. 53.12
    J. Deneubourg, S. Goss, G. Sandini, F. Ferrari, P. Dario: Self-organizing collection and transport of objects in unpredictable environments, Jpn.-USA Symp. Flex. Autom. (1990) pp. 1093–1098Google Scholar
  13. 53.13
    C.R. Kube, H. Zhang: Collective robotics: From social insects to robots, Adapt. Behav. 2(2), 189–219 (1993)CrossRefGoogle Scholar
  14. 53.14
    R. Beckers, O. Holland, J. Deneubourg: From local actions to global tasks: Stigmergy and collective robotics, Proc. 14th Int. Workshop Synth. Simul. Living Syst. (1994) pp. 181–189Google Scholar
  15. 53.15
    S. Onn, M. Tennenholtz: Determination of social laws for multi-agent mobilization, Artif. Intell. 95, 155–167 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 53.16
    B.B. Werger: Cooperation without deliberation: A minimal behavior-based approach to multi-robot teams, Artif. Intell. 110(2), 293–320 (1999)zbMATHCrossRefGoogle Scholar
  17. 53.17
    M.J. Huber, E. Durfee: Deciding when to commit to action during observation-based coordination, Proc. 1st Int. Conf. Multi-Agent Syst. (1995) pp. 163–170Google Scholar
  18. 53.18
    H. Asama, K. Ozaki, A. Matsumoto, Y. Ishida, I. Endo: Development of task assignment system using communication for multiple autonomous robots, J. Robotics Mechatron. 4(2), 122–127 (1992)CrossRefGoogle Scholar
  19. 53.19
    N. Jennings: Controlling cooperative problem solving in industrial multi-agent systems using joint intentions, Artif. Intell. 75(2), 195–240 (1995)CrossRefGoogle Scholar
  20. 53.20
    M. Tambe: Towards flexible teamwork, J. Artif. Intell. Res. 7, 83–124 (1997)Google Scholar
  21. 53.21
    R.T. Vaughan, K. Stoy, G.S. Sukhatme, M.J. Matarić: LOST: Localization-space trails for robot teams, IEEE Trans. Robotics Autom. 18(5), 796–812 (2002)CrossRefGoogle Scholar
  22. 53.22
    L.E. Parker: The Effect of action recognition and robot awareness in cooperative robotic teams, IEEE/RSJ Int. Conf. Intell. Robots Syst. (1995) pp. 212–219Google Scholar
  23. 53.23
    M. Matarić: Behavior-based control: Examples from navigation, learning, and group behavior, J. Exp. Theor. Artif. Intell. 19(2/3), 323–336 (1997)CrossRefGoogle Scholar
  24. 53.24
    B. MacLennan, G.M. Burghardt: Synthetic ethology and the evolution of cooperative communication, Adapt. Behav. 2, 161–188 (1993)CrossRefGoogle Scholar
  25. 53.25
    T. Balch, R.C. Arkin: Communiation in reactive multiagent robotic systems, Auton. Robots 1(1), 27–52 (1995)CrossRefGoogle Scholar
  26. 53.26
    G. Dudek, M. Jenkin, E. Milios, D. Wilkes: A taxonomy for multi-agent robotics, Auton. Robots 3, 375–397 (1996)CrossRefGoogle Scholar
  27. 53.27
    Z. Butler, K. Kotay, D.L. Rus, M. Vona: Self-reconfiguring robots, Commun. ACM 45(3), 39–45 (2002)Google Scholar
  28. 53.28
    O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal: Coordination and decentralized cooperation of multiple mobile manipulators, J. Robotic Syst. 13(11), 755–764 (1996)CrossRefGoogle Scholar
  29. 53.29
    L.E. Parker: The effect of heterogeneity in teams of 100+ mobile robots. In: Multi-Robot Systems Vol- ume II: From Swarms to Intelligent Automata, ed. by A. Schultz, L.E. Parker, F. Schneider (Kluwer, Dordrecht 2003)Google Scholar
  30. 53.30
    M. Yim, Y. Zhang, D. Duff: Modular robots, IEEE Spectrum 39(22), 30–34 (2002)CrossRefGoogle Scholar
  31. 53.31
    D. Estrin: Embedded, Everywhere (National Academies Press, Washington 2001)Google Scholar
  32. 53.32
    J. Parrish, S. Viscido, D. Grünbaum: Self-organized fish schools: An examination of emergent properties, Biol. Bull. 202, 296–305 (2002)CrossRefGoogle Scholar
  33. 53.33
    N. Franks, S. Pratt, E. Mallon, N. Britton, D. Sumpter: Information flow, opinion polling and collective intelligence in house-hunting social insects, Philos. Trans. R. Soc. B 357, 1567–1584 (2002)CrossRefGoogle Scholar
  34. 53.34
    R.L. Jeanne: Group size, productivity, and information flow in social wasps. In: Information Processing in Social Insects, ed. by C. Detrain, J.M. Pasteels, J.L. Deneubourg (Birkhauser, Basel 1999)Google Scholar
  35. 53.35
    T. Akimoto, N. Hagita: Introduction to a network robot system, IEEE Int. Symp. Intell. Signal Proc. Comm. (2006)Google Scholar
  36. 53.36
    Argo Floats: A global array of 3000 Free-Drifting Profiling Floats for Environmental Monitoring (Argo Information Center, Ramonville 2007)Google Scholar
  37. 53.37
    G.S. Sukhatme, A. Dhariwal, B. Zhang, C. Oberg, B. Stauffer, D.A. Caron: The design and development of a wireless robotic networked aquatic microbial observing system, Environ. Eng. Sci. 24(2), 205–215 (2006)CrossRefGoogle Scholar
  38. 53.38
    W. Kaiser, G. Pottie, M. Srivastava, G.S. Sukhatme, J. Villasenor, D. Estrin: Networked infomechanical systems (NIMS) for ambient intelligence. In: Ambient Intelligence, ed. by W. Weber, J.M. Rabaey, E. Aarts (Springer, Berlin, Heidelberg 2005)Google Scholar
  39. 53.39
    Amarss: Networked Minirhizotron Planning and Initial Deployment (Center for Embedded Networkedsensing, Los Angeles 2007)Google Scholar
  40. 53.40
    H. Singh, J. Catipovic, R. Eastwood, L. Freitag, H. Henriksen, F.F. Hover, D. Yoerger, J.G. Bellingham, B.A. Moran: An integrated approach to multiple AUV communications, navigation and docking, MTS/IEEE Conf. Proc. OCEANS (1996) pp. 59–64Google Scholar
  41. 53.41
    I. Vasilescu, M. Dunbabin, P. Corke, K. Kotay, D. Rus: Data collection, storage, and retrieval with an underwater sensor network, Proc. ACM Sens. Syst. (2005)Google Scholar
  42. 53.42
    N. Leonard, D. Paley, F. Lekien, R. Sepulchre, D.M. Fratantoni, R. Davis: Collective motion, sensor networks and ocean sampling, Proc. IEEE 95(1), 48–74 (2006)CrossRefGoogle Scholar
  43. 53.43
    D.O. Popa, A.S. Sanderson, R.J. Komerska, S.S. Mupparapu, D.R. Blidberg, S.G. Chappell: Adaptive sampling algorithms for multiple autonomous underwater vehicles, IEEE/OES AUV2004: A Workshop Multiple Auton. Underw. Veh. Oper. (2004)Google Scholar
  44. 53.44
    L. Chaimowicz, A. Cowley, B. Grocholsky, M.A. Hsieh, J.F. Keller, V. Kumar, C.J. Taylor: Deploying air-ground multi-robot teams in urban environments, 3rd Multi-Robot Syst. Workshop (2005)Google Scholar
  45. 53.45
    B. Grocholsky, R. Swaminathan, J. Keller, V. Kumar, G. Pappas: Information driven coordinated air-ground proactive sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)Google Scholar
  46. 53.46
    A. Howard, L.E. Parker, G.S. Sukhatme: Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection, Int. J. Robotics Res. 25(5/6), 431–447 (2006)CrossRefGoogle Scholar
  47. 53.47
    D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, B. Stewart: Distributed multirobot exploration and mapping, Proc. IEEE 94(7), 1325–1339 (2006)zbMATHCrossRefGoogle Scholar
  48. 53.48
    M.A. Hsieh, A. Cowley, J.F. Keller, L. Chaimowicz, B. Grocholsky, V. Kumar, C.J. Talyor, Y. Endo, R. Arkin, B. Jung, D. Wolf, G. Sukhatme, D.C. MacKenzie: Adaptive teams of autonomous aerial and ground robots for situational awareness, J. Field Robotics 24(11/12), 991–1014 (2007)CrossRefGoogle Scholar
  49. 53.49
    J. Seyfied, M. Szymanski, N. Bender, R. Estana, M. Theil, H. Worn: The I-swarm project: Intelligent small world autonomous robots for micro-manipulation, SAB 2004 Int. Workshop (2004)Google Scholar
  50. 53.50
    F. Mondada, G.C. Pettinaro, A. Guignard, I.W. Kwee, D. Floreano, J.-L. Deneubourg, S. Nofli, L.M. Gambardella, M. Dorigo: Swarm-Bot: A new distributed robotic concept, Auton. Robots 17, 193–221 (2004)CrossRefGoogle Scholar
  51. 53.51
    A. Ollero, S. Lacroix, L. Merino, J. Gancet, J. Wiklund, V. Remuss, I. Veiga, L.G. Gutierrez, D.X. Viegas, M.A. Gonzalez, A. Mallet, R. Alami, R. Chatila, G. Hommel, F.J. Colmenero, B. Arrue, J. Ferruz, R. Martinez de Dios, F. Caballero: Architecture and perception issues in the COMETS multi-UAV project, IEEE Robotics Autom. Mag. 12(2), 46–57 (2005)CrossRefGoogle Scholar
  52. 53.52
    Q. Li, D. Rus: Navigation protocols in sensor networks, ACM Trans. Sens. Netw. 1(1), 3–35 (2005)CrossRefGoogle Scholar
  53. 53.53
    R. Bajcsy: Active perception, Proc. IEEE 76, 996–1005 (1988)CrossRefGoogle Scholar
  54. 53.54
    T. Eren, D. Goldenberg, W. Whitley, Y.R. Yang, S. Morse, B.D.O. Anderson, P.N. Belhumeur: Rigidity, computation, and randomization of network localization, Proc. IEEE INFOCOM (2004)Google Scholar
  55. 53.55
    A. Hsieh, A. Cowley, V. Kumar, C.J. Taylor: Towards the deployment of a mobile robot network with end-to-end performance guarantees, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006)Google Scholar
  56. 53.56
    B. Grocholsky, S. Bayraktar, V. Kumar, C.J. Taylor, G. Pappas: Synergies in feature localization by air-ground teams, Proc. 9th Int. Symp. Exp. Robotics (2004)Google Scholar
  57. 53.57
    B. Grocholsky, E. Stump, V. Kumar: An extensive representation for range-only SLAM, Int. Symp. Exp. Robotics (2006)Google Scholar
  58. 53.58
    A. Howard, M.J. Matarić, G.S. Sukhatme: An incremental self-deployment algorithm for mobile sensor networks, Auton. Robots 13(2), 113–126 (2002)zbMATHCrossRefGoogle Scholar
  59. 53.59
    Z. Butler, D. Rus: Controlling mobile networks for monitoring events with coverage constraints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003)Google Scholar
  60. 53.60
    M. Chu, J. Reich, F. Zhao: Distributed attention for large video sensor networks, Intell. Distrib. Surveill. Syst. Semin (2004)Google Scholar
  61. 53.61
    B. Jung, G.S. Sukhatme: Tracking targets using multiple robots: The effect of environment occlusion, Auton. Robots 13(3), 191–205 (2002)zbMATHCrossRefGoogle Scholar
  62. 53.62
    R.M. Murray, K.J. Åström, S.P. Boyd, R.W. Brockett, G. Stein: Future directions in control in an information-rich world, IEEE Control Syst. Mag. (2003)Google Scholar
  63. 53.63
    A. Pant, P. Seiler, K. Hedrick: Mesh stability of look-ahead interconnected systems, IEEE Trans. Autom. Control 47, 403–407 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 53.64
    T. Sugar, J. Desai, V. Kumar, J.P. Ostrowski: Coordination of multiple mobile manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 3022–3027Google Scholar
  65. 53.65
    R.W. Beard, J. Lawton, F.Y. Hadaegh: A coordination architecture for spacecraft formation control, IEEE Trans. Control Syst. Technol. 9, 777–790 (2001)CrossRefGoogle Scholar
  66. 53.66
    A. Das, J. Spletzer, V. Kumar, C. Taylor: Ad hoc networks for localization and control, Proc. IEEE Conf. Decis. Control (2002) pp. 2978–2983Google Scholar
  67. 53.67
    J. Manyika, H. Durrant-Whyte: Data Fusion and Sensor Management: An Information-Theoretic Approach (Prentice Hall, Upper Saddle River 1994)Google Scholar
  68. 53.68
    H.G. Tanner, A. Jadbabaie, G.J. Pappas: Stable flocking of mobile agents, Part I: Fixed topology, Proc. IEEE Conf. Decis. Control (2003) pp. 2010–2015Google Scholar
  69. 53.69
    J.M. Fowler, R. D’Andrea: Distributed control of close formation flight, Proc. IEEE Conf. Decis. Control (2002) pp. 2972–2977Google Scholar
  70. 53.70
    J.P. Desai, J.P. Ostrowski, V. Kumar: Modeling and control of formations of nonholonomic mobile robots, IEEE Trans. Robotics Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  71. 53.71
    H.G. Tanner, V. Kumar, G.J. Pappas: Leader-to-formation stability, IEEE Trans. Robotics Autom. 20(3), 443–455 (2004)CrossRefGoogle Scholar
  72. 53.72
    S. Loizou, V. Kumar: Relaxed input to state stability properties for navigation function based systems, Proc. IEEE Conf. Decis. Control (2006)Google Scholar
  73. 53.73
    M. Batalin, G.S. Sukhatme: Coverage, exploration and deployment by a mobile robot and communication network, Telecommun. Syst. J. 26(2), 181–196 (2004)CrossRefGoogle Scholar
  74. 53.74
    K.J. O’hara, V. Bigio, S. Whitt, D. Walker, T.R. Balch: Evaluation of a large scale pervasive embedded network for robot path planning, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 2072–2077Google Scholar
  75. 53.75
    V. Kumar, N. Leonard, A.S. Morse (Eds.): Cooperative control, Lecture Notes in Control and Information Sciences, Vol. 309 (Springer, Berlin, Heidelberg 2004)Google Scholar
  76. 53.76
    J. Chen, S. Teller, H. Balakrishnan: Pervasive pose-aware applications and infrastructure, IEEE Comput. Graph. Appl. 23(4), 14–18 (2003)CrossRefGoogle Scholar
  77. 53.77
    A. Savvides, C.-C. Han, M. Srivastava: Dynamic fine-grained localization in ad-hoc networks of sensors, Proc. 7th Annu. Int. Conf. Mobile Comput. Netw. (MOBICOM-01) (2001) pp. 166–179Google Scholar
  78. 53.78
    D. Moore, J. Leonard, D. Rus, S.J. Teller: Robust distributed network localization with noisy range measurements, Proc. 2nd Int. Conf. Embed. Netw. Sens. Syst. (SenSys) (2004) pp. 50–61CrossRefGoogle Scholar
  79. 53.79
    C. Detweiler, J. Leonard, D. Rus, S. Teller: Passive mobile robot localization within a fixed beacon field, Proc. Int. Workshop Algorithmic Found. Robotics (2006)Google Scholar
  80. 53.80
    N. Bulusu, J. Heidemann, D. Estrin: Adaptive beacon placement, Proc. 21st Int. Conf. Distrib. Comput. Syst. (ICDCS-01) (2001) pp. 489–498Google Scholar
  81. 53.81
    S.N. Simic, S. Sastry: Distributed Localization in Wireless ad hoc Networks, Tech. Rep. UCB/ERL M02/26 (2001), Google Scholar
  82. 53.82
    P. Corke, R. Peterson, D. Rus: Communication-assisted localization and navigation for networked robots, Int. J. Robotics Res. 4(9), 116 (2005)Google Scholar
  83. 53.83
    R. Nagpal, H.E. Shrobe, J. Bachrach: Organizing a global coordinate system from local information on an ad hoc sensor network, Lect. Notes Comput. Sci. 2634, 333–348 (2003)zbMATHCrossRefGoogle Scholar
  84. 53.84
    R.K. Williams, A. Gasparri, A. Priolo, G.S. Sukhatme: Evaluating network rigidity in realistic systems: Decentralization, asynchronicity, and parallelization, IEEE Trans. Robotics 30(4), 950–965 (2014)CrossRefGoogle Scholar
  85. 53.85
    A. Howard, M.J. Matarić, G.S. Sukhatme: Putting the ‘i’ in ‘team’: An ego-centric approach to cooperative localization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 868–892Google Scholar
  86. 53.86
    A. Howard, M.J. Matarić, G.S. Sukhatme: Localization for mobile robot teams using maximum likelihood estimation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2002) pp. 434–459CrossRefGoogle Scholar
  87. 53.87
    R. Vidal, O. Shakernia, H.J. Kim, D.H. Shim, S. Sastry: Probabilistic pursuit-evasion games: Theory, implementation and experimental evaluation, IEEE Trans. Robotics Autom. 18(5), 662–669 (2002)CrossRefGoogle Scholar
  88. 53.88
    M. Batalin, M.H. Rahimi, Y. Yu, D. Liu, A. Kansal, G.S. Sukhatme, W. Kaiser, M. Hansen, G. Pottie, M. Srivastava, D. Estrin: Call and response: Experiments in sampling the environment, Proc. 2nd Int. Conf. Embed. Netw. Sens. Syst. (SenSys) (2004) pp. 25–38CrossRefGoogle Scholar
  89. 53.89
    M.H. Rahimi, W. Kaiser, G.S. Sukhatme, D. Estrin: Adaptive sampling for environmental field estimation using robotic sensors, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2005) pp. 747–753Google Scholar
  90. 53.90
    F. Zhao, L. Guibas: Wireless Sensor Networks: An Information Processing Approach (Morgan Kaufmann, New York 2004)Google Scholar
  91. 53.91
    F. Zhang, B. Grocholsky, V. Kumar: Formations for localization of robot networks, IEEE Int. Conf. Robotics Autom. (2004)Google Scholar
  92. 53.92
    R.K. Williams, G.S. Sukhatme: Constrained interaction and coordination in proximity-limited multiagent systems, IEEE Trans. Robotics 29(4), 930–944 (2013)CrossRefGoogle Scholar
  93. 53.93
    J. Cortes, S. Martinez, T. Karatas, F. Bullo: Coverage control for mobile sensing networks, IEEE Trans. Robotics Autom. 20(2), 243–255 (2004)CrossRefGoogle Scholar
  94. 53.94
    J. Cortes, S. Martinez, F. Bullo: Spatially-distributed coverage optimization and control with limited-range interactions, ESAIM Control Optim. Calc. Var. 11, 691–719 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 53.95
    M. Schwager, J. McLurkin, D. Rus: Distributed coverage control with sensory feedback for networked robots, Proc. Robotics Sci. Syst. (RSS) (2006)Google Scholar
  96. 53.96
    M. Schwager, J.-J. Slotine, D. Rus: Decentralized adaptive control for coverage for networked robots, Proc. Int. Conf. Robotics Autom. (2007)Google Scholar
  97. 53.97
    A. Krause, C. Guestrin, A. Gupta, J. Kleinberg: Near-optimal sensor placements: Maximizing information while minimizing communication cost, 5th Int. Conf. Inf. Process Sens. Netw. (IPSN) (2006)Google Scholar
  98. 53.98
    V. Chvatal: A combinatorial theorem in plane geometry, J. Comb. Theory Ser. 18, 39–41 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 53.99
    J. O’Rourke: Art Gallery Theorems and Algorithms (Oxford Univ. Press, New York 1987)zbMATHGoogle Scholar
  100. 53.100
    S. Fisk: A short proof of Chvatal’s watchmen theorem, J. Comb. Theory Ser. 24, 374 (1978)zbMATHCrossRefGoogle Scholar
  101. 53.101
    A. Jadbabaie, J. Lin, A.S. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 53.102
    S. Sinha, M. Pollefeys: Camera network calibration from dynamic silhouettes, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2004)Google Scholar
  103. 53.103
    R. Collins, A. Lipton, H. Fujiyoshi, T. Kanade: Algorithms for cooperative multisensor surveillance, Proc. IEEE 89(10), 1456–1477 (2001)CrossRefGoogle Scholar
  104. 53.104
    A. Kansal, W. Kaiser, G. Pottie, M. Srivastava, G.S. Sukhatme: Reconfiguration methods for mobile sensor networks, ACM Trans. Sens. Networks 3(4), 1–28 (2007)Google Scholar
  105. 53.105
    D. Payton, M. Daily, R. Estkowski, M. Howard, C. Lee: Pheromone robotics, Auton. Robots 11, 319–324 (2001)zbMATHCrossRefGoogle Scholar
  106. 53.106
    A. Howard, M.J. Matarić, G.S. Sukhatme: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem, Proc. Int. Symp. Distrib. Auton. Robotic Syst. (2002) pp. 299–308Google Scholar
  107. 53.107
    S. Poduri, G.S. Sukhatme: Constrained coverage for mobile sensor networks, IEEE Int. Conf. Robotics Autom. (2004) pp. 165–172Google Scholar
  108. 53.108
    R. Wattenhofer, L. Li, P. Bahl, Y.M. Wang: A cone-based distributed topology-control algorithm for wireless multi-hop networks, IEEE/ACM Trans. Netw. 13(1), 147–159 (2005)zbMATHCrossRefGoogle Scholar
  109. 53.109
    H. Zhang, J.C. Hou: On deriving the upper bound of alphalifetime for large sensor networks, ACM Trans. Sens. Netw. 1(6), 272–300 (2005)CrossRefGoogle Scholar
  110. 53.110
    S. Poduri, S. Pattem, B. Krishnamachari, G.S. Sukhatme: Using local geometry for tunable topology control in sensor networks, IEEE Trans. Mobile Comput. 8(2), 218–230 (2009)CrossRefGoogle Scholar
  111. 53.111
    M.A. Hsieh, V. Kumar: Pattern generation with multiple robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006)Google Scholar
  112. 53.112
    R.N. Smith, M. Schwager, S.L. Smith, B.H. Jones, D. Rus, G.S. Sukhatme: Persistent ocean monitoring with underwater gliders: Adapting spatiotemporal sampling resolution, J. Field Robotics 28(5), 714–741 (2011)CrossRefGoogle Scholar
  113. 53.113
    J. Das, F. Py, T. Maughan, T. O’Reilly, M. Messié, J. Ryan, G.S. Sukhatme, K. Rajan: Coordinated sampling of dynamic oceanographic features with AUVs and drifters, Int. J. Robotics Res. 31(5), 626–646 (2012)CrossRefGoogle Scholar
  114. 53.114
    G.A. Hollinger, S. Choudhary, P. Qarabaqi, C. Murphy, U. Mitra, G.S. Sukhatme, M. Stojanovic, H. Singh, F. Hover: Underwater data collection using robotic sensor networks, IEEE J. Sel. Areas Commun. 30(5), 899–911 (2012)CrossRefGoogle Scholar
  115. 53.115
    F. Ye, G. Zhong, J. Cheng, L. Zhang, S. Lu: Peas: A robust energy conserving protocol for long-lived sensor networks, Int. Conf. Distrib. Comput. Syst. (2003)Google Scholar
  116. 53.116
    X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, C. Gill: Integrated coverage and connectivity configuration in wireless sensor networks, 1st ACM Conf. Embed. Netw. Sens. Syst. (SenSys) (2003)Google Scholar
  117. 53.117
    D. Tian, N.D. Georganas: Connectivity maintenance and coverage preservation in wireless sensor networks, Ad Hoc Networks 3(6), 744–761 (2005)CrossRefGoogle Scholar
  118. 53.118
    G. Theraulaz, S. Goss, J. Gervet, J.-L. Deneubourg: Task differentiation in Polistes wasp colonies: A model for self-organizing groups of robots, Proc. 1st Int. Conf. Simul. Adapt. Behav. (1990) pp. 346–355Google Scholar
  119. 53.119
    L. Steels: Cooperation Between Distributed Agents Through Self-Organization, Proc. IEEE Int. Workshop Intell. Robots Syst. (IROS) (1990)Google Scholar
  120. 53.120
    A. Drogoul, J. Ferber: From tom thumb to the dockers: Some experiments with foraging robots, Proc. 2nd Int. Conf. Simul. Adapt. Behav. (1992) pp. 451–459Google Scholar
  121. 53.121
    M.J. Matarić: Designing emergent behaviors: From local interactions to collective intelligence, Proc. 2nd Int. Conf. Simul. Adapt. Behav. (1992) pp. 432–441Google Scholar
  122. 53.122
    G. Beni, J. Wang: Swarm intelligence in cellular robotics systems, Proc. NATO Adv. Workshop Robots Biol. Syst. (1989)Google Scholar
  123. 53.123
    D. Stilwell, J. Bay: Toward the development of a material transport system using swarms of ant-like robots, Proc. IEEE Int. Conf. Robotics Autom. (1993) pp. 766–771CrossRefGoogle Scholar
  124. 53.124
    T. Fukuda, S. Nakagawa, Y. Kawauchi, M. Buss: Self organizing robots based on cell structures – CEBOT, Proc. IEEE Int. Workshop Intell. Robots Syst. (1988) pp. 145–150CrossRefGoogle Scholar
  125. 53.125
    J.H. Reif, H.Y. Wang: Social Potential fields: A distributed behavior control for autonomous robots, Robotics Auton. Syst. 27(3), 171–194 (1999)CrossRefGoogle Scholar
  126. 53.126
    L.E. Parker: Designing control laws for cooperative agent teams, Proc. IEEE Int. Cont. Robotics Autom. (1993) pp. 582–587CrossRefGoogle Scholar
  127. 53.127
    K. Sugihara, I. Suzuki: Distributed algorithms for formation of goemetric patterns with many mobile robots, J. Robotic Syst. 13(3), 127–139 (1996)zbMATHCrossRefGoogle Scholar
  128. 53.128
    V. Gazi: Swarm aggregations using artificial potentials and sliding-mode control, IEEE Trans. Robotics 21(6), 1208–1214 (2005)CrossRefGoogle Scholar
  129. 53.129
    J. McLurkin, J. Smith: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots, Symp. Distrib. Auton. Robots Syst. (2004)Google Scholar
  130. 53.130
    D. Gage: Randomized search strategies with imperfect sensors, Proc. SPIE Mobile Robots VIII (1993) pp. 270–279Google Scholar
  131. 53.131
    T. Balch: The impact of diversity on performance in robot foraging, Proc. 3rd Ann. Conf. Auton. Agents (1999) pp. 92–99CrossRefGoogle Scholar
  132. 53.132
    Z.J. Butler, A.A. Rizzi, R.L. Hollis: Cooperative coverage of rectilinear environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000)Google Scholar
  133. 53.133
    A.I. Mourikis, S.I. Roumeliotis: Performance analysis of multirobot cooperative localization, IEEE Trans. Robotics 22(4), 666–681 (2006)CrossRefGoogle Scholar
  134. 53.134
    R. Grabowski, L.E. Navarro-Serment, C.J. Paredis, P.K. Khosla: Heterogeneous teams of modular robots for mapping and exploration, Auton. Robots 8(3), 271–298 (2000)CrossRefGoogle Scholar
  135. 53.135
    M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby, P. Griffin, A. Kleywegt: Robot exploration with combinatorial auctions, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 1957–1962Google Scholar
  136. 53.136
    J. Kim, J.M. Esposito, V. Kumar: An RRT-based algorithm for testing and validating mulit-robot controllers, Proc. Robotics Sci. Syst. I (2005)Google Scholar
  137. 53.137
    Z. Cao, M. Tin, L. Li, N. Gu, S. Wang: Cooperative hunting by distributed mobile robots based on local interaction, IEEE Trans. Robotics 22(2), 403–407 (2006)Google Scholar
  138. 53.138
    R.W. Beard, T.W. McLain, M. Goodrich: Coordinated target assignment and intercept for unmanned air vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 2581–2586Google Scholar
  139. 53.139
    J. Clark, R. Fierro: Cooperative hybrid control of robotic sensors for perimeter detection and tracking, Proc. Am. Control Conf. (2005) pp. 3500–3505Google Scholar
  140. 53.140
    P. Stone, M. Veloso: A layered approach to learning client behaviors in the RoboCup soccer server, Appl. Artif. Intell. 12, 165–188 (1998)CrossRefGoogle Scholar
  141. 53.141
    J. McLurkin: Stupid Robot Tricks: Behavior-Based Distributed Algorithm Library for Programming Swarms of Robots, Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 2004)Google Scholar
  142. 53.142
    F. Mondada, L.M. Gambardella, D. Floreano, S. Nolfi, J.L. Deneuborg, M. Dorigo: The cooperation of swarm-bots: Physical interactions in collective robotics, IEEE Robotics Autom. Mag. 12(2), 21–28 (2005)CrossRefGoogle Scholar
  143. 53.143
    T.W. Mather, M.A. Hsieh: Macroscopic modeling of stochastic deployment policies with time delays for robot ensembles, Int. J. Robotics Res. 30(5), 590–600 (2011)CrossRefGoogle Scholar
  144. 53.144
    X.C. Ding, M. Kloetzer, Y. Chen, C. Belta: Automatic deployment of robot teams, IEEE Robotics Autom. Mag. 18(3), 75–86 (2022)CrossRefGoogle Scholar
  145. 53.145
    F.S. Melo, M. Veloso: Decentralized MDPs with sparse interactions, Artif. Intell. 175(11), 1757–1789 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  146. 53.146
    P. Tsiotras, L.I.R. Castro: Extended multi-agent consensus protocols for the generation of geometric patterns in the plane, Am. Controls Conf. (2011) pp. 3850–3855Google Scholar
  147. 53.147
    K. Cheng, P. Dasgupta: Weighted voting game based multi-robot team formation for distributed area coverage, Proc. 3rd Int. Symp. Pract. Cognit. Agents Robots (2010) pp. 9–15CrossRefGoogle Scholar
  148. 53.148
    A.A. Taheri, M. Afshar, M. Asadpour: Influence maximization for informed agents in collective behavior, Distrib. Auton. Robotic Syst. (2013) pp. 389–402CrossRefGoogle Scholar
  149. 53.149
    M.A. Hsieh, A. Halász, E.D. Cubuk, S. Schoenholz, A. Martinoli: Specialization as an optimal strategy under varying external conditions, Proc. IEEE Int. Conf. Robotics Autom. (2009) pp. 1941–1946Google Scholar
  150. 53.150
    N. Hoff, R. Wood, R. Nagpal: Distributed colony-level algorithm switching for robot swarm foraging, Distrib. Auton. Robotic Syst. (2013) pp. 417–430CrossRefGoogle Scholar
  151. 53.151
    A. Winfield, J. Nembrini: Safety in numbers: Fault-tolerance in robot systems, Int. J. Model. Identif. Control 1(1), 30–37 (2006)CrossRefGoogle Scholar
  152. 53.152
    T. Fukuda, S. Nakagawa: Dynamically reconfigurable robotic system, IEEE Int. Conf. Robotics Autom. (1988) pp. 1581–1586Google Scholar
  153. 53.153
    M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, G.S. Chirikjian: Modular self-reconfigurable robot systems: Challenges and opportunities for the future, IEEE Robotics Autom. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar
  154. 53.154
    K. Gilpin, D. Rus: Modular robot systems: From self-assembly to self-disassembly, IEEE Robotics Autom. Mag. 17(3), 38–53 (2010)CrossRefGoogle Scholar
  155. 53.155
    M. Yim: A reconfigurable modular robot with many modes of locomotion, JSME Int. Conf. Adv. Mechatron. (1993) pp. 283–288Google Scholar
  156. 53.156
    M. Yim: New locomotion gaits, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 2508–2514Google Scholar
  157. 53.157
    A. Castano, P. Will: Mechanical design of a module for reconfigurable robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 2203–2209Google Scholar
  158. 53.158
    W.-M. Shen, P. Will: Docking in self-reconfigurable robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 1049–1054Google Scholar
  159. 53.159
    A. Castano, A. Behar, P. Will: The conro modules for reconfigurable robots, IEEE Trans. Mechatron. 7(4), 403–409 (2002)CrossRefGoogle Scholar
  160. 53.160
    S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, S. Kokaji: M-TRAN: Self-reconfigurable modular robotic system, IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  161. 53.161
    A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, S. Kokaji: Automatic locomotion design and experiments for a modular robotic system, IEEE/ASME Trans. Mechatron. 10(3), 314–325 (2005)CrossRefGoogle Scholar
  162. 53.162
    H. Kurokawa, K. Tomita, A. Kamimura, E. Yoshida, S. Kokahji, S. Murata: Distributed self-reconfiguration control of modular robot M-TRAN, IEEE Int. Conf. Mechatron. Autom. (2005) pp. 254–259Google Scholar
  163. 53.163
    S. Murata, K. Kakomura, H. Kurokawa: Docking experiments of a modular robot by visual feedback, Proc. IEEE/RSJ Int. Conf. Intell. Robots Systems (IROS) (2006) pp. 625–630Google Scholar
  164. 53.164
    D. Marbach, A.J. Ijspeert: Online optimization of modular robot locomotion, IEEE Int. Conf. Mechatron. Autom. (2005) pp. 248–253Google Scholar
  165. 53.165
    E.H. Østergaard, H.H. Lund: Evolving control for modular robotic units, IEEE Int. Symp. Comput. Intell. Robotics Autom. (2003) pp. 886–892Google Scholar
  166. 53.166
    M.W. Jørgensen, E.H. Østergaard, H.H. Lund: Modular ATRON: Modules for a self-reconfigurable robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 2068–2073Google Scholar
  167. 53.167
    B. Salemi, M. Moll, W.-M. Shen: SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 3636–3641Google Scholar
  168. 53.168
    M. Yim, D.G. Duff, K.D. Roufas: PolyBot: A modular reconfigurable robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 514–520Google Scholar
  169. 53.169
    M. Yim, Y. Zhang, K. Roufas, D. Duff, C. Eldershaw: Connecting and disconnecting for self–reconfiguration with PolyBot, IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2003)CrossRefGoogle Scholar
  170. 53.170
    M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan, C.J. Taylor: Towards robotic self-reassembly after explosion, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2007) pp. 2767–2772Google Scholar
  171. 53.171
    V. Zykov, E. Mytilinaios, M. Desnoyer, H. Lipson: Evolved and designed self-reproducing modular robotics, IEEE Trans. Robotics 23(2), 308–319 (2007)CrossRefGoogle Scholar
  172. 53.172
    P.J. White, M.L. Posner, M. Yim: Strength analysis of miniature folded right angle tetrahedron chain programmable matter, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 2785–2790Google Scholar
  173. 53.173
    G.S. Chirikjian: Kinematics of a metamorphic robotic system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 449–455Google Scholar
  174. 53.174
    G. Chirikjian, A. Pamecha, I. Ebert-Uphoff: Evaluating efficiency of self-reconfiguration in a class of modular robots, J. Robotic Syst. 13(5), 317–388 (1996)zbMATHCrossRefGoogle Scholar
  175. 53.175
    A. Pamecha, I. Ebert-Uphoff, G.S. Chirikjian: Useful metrics for modular robot motion planning, IEEE Trans. Robotics Autom. 13(4), 531–545 (1997)zbMATHCrossRefGoogle Scholar
  176. 53.176
    J.E. Walter, E.M. Tsai, N.M. Amato: Algorithms for fast concurrent reconfiguration of hexagonal metamorphic robots, IEEE Trans. Robotics 21(4), 621–631 (2005)CrossRefGoogle Scholar
  177. 53.177
    S. Murata, H. Kurokawa, S. Kokaji: Self-assembling machine, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 441–448Google Scholar
  178. 53.178
    E. Yoshida, S. Murata, K. Tomita, H. Kurokawa, S. Kokaji: Distributed formation control for a modular mechanical system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1997) pp. 1090–1097Google Scholar
  179. 53.179
    H. Kurokawa, S. Murata, E. Yoshida, K. Tomita, S. Kokaji: A 3-D self-reconfigurable structure and experiments, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1998) pp. 860–865Google Scholar
  180. 53.180
    E. Yoshida, S. Murata, S. Kokaji, A. Kamimura, K. Tomita, H. Kurokawa: Get back in shape! A hardware prototype self-reconfigurable modular microrobot that uses shape memory alloy, IEEE Robotics Autom. Mag. 9(4), 54–60 (2002)CrossRefGoogle Scholar
  181. 53.181
    J. Gargus, B. Kim, I. Llamas, J. Rossignac, C. Shaw: Finger Sculpting with Digital Clay, Tech. Rep. GIT-GVU-02-22 (2002)Google Scholar
  182. 53.182
    K. Kotay, D. Rus, M. Vona, C. McGray: The self-reconfiguring robotic molecule, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 424–431Google Scholar
  183. 53.183
    K. Kotay, D. Rus: Motion synthesis for the self-reconfiguring robotic molecule, IEEE Int. Conf. Intell. Robots Syst. (1998) pp. 843–851Google Scholar
  184. 53.184
    K. Kotay, D. Rus: Algorithms for self-reconfiguring molecule motion planning, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000)Google Scholar
  185. 53.185
    Z.J. Butler, K. Kotay, D. Rus, K. Tomita: Generic decentralized control for lattice-based self-reconfigurable robots, Int. J. Robotics Res. 23(9), 919–937 (2004)CrossRefGoogle Scholar
  186. 53.186
    D. Rus, M. Vona: A basis for self-reconfiguring robots using crystal modules, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 2194–2202Google Scholar
  187. 53.187
    D. Rus, M. Vona: Crystalline robots: Self-reconfiguration with compressible unit modules, Int. J. Robotics Res. 22(9), 699–715 (2003)zbMATHCrossRefGoogle Scholar
  188. 53.188
    J.W. Suh, S.B. Homans, M. Yim: Telecubes: Mechanical design of a module for self-reconfigurable robotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 4095–4101Google Scholar
  189. 53.189
    C.-J. Chiang, G.S. Chirikjian: Modular robot motion planning using similarity metrics, Auton. Robots 10, 91–106 (2001)zbMATHCrossRefGoogle Scholar
  190. 53.190
    M. Koseki, K. Minami, N. Inou: Cellular robots forming a mechanical structure (evaluation of structural formation and hardware design of CHOBIE II), Proc. 7th Int. Symp. Distrib. Auton. Robotic Syst. (DARS) (2004) pp. 131–140Google Scholar
  191. 53.191
    B.K. An: Em-cube: Cube-shaped, self-reconfigurable robots sliding on structure surfaces, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 3149–3155Google Scholar
  192. 53.192
    C. Ünsal, P.K. Khosla: Mechatronic design of a modular self-reconfiguring robotic system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 1742–1747Google Scholar
  193. 53.193
    K.C. Prevas, C. Ünsal, M.Ö. Efe, P.K. Khosla: A hierarchical motion planning strategy for a uniform self-reconfigurable modular robotic system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 787–792Google Scholar
  194. 53.194
    K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda, I. Endo: Self-organizing collective robots with morphogenesis in a vertical plane, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 2858–2863Google Scholar
  195. 53.195
    S. Goldstein, J. Campbell, T. Mowry: Programmable Matter, IEEE Computer 38(6), 99–101 (2005)CrossRefGoogle Scholar
  196. 53.196
    S.C. Goldstein, J.D. Campbell, T.C. Mowry: Programmable matter, Computer 38(6), 99–101 (2005)CrossRefGoogle Scholar
  197. 53.197
    M.E. Karagozler, S.C. Goldstein, J.R. Reid: Stress-driven MEMS assembly + electrostatic forces = 1 mm diameter robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 2763–2769Google Scholar
  198. 53.198
    P. Pillai, J. Campbell, G. Kedia, S. Moudgal, K. Sheth: A 3-D fax machine based on claytronics, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 4728–4735Google Scholar
  199. 53.199
    P. White, K. Kopanski, H. Lipson: Stochastic self-reconfigurable cellular robotics, IEEE Conf. Robotics Autom. (2004) pp. 2888–2893Google Scholar
  200. 53.200
    P. White, V. Zykov, J. Bongard, H. Lipson: Three dimensional stochastic reconfiguration of modular robots, Robotics Sci. Syst. (2005)Google Scholar
  201. 53.201
    M. Tolley, J. Hiller, H. Lipson: Evolutionary design and assembly planning for stochastic modular robots, Proc. IEEE/RSJ. Int. Conf. Intell. Robotics Syst. (IROS) (2009) pp. 73–78Google Scholar
  202. 53.202
    M. Tolley, H. Lipson: Fluidic manipulation for scalable stochastic 3-D assembly of modular robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 2473–2478Google Scholar
  203. 53.203
    M.T. Tolley, H. Lipson: Programmable 3-D stochastic fluidic assembly of cm-scale modules, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 4366–4371Google Scholar
  204. 53.204
    K. Gilpin, K. Kotay, D. Rus, I. Vasilescu: Miche: Modular shape formation by self-disassembly, Int. J. Robotics Res. 27, 345–372 (2008)CrossRefGoogle Scholar
  205. 53.205
    R. Oung, F. Bourgault, M. Donovan, R. D’Andrea: The distributed flight array, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010)Google Scholar
  206. 53.206
    G.J. Hamlin, A.C. Sanderson: Tetrobot: A modular system for hyper-redundant parallel robotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 154–159Google Scholar
  207. 53.207
    A. Lyder, R.F.M. Garcia, K. Stoy: Mechanical design of Odin, an extendable heterogeneous deformable modular robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 883–888Google Scholar
  208. 53.208
    A. Lyder, H.G. Peterson, K. Stoy: Representation and shape estimation of Odin, a parallel under-actuated modular robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 5275–5280Google Scholar
  209. 53.209
    C.-H. Yu, K. Haller, D. Ingber, R. Nagpal: Morpho: A self-deformable modular robot inspired by cellar structure, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 3571–3578Google Scholar
  210. 53.210
    M. Shimizu, A. Ishiguro, T. Kawakatsu: A modular robot that exploits a spontaneous connectivity control mechanism, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 1899–1904Google Scholar
  211. 53.211
    M. Shimizu, T. Mori, A. Ishiguro: A Development of a modular robot that enables adaptive reconfiguration, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 174–179Google Scholar
  212. 53.212
    S. Funiak, P. Pillai, M.P. Ashley-Rollman, J.D. Campbell, S.C. Goldstein: Distributed localization of modular robot ensembles, Int. J. Robotics Res. 28(8), 946–961 (2009)CrossRefGoogle Scholar
  213. 53.213
    M. Rubenstein, W.-M. Shen: Scalable self-assembly and self-repair in a collective of robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 1484–1489Google Scholar
  214. 53.214
    M. Rubenstein, W.-M. Shen: Automatic scalable size selection for the shape of a distributed robotic collective, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 508–513Google Scholar
  215. 53.215
    M. Rubenstein, C. Ahler, R. Nagpal: Kilobot: A low cost scalable robot system for collective behaviors, IEEE Int. Conf. Robotics Autom. (ICRA) (2012)Google Scholar
  216. 53.216
    E. Hawkes, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, D. Rus, R.J. Wood: Programmable matter by folding, Proc. Natl. Acad. Sci. USA 107(28), 12441–12445 (2010)CrossRefGoogle Scholar
  217. 53.217
    B. An, D. Rus: Programming and controlling self-folding sheets, IEEE Int. Conf. Robotics Autom. (ICRA) (2012)Google Scholar
  218. 53.218
    G. Whitesides, B. Grzybowski: Self-assembly at all scales, Sci. USA 295, 2418–2421 (2002)Google Scholar
  219. 53.219
    G.M. Whitesides, M. Boncheva: Beyond molecules: Self-assembly of mesoscope and macroscopic components, Proc. Natl. Acad. Sciences 99(8), 4769–4774 (2002)CrossRefGoogle Scholar
  220. 53.220
    D.H. Garcias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides: Forming electrical networks in three dimensions by self-assembly, Science 289(5482), 1170–1172 (2000)CrossRefGoogle Scholar
  221. 53.221
    S. Miyashita, M. Kessler, M. Lungarella: How morphology affects self-assembly in a stochastic modular robot, IEEE Int. Conf. Robotics Autom. (2008) pp. 3533–3538Google Scholar
  222. 53.222
    K. Hosokawa, I. Shimoyama, H. Miura: Dynamics of self-assembling systems: Analogy with chemical kinematics, Artif. Life 1(4), 413–427 (1994)CrossRefGoogle Scholar
  223. 53.223
    M. Shimizu, K. Suzuki: A Self-repairing structure for modules and its control by vibrating actuation mechanisms, IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 4281–4286Google Scholar
  224. 53.224
    P.W.K. Rothemund, E. Winfree: The program-size complexity of self-assembled squares, 32rd Annu. ACM Symp. Theory Comput. (2000) pp. 459–468Google Scholar
  225. 53.225
    L. Adleman, Q. Cheng, A. Goel, M.-D. Huang: Running time and program size for self-assembled squares, 33rd Annu. ACM Symp. Theory Comput. (2001) pp. 740–748Google Scholar
  226. 53.226
    G. Aggarwal, M.H. Goldwasser, M.-Y. Kao, R.T. Schweller: Complexities for generalized models of self-assembly, 15th Annu. ACM-SIAM Symp. Discrete Algorithms (2004) pp. 880–889Google Scholar
  227. 53.227
    J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, T. Nguyen: Programmable parts: A demonstration of the grammatical approach to self-organization, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 3684–3691Google Scholar
  228. 53.228
    S. Griffith, D. Goldwater, J.M. Jacobson: Robotics: Self-replication from random parts, Nature 437, 636 (2005)CrossRefGoogle Scholar
  229. 53.229
    C. Jones, M.J. Matarić: From local to global behavior in intelligent self-assembly, IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 721–726Google Scholar
  230. 53.230
    J. Kelly, H. Zhang: Combinatorial optimization of sensing for rule-based planar distributed assembly, IEEE Int. Conf. Intell. Robots Syst. (2006) pp. 3728–3734Google Scholar
  231. 53.231
    J. Werfel: Anthills Built to Order: Automating Construction with Artificial Swarms, Ph.D. Thesis (MIT, Cambridge 2006)Google Scholar
  232. 53.232
    B. Donald, C.G. Levey, C.D. McGray, I. Paprotny, D. Rus: An untethered, electrostatic, globally controllable MEMS micro-robot, J. Microelectromech. Syst. 15(1), 1–15 (2006)CrossRefGoogle Scholar
  233. 53.233
    B.R. Donald, C.G. Levey, I. Paprotny: Planar microassembly by parallel actuator of MEMS microrobots, J. Microelectromech. Syst. 17(4), 789–808 (2008)CrossRefGoogle Scholar
  234. 53.234
    C. Pawashe, S. Floyd, M. Sitti: Assembly and disassembly of magnetic mobile micro-robots towards 2-D reconfigurable micro-systems, Int. Symp. Robotics Res. (2009)Google Scholar
  235. 53.235
    N. Napp, S. Burden, E. Klavins: The statistical dynamics of programmed self-assembly, IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1469–1476Google Scholar
  236. 53.236
    K. Gilpin, D. Rus: A distributed algorithm for 2-D shape duplication with smart pebble robots, IEEE Int. Conf. Robotics Autom. (ICRA) (2012)Google Scholar
  237. 53.237
    K. Gilpin, A. Knaian, D. Rus: Robot pebbles: One centimeter robotic modules for programmable matter through self-disassembly, IEEE Int. Conf. Robotics Autom. (ICRA) (2010)Google Scholar
  238. 53.238
    L.E. Parker: The effect of heterogeneity in teams of 100+ mobile robots. In: Multi-Robot Systems Volume II: From Swarms to Intelligent Automata, ed. by A. Schultz, L.E. Parker, F. Schneider (Kluwer, Dordrecht 2003)Google Scholar
  239. 53.239
    T. Balch: Hierarchic social entropy: An information theoretic measure of robot team diversity, Auton. Robots 8(3), 209–238 (2000)CrossRefGoogle Scholar
  240. 53.240
    D. Jung, A. Zelinsky: Grounded symbolic communication between heterogeneous cooperating robots, Auton. Robots 8(3), 269–292 (2000)CrossRefGoogle Scholar
  241. 53.241
    R.R. Murphy: Marsupial robots for urban search and rescue, IEEE Intell. Syst. 15(2), 14–19 (2000)CrossRefGoogle Scholar
  242. 53.242
    G. Sukhatme, J.F. Montgomery, R.T. Vaughan: Experiments with cooperative aerial-ground robots. In: Robot Teams: From Diversity to Polymorphism, ed. by T. Balch, L.E. Parker (A K Peters, Natick 2002)Google Scholar
  243. 53.243
    L.E. Parker, B. Kannan, F. Tang, M. Bailey: Tightly-coupled navigation assistance in heterogeneous multi-robot teams, Proc. IEEE Int. Conf. Intell. Robots Syst. (2004)Google Scholar
  244. 53.244
    A. Howard, L.E. Parker, G.S. Sukhatme: Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment, and detection, Int. J. Robotics Res. 25, 431–447 (2006)CrossRefGoogle Scholar
  245. 53.245
    L. Chaimowicz, B. Grocholsky, J.F. Keller, V. Kumar, C.J. Taylor: Experiments in multirobot air-ground coordination, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)Google Scholar
  246. 53.246
    L.E. Parker, F. Tang: Building multi-robot coalitions through automated task solution synthesis, Proc. IEEE 94(7), 1289–1305 (2006)CrossRefGoogle Scholar
  247. 53.247
    R. Zlot, A. Stentz: Market-based multirobot coordination for complex tasks, Int. J. Robotics Res. 25(1), 73–101 (2006)CrossRefGoogle Scholar
  248. 53.248
    J. Jennings, C. Kirkwood-Watts: Distributed mobile robotics by the method of dynamic teams. In: Distributed Autonomous Robotic Systems 3, ed. by T. Lueth, R. Dillmann, P. Dario, H. Wörn (Springer, Berlin, Heidelberg 1998)Google Scholar
  249. 53.249
    E. Pagello, A. D’Angelo, E. Menegatti: Cooperation issues and distributed sensing for multirobot systems, Proc. IEEE 94, 1370–1383 (2006)CrossRefGoogle Scholar
  250. 53.250
    B. Gerkey, M.J. Matarić: A formal analysis and taxonomy of task allocation in multi-robot systems, Int. J. Robotics Res. 23(9), 939–954 (2004)CrossRefGoogle Scholar
  251. 53.251
    D. Gale: The Theory of Linear Economic Models (McGraw-Hill, New York 1960)zbMATHGoogle Scholar
  252. 53.252
    E. Balas, M.W. Padberg: On the set-covering problem, Oper. Res. 20(6), 1152–1161 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  253. 53.253
    B.B. Werger, M.J. Matarić: Broadcast of local eligibility for multi-target observation. In: Distributed Autonomous Robotic Systems 4, ed. by L.E. Parker, G. Bekey, J. Barhen (Springer, Tokyo 2000)Google Scholar
  254. 53.254
    R.A. Brooks: A robust layered control system for a mobile robot, IEEE J. Robotics Autom. RA-2(1), 14–23 (1986)CrossRefGoogle Scholar
  255. 53.255
    S. Botelho, R. Alami: M+: A scheme for multi-robot cooperation through negotiated task allocation and achievement, Proc. IEEE Int. Conf. Robotics Autom. (1999) pp. 1234–1239Google Scholar
  256. 53.256
    R.G. Smith: The contract net protocol: High-level communication and control in a distributed problem solver, IEEE Trans. Comput. C-29(12), 1104–1113 (1980)CrossRefGoogle Scholar
  257. 53.257
    B. Dias, R. Zlot, N. Kalra, A. Stentz: Market-based multirobot coordination: A survey and analysis, Proc. IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  258. 53.258
    B.P. Gerkey, M.J. Matarić: Sold! Auction methods for multi-robot coordination, IEEE Trans. Robotics Autom. 18(5), 758–768 (2002)CrossRefGoogle Scholar
  259. 53.259
    H. Kose, U. Tatlidede, C. Mericli, K. Kaplan, H.L. Akin: Q-learning based market-driven multi-agent collaboration in robot soccer, Proc. Turk. Symp. Artif. Intell. Neural Netw. (2004) pp. 219–228Google Scholar
  260. 53.260
    D. Vail, M. Veloso: Multi-robot dynamic role assignment and coordination through shared potential fields, multi-robot systems: From swarms to intelligent automata, Proc. Int. Workshop Multi-Robot Syst. (2003) pp. 87–98Google Scholar
  261. 53.261
    M. Lagoudakis, E. Markakis, D. Kempe, P. Keshinocak, A. Kleywegt, S. Koenig, C. Tovey, A. Meyerson, S. Jain: Auction-based multi-robot routing, Robotics: Science and Systems I (MIT Press, Cambridge 2005)Google Scholar
  262. 53.262
    G. Rabideau, T. Estlin, S. Schien, A. Barrett: A comparison of coordinated planning methods for cooperating rovers, Proc. AIAA Space Technol. Conf. (1999)Google Scholar
  263. 53.263
    R. Zlot, A. Stentz, M.B. Dias, S. Thayer: Multi-robot exploration controlled by a market economy, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 3016–3023Google Scholar
  264. 53.264
    J. Guerrero, G. Oliver: Multi-robot task allocation strategies using auction-like mechanisms, Proc. 6th Congr. Catalan Assoc. Artif. Intell. (2003) pp. 111–122Google Scholar
  265. 53.265
    N. Kalra, D. Ferguson, A. Stentz: Hoplites: A market-based framework for planned tight coordination in multirobot teams, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)Google Scholar
  266. 53.266
    L. Lin, Z. Zheng: Combinatorial bids based multi-robot task allocation method, Proc. IEEE Int. Conf. Robotics. Autom. (ICRA) (2005) pp. 1145–1150Google Scholar
  267. 53.267
    C.-H. Fua, S.S. Ge: COBOS: Cooperative backoff adaptive scheme for multirobot task allocation, IEEE Trans. Robotics 21(6), 1168–1178 (2005)CrossRefGoogle Scholar
  268. 53.268
    E.G. Jones, B. Browning, M.B. Dias, B. Argall, M. Veloso, A. Stentz: Dynamically formed heterogeneous robot teams performing tightly-coupled tasks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 570–575Google Scholar
  269. 53.269
    Y. Zhang, L.E. Parker: IQ-ASyMTRe: Forming executable coalitions for tightly coupled multirobot tasks, IEEE Trans. Robotics 29(2), 400–416 (2012)CrossRefGoogle Scholar
  270. 53.270
    L. Vig, J.A. Adams: Multi-robot coalition formation, IEEE Trans. Robotics 22(4), 637–649 (2006)zbMATHCrossRefGoogle Scholar
  271. 53.271
    M. Bowling, M. Veloso: Simultaneous adversarial multi-robot learning, Proc. Int. Joint Conf. Artif. Intell. (2003)Google Scholar
  272. 53.272
    F. Fernandez, L.E. Parker: A reinforcement learning algorithm in cooperative multi-robot domains, J. Intell. Robots Syst. 43, 161–174 (2005)CrossRefGoogle Scholar
  273. 53.273
    C.F. Touzet: Robot awareness in cooperative mobile robot learning, Auton. Robots 2, 1–13 (2000)Google Scholar
  274. 53.274
    R. Steeb, S. Cammarata, F. Hayes-Roth, P. Thorndyke, R. Wesson: Distributed Intelligence for Air Fleet Control, Rand Corp. Tech. Rep. R-2728-AFPA (1981) Google Scholar
  275. 53.275
    M. Benda, V. Jagannathan, R. Dodhiawalla: On Optimal Cooperation of Knowledge Sources, Boeing AI Center Tech. Rep. BCS-G2010-28 (1985)Google Scholar
  276. 53.276
    T. Haynes, S. Sen: Evolving behavioral strategies in predators and prey. In: Adaptation and Learning in Multi-Agent Systems, ed. by G. Weiss, S. Sen (Springer, Berlin, Heidelberg 1986) pp. 113–126Google Scholar
  277. 53.277
    S. Mahadevan, J. Connell: Automatic programming of behavior-based robots using reinforcement learning, Proc. AAAI (1991) pp. 8–14Google Scholar
  278. 53.278
    S. Marsella, J. Adibi, Y. Al-Onaizan, G. Kaminka, I. Muslea, M. Tambe: On being a teammate: Experiences acquired in the design of RoboCup teams, Proc. 3rd Annu. Conf. Auton. Agents (1999) pp. 221–227CrossRefGoogle Scholar
  279. 53.279
    J. Pugh, A. Martinoli: Multi-robot learning with particle swarm optimization, Proc. 5th Int. Jt. Conf. Auton. Agents Multiagent Syst. (2006) pp. 441–448Google Scholar
  280. 53.280
    P. Stone, M. Veloso: Multiagent systems: A survey from a machine learning perspective, Auton. Robots 8(3), 345–383 (2000)CrossRefGoogle Scholar
  281. 53.281
    M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, K. Hosoda: Coordination of multiple behaviors acquired by a vision-based reinforcement learning, Proc. IEEE/RSJ/GI Int. Conf. Intell. Robots Syst. (1994) pp. 917–924Google Scholar
  282. 53.282
    M. Kubo, Y. Kakazu: Learning coordinated motions in a competition for food between ant colonies, Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 487–492Google Scholar
  283. 53.283
    R. Alami, S. Fleury, M. Herrb, F. Ingrand, F. Robert: Multi-robot cooperation in the MARTHA project, IEEE Robotics Autom. Mag. 5(1), 36–47 (1998)CrossRefGoogle Scholar
  284. 53.284
    A. Stroupe, A. Okon, M. Robinson, T. Huntsberger, H. Aghazarian, E. Baumgartner: Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance, Auton. Robots 20(2), 113–123 (2006)CrossRefGoogle Scholar
  285. 53.285
    H.R. Everett, R.T. Laird, D.M. Carroll, G.A. Gilbreath, T.A. Heath-Pastore, R.S. Inderieden, T. Tran, K.J. Grant, D.M. Jaffee: Multiple resource host architecture (MRHA) for the mobile detection assessment response system (MDARS), SPAWAR Systems Technical Documen 3026, Revision A ( 2000)Google Scholar
  286. 53.286
    Y. Guo, L.E. Parker, R. Madhavan: Towards collaborative robots for infrastructure security applications, Proc. Int. Symp. Collab. Technol. Syst. (2004) pp. 235–240Google Scholar
  287. 53.287
    C. Hazard, P.R. Wurman, R. D’Andrea: Alphabet Soup: A testbed for studying resource allocation in multi-vehicle systems, Proc. AAAI Workshop Auction Mech. Robot Coord. (2006) pp. 23–30Google Scholar
  288. 53.288
    D. Nardi, A. Farinelli, L. Iocchi: Multirobot systems: A classification focused on coordination, IEEE Trans. Syst. Man Cybern. B 34(5), 2015–2028 (2004)CrossRefGoogle Scholar
  289. 53.289
    K. Passino: Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag. 22(3), 52–67 (2002)CrossRefGoogle Scholar
  290. 53.290
    M. Schneider-Fontan, M. Matarić: Territorial multi-robot task division, IEEE Trans. Robotics Autom. 15(5), 815–822 (1998)CrossRefGoogle Scholar
  291. 53.291
    I. Wagner, M. Lindenbaum, A.M. Bruckstein: Mac vs. PC – Determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains, Int. J. Robotics Res. 19(1), 12–31 (2000)CrossRefGoogle Scholar
  292. 53.292
    K. Sugawara, M. Sano: Cooperative behavior of interacting simple robots in a clockface arranged foraging field. In: Distributed Autonomous Robotic Systems, ed. by H. Asama, T. Arai, T. Fukuda, T. Hasegawa (Springer, Berlin, Heidelberg 2002)Google Scholar
  293. 53.293
    P. Rybski, S. Stoeter, C. Wyman, M. Gini: A cooperative multi-robot approach to the mapping and exploration of Mars, Proc. AAAI/IAAI (1997)Google Scholar
  294. 53.294
    S. Sun, D. Lee, K. Sim: Artificial immune-based swarm behaviors of distributed autonomous robotic systems, Proc. IEEE Int. Conf. Robotics Autom. (2001) pp. 3993–3998Google Scholar
  295. 53.295
    A.I. Mourikis, S.I. Roumeliotis: Optimal sensor scheduling for resource-constrained localization of mobile robot formations, IEEE Trans. Robotics 22(5), 917–931 (2006)CrossRefGoogle Scholar
  296. 53.296
    S. Kloder, S. Hutchinson: Path planning for permutation-invariant multirobot formations, IEEE Trans. Robotics 22(4), 650–665 (2006)CrossRefGoogle Scholar
  297. 53.297
    C.W. Reynolds: Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Comput. Gr. 21, 25–34 (1987)CrossRefGoogle Scholar
  298. 53.298
    T. Balch, R. Arkin: Behavior-based formation control for multi-robot teams, IEEE Trans. Robotics Autom. 14(6), 926–939 (1998)CrossRefGoogle Scholar
  299. 53.299
    A. Jadbabaie, J. Lin, A.S. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control 48(6), 988–1001 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  300. 53.300
    C. Belta, V. Kumar: Abstraction and control for groups of robots, IEEE Trans. Robotics 20(5), 865–875 (2004)CrossRefGoogle Scholar
  301. 53.301
    C.M. Topaz, A.L. Bertozzi: Swarming patterns in two-dimensional kinematic model for biological groups, SIAM J. Appl. Math. 65(1), 152–174 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  302. 53.302
    J.A. Fax, R.M. Murray: Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)MathSciNetCrossRefGoogle Scholar
  303. 53.303
    J.A. Marshall, M.E. Broucke, B.R. Francis: Formations of vehicles in cyclic pursuit, IEEE Trans. Autom. Control 49(11), 1963–1974 (2004)MathSciNetCrossRefGoogle Scholar
  304. 53.304
    S.S. Ge, C.-H. Fua: Queues and artificial potential trenches for multirobot formations, IEEE Trans. Robotics 21(4), 646–656 (2005)CrossRefGoogle Scholar
  305. 53.305
    P. Tabuada, G. Pappas, P. Lima: Motion feasibility of multi-agent formations, IEEE Trans. Robotics 21(3), 387–392 (2005)CrossRefGoogle Scholar
  306. 53.306
    G. Antonelli, S. Chiaverini: Kinematic control of platoons of autonomous vehicles, IEEE Trans. Robotics 22(6), 1285–1292 (2006)CrossRefGoogle Scholar
  307. 53.307
    J. Fredslund, M.J. Matarić: A general algorithm for robot formations using local sensing and minimal communication, IEEE Trans. Robotics Autom. 18(5), 837–846 (2002)CrossRefGoogle Scholar
  308. 53.308
    Y. Cao, W. Yu, W. Ren, G. Chen: An overview of recent progress in the study of distributed multi-agent coordination, IEEE Trans. Ind. Inf. 9(1), 427–438 (2012)CrossRefGoogle Scholar
  309. 53.309
    R.M. Murray: Recent research in cooperative control of multivehicle systems, J. Dyn. Syst. Meas. Control 129(5), 571–583 (2007)CrossRefGoogle Scholar
  310. 53.310
    P.J. Johnson, J.S. Bay: Distributed control of simulated autonomous mobile robot collectives in payload transportation, Auton. Robots 2(1), 43–63 (1995)CrossRefGoogle Scholar
  311. 53.311
    Z. Wang, E. Nakano, T. Matsukawa: Realizing cooperative object manipulation using multiple behaviour-based robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1996) pp. 310–317CrossRefGoogle Scholar
  312. 53.312
    K. Kosuge, T. Oosumi: Decentralized control of multiple robots handling an object, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1996) pp. 318–323CrossRefGoogle Scholar
  313. 53.313
    N. Miyata, J. Ota, Y. Aiyama, J. Sasaki, T. Arai: Cooperative transport system with regrasping car-like mobile robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1997) pp. 1754–1761Google Scholar
  314. 53.314
    C.R. Kube, E. Bonabeau: Cooperative transport by ants and robots, Robotics Auton. Syst. 30(1), 85–101 (2000)CrossRefGoogle Scholar
  315. 53.315
    R. Groß, M. Dorigo: Towards group transport by swarms of robots, Int. J. Bio-Inspired Comput. 1(1), 1–13 (2009)CrossRefGoogle Scholar
  316. 53.316
    L.E. Parker: ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots, Proc. IEEE/RSJ/GI Int. Conf. Intell. Robots Syst. (1994) pp. 776–783Google Scholar
  317. 53.317
    B. Donald, J. Jennings, D. Rus: Analyzing teams of cooperating mobile robots, Proc. IEEE Int. Conf. Robotics Autom. (1994) pp. 1896–1903Google Scholar
  318. 53.318
    Y. Mohan, S.G. Ponnambalam: An extensive review of research in swarm robotics, World Congr. Nat. Biol. Insp. Comput. (2009) pp. 140–145Google Scholar
  319. 53.319
    A.J. Ijspeert, A. Martinoli, A. Billard, L.M. Gambardella: Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment, Auton. Robots 11(2), 149–171 (2001)zbMATHCrossRefGoogle Scholar
  320. 53.320
    A. Martinoli, K. Easton, W. Agassounon: Modeling swarm robotic systems: A case study in collaborative distributed manipulation, Int. J. Robotics Res. 23(4-5), 415–436 (2004)CrossRefGoogle Scholar
  321. 53.321
    S. Berman, Q. Lindsey, M.S. Sakar, V. Kumar, S.C. Pratt: Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems, Proc. IEEE 99(9), 1470–1481 (2011)CrossRefGoogle Scholar
  322. 53.322
    J.M. Esposito: Distributed grasp synthesis for swarm manipulation with applications to autonomous tugboats, IEEE Int. Conf. Robotics Autom. (2008) pp. 1489–1494Google Scholar
  323. 53.323
    Z. Wang, V. Kumar: Object closure and manipulation by multiple cooperating mobile robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 394–399Google Scholar
  324. 53.324
    Z. Wang, Y. Hirata, K. Kosuge: Control a rigid caging formation for cooperative object transportation by multiple mobile robots, Proc. of IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 1580–1585Google Scholar
  325. 53.325
    J. Fink, N. Michael, V. Kumar: Composition of vector fields for multi-robot manipulation via caging, Robotics Sci. Syst. Conf. (2007)Google Scholar
  326. 53.326
    F. Arrichiello, H.K. Heidarsson, S. Chiaverini, G.S. Sukhatme: Cooperative caging and transport using autonomous aquatic surface vehicles, Intell. Serv. Robotics 5(1), 73–87 (2012)CrossRefGoogle Scholar
  327. 53.327
    J. Werfel: Building patterned structures with robot swarms, Proc. 19th Int. Jt. Conf. Artif. Intell. (IJCAI) (2005) pp. 1495–1502Google Scholar
  328. 53.328
    J. Werfel, Y. Bar-Yam, D. Rus, R. Nagpal: Distributed construction by mobile robots with enhanced building blocks, IEEE Int. Conf. Robotics Autom. (2006) pp. 2787–2794Google Scholar
  329. 53.329
    J. Werfel, R. Nagpal: Extended stigmergy in collective construction, IEEE Intell. Syst. 21(2), 20–28 (2006)CrossRefGoogle Scholar
  330. 53.330
    J. Werfel, R. Nagpal: Three-dimensional construction with mobile robots and modular blocks, Int. J. Robotics Res. 27(3/4), 463–479 (2008)CrossRefGoogle Scholar
  331. 53.331
    Y. Terada, S. Murata: Automatic modular assembly system and its distributed control, Int. J. Robotics Res. 27, 445–462 (2008)CrossRefGoogle Scholar
  332. 53.332
    J. Wawerla, G.S. Sukhatme, M.J. Mataric: Collective construction with multiple robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002) pp. 2696–2701CrossRefGoogle Scholar
  333. 53.333
    R.L. Stewart, R.A. Russell: Building a loose wall structure with a robotic swarm using a spatio-temporal varying template, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 712–716Google Scholar
  334. 53.334
    R.L. Stewart, R.A. Russell: A distributed feedback mechanism to regulate wall construction by a robotic swarm, Adapt. Behav. 14(1), 21–51 (2006)CrossRefGoogle Scholar
  335. 53.335
    T. Huntsberger, G. Rodriguez, P. Schenker: Robotics challenges for robotic and human Mars exploration, Proc. Robotics 2000 (2000) pp. 340–346CrossRefGoogle Scholar
  336. 53.336
    R.A. Brooks, P. Maes, M.J. Mataric, G. More: Lunar based construction robots, Proc. IEEE Int. Workshop Intell. Robots Syst. (IROS) (1990) pp. 389–392Google Scholar
  337. 53.337
    C.A.C. Parker, H. Zhang, C.R. Kube: Blind bulldozing: Multiple robot nest construction, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 2010–2015Google Scholar
  338. 53.338
    S. Sen, M. Sekaran, J. Hale: Learning to coordinate without sharing information, Proc. AAAI (1994) pp. 426–431Google Scholar
  339. 53.339
    B. Tung, L. Kleinrock: Distributed control methods, Proc. 2nd Int. Symp. High Perform. Distrib. Comput. (1993) pp. 206–215Google Scholar
  340. 53.340
    Z.-D. Wang, E. Nakano, T. Matsukawa: Cooperating multiple behavior-based robots for object manipulation, Proc. IEEE/RSJ/GI Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1524–1531CrossRefGoogle Scholar
  341. 53.341
    D. Rus, B. Donald, J. Jennings: Moving furniture with teams of autonomous robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (1995) pp. 235–242Google Scholar
  342. 53.342
    F. Hara, Y. Yasui, T. Aritake: A kinematic analysis of locomotive cooperation for two mobile robots along a general wavy road, Proc. IEEE Int. Conf. Robotics Autom. (1995) pp. 1197–1204Google Scholar
  343. 53.343
    J. Sasaki, J. Ota, E. Yoshida, D. Kurabayashi, T. Arai: Cooperating grasping of a large object by multiple mobile robots, Proc. IEEE Int. Conf. Robotics Autom. (1995) pp. 1205–1210Google Scholar
  344. 53.344
    C. Jones, M.J. Matarić: Automatic synthesis of communication-based coordinated multi-robot systems, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 381–387Google Scholar
  345. 53.345
    L.E. Parker: Cooperative robotics for multi-target observation, Intell. Autom. Soft Comput. 5(1), 5–19 (1999)CrossRefGoogle Scholar
  346. 53.346
    A.W. Stroupe, M.C. Martin, T. Balch: Distributed sensor fusion for object position estimation by multi-robot systems, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 1092–1098Google Scholar
  347. 53.347
    S. Luke, K. Sullivan, L. Panait, G. Balan: Tunably decentralized algorithms for cooperative target observation, Proc. 4th Int. Jt. Conf. Auton. Agents Multiagent Syst. (2005) pp. 911–917Google Scholar
  348. 53.348
    S.M. LaValle, H.H. Gonzalez-Banos, C. Becker, J.-C. Latombe: Motion strategies for maintaining visibility of a moving target, Proc. IEEE Int. Conf. Robotics Autom. (1997) pp. 731–736CrossRefGoogle Scholar
  349. 53.349
    T.H. Chung, J.W. Burdick, R.M. Murray: A decentralized motion coordination strategy for dynamic target tracking, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 2416–2422Google Scholar
  350. 53.350
    A. Kolling, S. Carpin: Multirobot cooperation for surveillance of multiple moving targets – A new behavioral approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1311–1316Google Scholar
  351. 53.351
    B. Jung, G. Sukhatme: Tracking targets using multiple mobile robots: The effect of environment occlusion, Auton. Robots 13(3), 191–205 (2002)zbMATHCrossRefGoogle Scholar
  352. 53.352
    Z. Tang, U. Ozguner: Motion planning for multitarget surveillance with mobile sensor agents, IEEE Trans. Robotics 21(5), 898–908 (2005)CrossRefGoogle Scholar
  353. 53.353
    M.A. Vieira, R. Govindan, G.S. Sukhatme: Scalable and practical pursuit-evasion with networked robots, Intell. Serv. Robotics 2(4), 247–263 (2009)CrossRefGoogle Scholar
  354. 53.354
    L.E. Parker: Path planning and motion coordination in multiple mobile robot teams. In: Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, Heidelberg 2009)Google Scholar
  355. 53.355
    D. Grossman: Traffic control of multiple robot vehicles, IEEE J. Robotics Autom. 4, 491–497 (1988)CrossRefGoogle Scholar
  356. 53.356
    P. Caloud, W. Choi, J.-C. Latombe, C. Le Pape, M. Yim: Indoor automation with many mobile robots, IEEE Int. Workshop Intell. Robots Syst. (IROS) (1990) pp. 67–72Google Scholar
  357. 53.357
    H. Asama, K. Ozaki, H. Itakura, A. Matsumoto, Y. Ishida, I. Endo: Collision avoidance among multiple mobile robots based on rules and communication, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1991) pp. 1215–1220Google Scholar
  358. 53.358
    S. Yuta, S. Premvuti: Coordinating autonomous and centralized decision making to achieve cooperative behaviors between multiple mobile robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (1992) pp. 1566–1574CrossRefGoogle Scholar
  359. 53.359
    J. Wang: Fully distributed traffic control strategies for many-AGV systems, IEEE Int. Workshop Intell. Robots Syst. (1991) pp. 1199–1204Google Scholar
  360. 53.360
    J. Wang, G. Beni: Distributed computing problems in cellular robotic systems, Proc. IEEE Int. Workshop Intell. Robots Syst. (1990) pp. 819–826Google Scholar
  361. 53.361
    P. Svestka, M. Overmars: Coordinated path planning for multiple robots, Robotics Auton. Syst. 23, 125–152 (1998)CrossRefGoogle Scholar
  362. 53.362
    M. Peasgood, C. Clark, J. McPhee: A complete and scalable strategy for coordinating multiple robots within roadmaps, IEEE Trans. Robotics 24(2), 283–292 (2008)CrossRefGoogle Scholar
  363. 53.363
    M. Erdmann, T. Lozano-Perez: On multiple moving objects, Algorithmica 2, 477–521 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  364. 53.364
    C. Ferrari, E. Pagello, J. Ota, T. Arai: Multirobot motion coordination in space and time, Robotics Auton. Syst. 25, 219–229 (1998)CrossRefGoogle Scholar
  365. 53.365
    M. Bennewitz, W. Burgard, S. Thrun: Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobiel robots, Robotics Auton. Syst. 41(2), 89–99 (2002)CrossRefGoogle Scholar
  366. 53.366
    H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, H. Matasubara: RoboCup: A challenge problem of AI, AI Magazine 18(1), 73–86 (1997)Google Scholar
  367. 53.367
    H. Kitano, S. Tadokoro: RoboCup rescue: A grand challenge for multiagent and intelligent systems, AI Magazine 22(1), 39–52 (2001)Google Scholar
  368. 53.368
    B. Browning, J. Bruce, M. Bowling, M. Veloso: STP: Skills, tactics and plays for multi-robot control in adversarial environments, IEEE J. Control Syst. Eng. 219, 33–52 (2005)Google Scholar
  369. 53.369
    M. Veloso, P. Stone, K. Han: The CMUnited-97 robotic soccer team: Perception and multiagent control, Robotics Auton. Syst. 29(2/3), 133–143 (1999)CrossRefGoogle Scholar
  370. 53.370
    T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner, B. Nebel: CS Freiburg: Coordinating robots for successful soccer playing, IEEE Trans. Robotics Autom. 5(18), 685–699 (2002)CrossRefGoogle Scholar
  371. 53.371
    P. Stone, M. Veloso: Task decomposition, dynamic role assignemnt, and low-bandwidth communicaiton for real-time strategic teamwork, Artif. Intell. 110(2), 241–273 (1999)zbMATHCrossRefGoogle Scholar
  372. 53.372
    C. Candea, H.S. Hu, L. Iocchi, D. Nardi, M. Piaggio: Coordination in multi-agent Robocup teams, Robotics Auton. Syst. 36(2), 67–86 (2001)zbMATHCrossRefGoogle Scholar
  373. 53.373
    L.E. Parker: Current state of the art in distributed autonomous mobile robotics, Distrib. Auton. Robotic Syst. 4, 3–12 (2000)Google Scholar
  374. 53.374
    K.R. Baghaei, A. Agah: Task allocation and communication methodologies for multi-robot systems, Intell. Autom. Soft Comput. 9, 217–226 (2003)CrossRefGoogle Scholar
  375. 53.375
    T. Balch, L.E. Parker: Guest editorial, special issue on heterogeneous multi-robot systems, Auton. Robots 8(3), 207–208 (2000)CrossRefGoogle Scholar
  376. 53.376
    M. Dorigo, E. Sahin: Guest editorial, special issue on swarm robotics, Auton. Robots 17(2/3), 111–113 (2004)CrossRefGoogle Scholar
  377. 53.377
    M. Veloso, D. Nardi: Special issue on multirobot systems, Proc. IEEE 94, 1253–1256 (2006)CrossRefGoogle Scholar
  378. 53.378
    T. Balch: Taxonomies of multi-robot task and reward. In: Robot Teams: From Diversity to Polymorphism, ed. by T. Balch, L.E. Parker (A K Peters, Natick 2002)Google Scholar
  379. 53.379
    L.E. Parker, G. Bekey, J. Barhen (Eds.): Distributed Autonomous Robotic Systems 4 (Springer, Berlin, Heidelberg 2000)Google Scholar
  380. 53.380
    H. Asama, T. Arai, T. Fukuda, T. Hasegawa (Eds.): Distributed Autonomous Robotic Systems 5 (Springer, Berlin, Heidelberg 2002)Google Scholar
  381. 53.381
    R. Alami, R. Chatila, H. Asama (Eds.): Distributed Autonomous Robotic Systems 6 (Springer, Berlin, Heidelberg 2006)Google Scholar
  382. 53.382
    M. Gini, R. Voyles (Eds.): Distributed Autonomous Robotic Systems 7 (Springer, Berlin, Heidelberg 2006)zbMATHGoogle Scholar
  383. 53.383
    H. Asama, H. Kurokawa, J. Ota, K. Sekiyama: Distributed Autonomous Robotic Systems 8 (Springer, Berlin, Heidelberg 2009)CrossRefGoogle Scholar
  384. 53.384
    A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M.A. Hsieh, L.E. Parker, K. Stoy (Eds.): Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics, Vol. 83 (Springer, Berlin, Heidelberg 2013)Google Scholar
  385. 53.385
    A. Schultz, L.E. Parker (Eds.): Multi-Robot Systems: From Swarms to Intelligent Automata (Kluwer, Dordrecht 2002)Google Scholar
  386. 53.386
    A. Schultz, L.E. Parker, F. Schneider (Eds.): Multi-Robot Systems Volume II: From Swarms to Intelligent Automata (Kluwer, Dordrecht 2003)Google Scholar
  387. 53.387
    E. Sahin, W.M. Spears (Eds.): Swarm Robotics: SAB 2004 Int. Workshop (Springer, Berlin, Heidelberg 2004)Google Scholar
  388. 53.388
    L.E. Parker, F. Schneider, A. Schultz (Eds.): Multi-Robot Systems Volume III: From Swarms to Intelligent Automata (Kluwer, Dordrecht 2005)Google Scholar
  389. 53.389
    T. Balch, L.E. Parker (Eds.): Robot Teams: From Polymorphism to Diversity (A K Peters, Natick 2002)Google Scholar
  390. 53.390
    F. Bullo, J. Cortés, S. Martinez: Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms (Princeton University Press, Princeton 2009)zbMATHCrossRefGoogle Scholar
  391. 53.391
    S. Kernbach (Ed.): Handbook of Collective Robotics: Fundamentals and Challenges (CRC, Boca Raton 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lynne E. Parker
    • 1
    Email author
  • Daniela Rus
    • 2
  • Gaurav S. Sukhatme
    • 3
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of TennesseeKnoxvilleUSA
  2. 2.CSAIL Center for RoboticsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations