Modeling and Control of Aerial Robots

Abstract

Aerial robotic vehicles are becoming a core field in mobile robotics. This chapter considers some of the fundamental modelling and control architectures in the most common aerial robotic platforms; small-scale rotor vehicles such as the quadrotor, hexacopter, or helicopter, and fixed wing vehicles. In order to control such vehicles one must begin with a good but sufficiently simple dynamic model. Based on such models, physically motivated control architectures can be developed. Such algorithms require realisable target trajectories along with real-time estimates of the system state obtained from on-board sensor suite. This chapter provides a first introduction across all these subjects for the quadrotor and fixed wing aerial robotic vehicles.

3-D

three-dimensional

AOA

angle of attack

ESC

electronic speed controller

GPS

global positioning system

IMU

inertial measurement unit

MEMS

microelectromechanical system

MIMO

multiple-input–multiple-output

MPC

model predictive control

PD

proportional–derivative

PWM

pulse-width modulation

SISO

single input single-output

SLAM

simultaneous localization and mapping

TECS

total energy control system

UAS

unmanned aerial system

UAV

unmanned aerial vehicle

UCO

uniformly completely observable

References

  1. 52.1
    R.C. Michelson: International aerial robotics competition – The world’s smallest intelligent flying machines, 13th RPVs/UAVs International Conference (1998), pp. 31.1–31.9Google Scholar
  2. 52.2
    L.R. Newcome: Unmanned Aviation, a Brief History of Unmanned Aerial Vehicles (American Institute of Aeronautics and Astronautics, Reston 2004)CrossRefGoogle Scholar
  3. 52.3
    M.A. Garratt, J.S. Chahl: Vision-based terrain following for an unmanned rotorcraft, J. Field Robotics 25(4/5), 284–301 (2008)CrossRefGoogle Scholar
  4. 52.4
    M. Garratt, H. Pota, A. Lambert, S. Eckersley-Maslin, C. Farabet: Visual tracking and lidar relative positioning for automated launch and recovery of an unmanned rotorcraft from ships at sea, Naval Eng. J. 121(2), 99–110 (2009)CrossRefGoogle Scholar
  5. 52.5
    Vicon Motion Systems Ltd: http://www.vicon.com/
  6. 52.6
    NaturalPoint Inc.: OptiTrack, http://www.naturalpoint.com/optitrack/
  7. 52.7
    D. Mellinger, V. Kumar: Minimum snap trajectory generation and control for quadrotors, Proc. Int. Conf. Robotics Autom. (ICRA) (2011)Google Scholar
  8. 52.8
    M. Hehn, R. D’Andrea: Quadrocopter trajectory generation and control, IFAC World Congress (2011) pp. 1485–1491Google Scholar
  9. 52.9
    M.W. Mueller, R. D’Andrea: A model predictive controller for quadrocopter state interception, European Control Conference (2013) pp. 1383–1389Google Scholar
  10. 52.10
    M.W. Mueller, M. Hehn, R. D’Andrea: A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and feasibility verification, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013) pp. 3480–3486Google Scholar
  11. 52.11
    J. Thomas, J. Polin, K. Sreenath, V. Kumar: Avian-inspired grasping for quadrotor micro uavs, ASME Int. Des. Eng. Tech. Conf. (IDETC) (2013)Google Scholar
  12. 52.12
    M. Turpin, N. Michael, V. Kumar: Trajectory design and control for aggressive formation flight with quadrotors, Auton. Robots 33(1/2), 143–156 (2012)CrossRefGoogle Scholar
  13. 52.13
    S. Shen, Y. Mulgaonkar, N. Michael, V. Kumar: Vision-based state estimation for autonomous rotorcraft MAVs in complex environments, Proc. IEEE Int. Conf. Robotics Autom. (2013)Google Scholar
  14. 52.14
    S. Shen, Y. Mulgaonkar, N. Michael, V. Kumar: Initialization-free monocular visual-inertial estimation with application to autonomous mavs, Int. Symp. Exp. Robotics (ISER) (2014)Google Scholar
  15. 52.15
    T. Hamel, R. Mahony, R. Lozano, J. Ostrowski: Dynamic modelling and configuration stabilization for an X4-flyer, Proc. Int. Fed. Autom. Control Symp. (IFAC) (2002)Google Scholar
  16. 52.16
    S. Bouabdallah, P. Murrieri, R. Siegwart: Design and control of an indoor micro quadrotor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 5 (2004) pp. 4393–4398Google Scholar
  17. 52.17
    P.-J. Bristeau, P. Martin, E. Salaän, N. Petit: The role of propeller aerodynamics in the model of a quadrotor uav, Proc. Eur. Control Conf. (2009) pp. 683–688Google Scholar
  18. 52.18
    H. Huang, G.M. Hoffmann, S.L. Waslander, C.J. Tomlin: Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering, IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 3277–3282Google Scholar
  19. 52.19
    P. Pounds, R. Mahony, P. Corke: Modelling and control of a large quadrotor robot. Control Eng, Pract. 18(7), 691–699 (2010)Google Scholar
  20. 52.20
    M. Bangura, R. Mahony: Nonlinear dynamic modeling for high performance control of a quadrotor, Australas. Conf. Robotics Autom. (2012)Google Scholar
  21. 52.21
    R. Mahony, V. Kumar, P. Corke: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor, Robotics Autom. Mag. 19(3), 20–32 (2012)CrossRefGoogle Scholar
  22. 52.22
    R.W. Prouty: Helicopter Performance, Stability and Control (Krieger, Malabar 1995), reprint with additionsGoogle Scholar
  23. 52.23
    J.G. Leishman: Principles of helicopter aerodynamics, Cambridge Aerospace Series (Cambridge University Press, Cambridge 2000)Google Scholar
  24. 52.24
    P. Martin, E. Salaun: The true role of accelerometer feedback in quadrotor control, Proc. IEEE Int. Conf. Robotics Autom. (2010) pp. 1623–1629Google Scholar
  25. 52.25
    D. Abeywardena, S. Kodagoda, G. Dissanayake, R. Munasinghe: Improved state estimation in quadrotor mavs: A novel drift-free velocity estimator, IEEE Robotics Autom. Mag. 20(4), 32–39 (2013)CrossRefGoogle Scholar
  26. 52.26
    R. Leishman, J. Macdonald, R.W. Beard, T.W. McLain: Quadrotors and accelerometers: State estimation with an improved dynamic model. IEEE Control Syst, Mag. 34(1), 28–41 (2014)Google Scholar
  27. 52.27
    A. Bramwell, G. Done, D. Balmford: Bramwell’s Helicopter Dynamics (Butterworth Heinenmann, Woburn 2001)Google Scholar
  28. 52.28
    J.-L. Boiffier: The Flight Dynamics: The Equations (Wiley, Chichester 1998)Google Scholar
  29. 52.29
    B.L. Stevens, F.L. Lewis: Aircraft Control and Simulation, 2nd edn. (Wiley, Hoboken 2003)Google Scholar
  30. 52.30
    L.H. Carter, J.S. Shamma: Gain-scheduled bank-to-turn autopilot design using linear parameter varying transformations. J. Guid, Control Dyn. 19(5), 1056–1063 (1996)CrossRefMATHGoogle Scholar
  31. 52.31
    R.W. Beard, T.W. McLain: Navigation, Guidance, and Control of Small Unmanned Aircraft (Princeton University Press, Princeton 2012)Google Scholar
  32. 52.32
    M.-D. Hua, T. Hamel, P. Morin, C. Samson: A control approach for thrust-propelled underactuated vehicles and its application to vtol drones, IEEE Trans. Autom. Control 54(8), 1837–1853 (2009)MathSciNetCrossRefGoogle Scholar
  33. 52.33
    M. Bangura, H. Lim, H. Jin Kim, R. Mahony: Aerodynamic power control for multirotor aerial vehicles, Proc. IEEE Int. Conf. Robotics Autom. (2014), Paper MoB03.2.Google Scholar
  34. 52.34
    P. Pounds, R. Mahony, P. Corke: Design of a static thruster for micro air vehicle rotorcraft, ASCE J. Aerosp. Eng. 22(1), 85–94 (2009)CrossRefGoogle Scholar
  35. 52.35
    T. Lee, M. Leok, N.H. McClamroch: Geometric tracking control of a quadrotor UAV on $se(3)$, Proc. IEEE Conf. Decis. Control (2010)Google Scholar
  36. 52.36
    M. Bangura, R. Mahony: Real-time model predictive control for quadrotors, Proc. IFAC World Conf. (2014)Google Scholar
  37. 52.37
    H.K. Khalil: Nonlinear Systems, 2nd edn. (Prentice Hall, Upper Saddle River 1996)Google Scholar
  38. 52.38
    D. Pucci: Flight dynamics and control in relation to stall, IEEE Am. Control Conf. (ACC) (2012) pp. 118–124Google Scholar
  39. 52.39
    S. Devasia, D. Chen, B. Paden: Nonlinear inversion-based output tracking, IEEE Trans. Autom. Control 41(7), 930–942 (1996)MathSciNetCrossRefMATHGoogle Scholar
  40. 52.40
    J.-F. Magni, S. Bennani, J. Terlouw: Robust Flight Control: A Design Challenge, Lecture Notes in Control and Information Sciences, Vol. 224 (Springer, Berlin, Heidelberg 1997)CrossRefMATHGoogle Scholar
  41. 52.41
    E. Slatyer, R. Mahony, P. Corke: Terrain following using wide field optic flow, Proc. Australas. Conf. Robotics Autom. (ACRA) (2010)Google Scholar
  42. 52.42
    A.A. Lambregts: Vertical fight path and speed control autopilot design using total energy principles, Proc. AIAA Guid. Control Conf. (1983) pp. 559–569Google Scholar
  43. 52.43
    L.F. Faleiro, A.A. Lambregts: Analysis and tuning of a total energy control system control law using eigenstructure assignment, Aerosp. Sci. Technol. 3(3), 127–140 (1999)CrossRefMATHGoogle Scholar
  44. 52.44
    M.J. Van Nieuwstadt, R.M. Murray: Real-time trajectory generation for differentially flat systems, Int. J. Robust Nonlinear Control 8, 995–1020 (1998)MathSciNetCrossRefMATHGoogle Scholar
  45. 52.45
    D. Mellinger, N. Michael, V. Kumar: Trajectory generation and control for precise aggressive maneuvers with quadrotors, Int. J. Robotics Res. 31, 664–674 (2012)CrossRefGoogle Scholar
  46. 52.46
    L.E. Dubins: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents, Am. J. Math. 79, 497–516 (1957)MathSciNetCrossRefMATHGoogle Scholar
  47. 52.47
    G. Yang, V. Kapila: Optimal path planning for unmanned air vehicles with kinematic and tactical constraints, Proc. IEEE Conf. Decis. Control (2002) pp. 1301–1306Google Scholar
  48. 52.48
    A. Rahmani, X.C. Ding, M. Egerstedt: Optimal motion primitives for multi-UAV convoy protection, Proc. Int. Conf. Robotics Autom. (2010) pp. 4469–4474Google Scholar
  49. 52.49
    S. Hosak, D. Ghose: Optimal geometrical path in 3D with curvature constraint, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 113–118Google Scholar
  50. 52.50
    H. Yu, R.W. Beard: A vision-based collision avoidance technique for micro air vehicles using local-level frame mapping and path planning, Auton. Robots 34(1/2), 93–109 (2013)CrossRefGoogle Scholar
  51. 52.51
    H. Chitsaz, S.M. LaValle: Time-optimal paths for a Dubins airplane, Proc. 46th IEEE Conf. Decis. Control (2007) pp. 2379–2384Google Scholar
  52. 52.52
    M. Owen, R.W. Beard, T.W. McLain: Implementing dubins airplane paths on fixed-wing UAVs. In: Handbook of Unmanned Aerial Vehicles, ed. by G.J. Vachtsevanos, K.P. Valavanis (Springer, Berlin, Heidelberg 2014) pp. 1677–1702Google Scholar
  53. 52.53
    S. Park, J. Deyst, J.P. How: Performance and lyapunov stability of a nonlinear path-following guidance method, AIAA J. Guid. Control Dyn. 30(6), 1718–1728 (2007)CrossRefGoogle Scholar
  54. 52.54
    D.R. Nelson, D.B. Barber, T.W. McLain, R.W. Beard: Vector field path following for miniature air vehicles, IEEE Trans. Robotics 37(3), 519–529 (2007)CrossRefGoogle Scholar
  55. 52.55
    D.A. Lawrence, E.W. Frew, W.J. Pisano: Lyapunov vector fields for autonomous unmanned aircraft flight control, AIAA J. Guid. Control Dyn. 31(5), 1220–12229 (2008)CrossRefGoogle Scholar
  56. 52.56
    V.M. Goncalves, L.C.A. Pimenta, C.A. Maia, B.C.O. Durtra, G.A.S. Pereira: Vector fields for robot navigation along time-varying curves in n-dimensions, IEEE Trans. Robotics 26(4), 647–659 (2010)CrossRefGoogle Scholar
  57. 52.57
    A. Khosravian, J. Trumpf, R. Mahony, T. Hamel: Velocity aided attitude estimation on $so(3)$ with sensor delay, Proc. Conf. Decis. Control (2014)Google Scholar
  58. 52.58
    M. Euston, P. Coote, R. Mahony, J. Kim, T. Hamel: A complementary filter for attitude estimation of a fixed-wing UAV, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 340–345Google Scholar
  59. 52.59
    R. Mahony, M. Euston, J. Kim, P. Coote, T. Hamel: A nonlinear observer for attitude estimation of a fixed-wing UAV without GPS measurements, Trans. Inst. Meas. Control 33(6), 699–717 (2011)CrossRefGoogle Scholar
  60. 52.60
    R. Mahony, T. Hamel, J.-M. Pflimlin: Complementary filter design on the special orthogonal group $SO(3)$, Proc. IEEE Conf. Decis. Control (CDC) (2005) pp. 1477–1484Google Scholar
  61. 52.61
    R. Mahony, T. Hamel, J.-M. Pflimlin: Non-linear complementary filters on the special orthogonal group, IEEE Trans. Autom. Control 53(5), 1203–1218 (2008)CrossRefGoogle Scholar
  62. 52.62
    S. Bonnabel, P. Martin, P. Rouchon: Non-linear symmetry-preserving observers on lie groups, IEEE Trans. Autom. Control 54(7), 1709–1713 (2009)MathSciNetCrossRefGoogle Scholar
  63. 52.63
    J. Macdonald, R. Leishman, R. Beard, T. McLain: Analysis of an improved imu-based observer for multirotor helicopters, J. Intell Robotic Syst. 74(3/4), 1049–1061 (2014)CrossRefGoogle Scholar
  64. 52.64
    D. Hughes: Uavs face hurdles in gaining access to civil airspace, Aviation Week (2007)Google Scholar
  65. 52.65
    K.C. Wong, C. Bil, G. Gordon, P.W. Gibbens: Study of the Unmanned Aerial Vehicle (UAV) Market in Australia, Tech. Rep. (Aerospace Technology Forum Report, Sydney 1997)Google Scholar
  66. 52.66
    R. Sugiura, N. Noguchi, K. Ishii, H. Terao: Development of remote sensing system using an unmanned helicopter, J. Jap. Soc. Agricult. Mach. 65(1), 53–61 (2003)Google Scholar
  67. 52.67
    R. Sugiura, T. Fukagawa, N. Noguchi, K. Ishii, Y. Shibata, K. Toriyama: Field information system using an agricultural helicopter towards precision farming, IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2003) pp. 1073–1078Google Scholar
  68. 52.68
    K. Schutte, H. Sahli, D. Schrottmayer, F.J. Varas: Arc: A camcopter based mine field detection system, 5th Int. Airborne Remote Sens. Conf. (2001)Google Scholar
  69. 52.69
    S.E. Wright: Uavs in community police work, AIAA Infotechs., Aerospace (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Research School of EngineeringAustralian National University (ANU)CanberraAustralia
  2. 2.Electrical and Computer EngineeringBrigham Young UniversityProvoUSA
  3. 3.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations