Modeling and Control of Underwater Robots

  • Gianluca AntonelliEmail author
  • Thor I. Fossen
  • Dana R. Yoerger
Part of the Springer Handbooks book series (SHB)


This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. The modeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap.  25 for the design issues.


Global Navigation Satellite System Underwater Vehicle Autonomous Underwater Vehicle Vehicle Position Underwater Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

adaptive sampling and prediction


autonomous underwater vehicle


colored dissolved organic matter


center of gravity


concurrent mapping and localization


Canadian Scientific Submersile Facility


degree of freedom


Doppler velocity log


global navigation satellite system


guidance, navigation, and control


global positioning system


graphical user interface




Institut français de recherche pour l’exploitation de la mer


inertial measurement unit


Instituto Superior Técnico


Japan Marine Science and Technology Center


long-baseline system


Zentrum für Marine Umweltwissenschaften


Monterey Bay Aquarium Research Institute


mission control system


motion-oriented operating system


National Oceanography Centre


Naval Postgraduate School


ordinary differential equation




remotely operated vehicle


short baseline


single input single-output


simultaneous localization and mapping


society of naval architects and marine engineer




unmanned underwater vehicle


underwater vehicle manipulator system


Woods Hole Oceanographic Institution


  1. 51.1
    J. Yuh, S.K. Choi, C. Ikehara, G.H. Kim, G. McMurty, M. Ghasemi-Nejhad, N.N. Sarkar, K. Sugihara: Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM), IEEE Int. Symp. Underw. Technol. (1998) pp. 63–68Google Scholar
  2. 51.2
    P. Marty: ALIVE: An autonomous light intervention vehicle, Adv. Technol. Underw. Veh. Conf., Oceanol. Int. (2004)Google Scholar
  3. 51.3
    M. Prats, J.C. Garcia, S. Wirth, D. Ribas, P.J. Sanz, P. Ridao, N. Gracias, G. Oliver: Multipurpose autonomous underwater intervention: A systems integration perspective, 20th IEEE Mediterr. Conf. Contr. Autom., Barcelona (2012) pp. 1379–1484Google Scholar
  4. 51.4
    T.I. Fossen: Handbook of Marine Craft Hydrodynamics and Motion Control (Wiley, New York 2011)CrossRefGoogle Scholar
  5. 51.5
    S. Bennett: A brief history of automatic control, IEEE Control Syst. Mag. 16(3), 17–25 (1996)CrossRefGoogle Scholar
  6. 51.6
    J. Yuh, M. West: Underwater robotics, J. Adv. Robotics 15(5), 609–639 (2001)CrossRefGoogle Scholar
  7. 51.7
    SNAME: Nomenclature for Treating the Motion of a Submerged Body Through a Fluid, Techn. Res. Bull. (SNAME, New York 1952) pp. 1–5 Google Scholar
  8. 51.8
    T.I. Fossen: Guidance and Control of Ocean Vehicles (Wiley, New York 1994)Google Scholar
  9. 51.9
    O.M. Faltinsen: Sea Loads on Ships and Offshore Structures (Cambridge Univ. Press, Cambridge 1990)Google Scholar
  10. 51.10
    J. Yuh: Modeling and control of underwater robotic vehicles, IEEE Trans. Syst. Man Cybern. 20, 1475–1483 (1990)CrossRefGoogle Scholar
  11. 51.11
    T.I. Fossen, A. Ross: Guidance and Control of Unmanned Marine Vehicles, IEEE Control Engineering (Wiley, Chichester 1999) pp. 23–42Google Scholar
  12. 51.12
    W.E. Cummins: The impulse response function and ship motions, Techn. Rep. 1661 (DTIC, Washington 1962)Google Scholar
  13. 51.13
    T.F. Ogilvie: Recent progress towards the understanding and prediction of ship motions, 5th Symp. Nav. Hydrodyn. (1964) pp. 3–79Google Scholar
  14. 51.14
    T. Perez, T.I. Fossen: Time-domain models of marine surface vessels for simulation and control design based on seakeeping computations, 7th Conf. Manoeuvring Control Mar. Craft, (IFAC) (2006)Google Scholar
  15. 51.15
    T.I. Fossen: A nonlinear unified state-space model for ship maneuvering and control in a seaway, J. Bifurc. Chaos 15(9), 2717–2746 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 51.16
    M. Nahon: Determination of undersea vehicle hydrodynamic derivatives using the USAF, Datcom, Proc. Ocean. Conf., Victoria (1993) pp. 283–288Google Scholar
  17. 51.17
    J.N. Newman: Marine Hydrodynamics (MIT, Cambridge 1977)Google Scholar
  18. 51.18
    A.J. Healey, D. Lienard: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE J. Ocean. Eng. 18, 327–339 (1993)CrossRefGoogle Scholar
  19. 51.19
    B. Stevens, F. Lewis: Aircraft Control and Simulations (Wiley, New York 1992)Google Scholar
  20. 51.20
    I. Schjølberg, T.I. Fossen: Modelling and control of underwater vehicle-manipulator systems, 3rd Conf. Manoeuvring Control Mar. Craft (IFAC), Southampton (1994) pp. 45–57Google Scholar
  21. 51.21
    E.A. de Barros, A. Pascoal, E. de Sea: Progress towards a method for predicting AUV derivatives, 7th Conf. Manoeuvring Control Mar. Craft (IFAC), Lisbon (2006)Google Scholar
  22. 51.22
    Monterey Bay Aquarium Research Institute:
  23. 51.23
    N.P. Fofonoff, R.C. Millard: Algorithms for Computation of Fundamental Properties of Seawater, UNESCO Tech. Pap. Mar. Sci. No. 44 (UNESCO, Paris 1983)Google Scholar
  24. 51.24
    Autonomous Systems Laboratory, University of Hawaii:
  25. 51.25
    R. Eustice, H. Singh, J.J. Leonard, M. Walter: Visually mapping the RMS Titanic: Conservative covariance estimates for SLAM information filters, Int. J. Robotics Res. 25(12), 1223–1242 (2006)CrossRefGoogle Scholar
  26. 51.26
    D.A. Smallwood, L.L. Whitcomb: Adaptive identification of dynamically positioned underwater robotic vehicles, IEEE Trans. Control Syst. Technol. 11(4), 505–515 (2003)CrossRefGoogle Scholar
  27. 51.27
    S. Zhao, J. Yuh: Experimental study on advanced underwater robot control, IEEE Trans. Robotics 21(4), 695–703 (2005)CrossRefGoogle Scholar
  28. 51.28
    S. Majumder, S. Scheding, H.F. Durrant-Whyte: Multisensor data fusion for underwater navigation, Robotics Auton. Syst. 35(2), 97–108 (2001)CrossRefzbMATHGoogle Scholar
  29. 51.29
    J.C. Kinsey, R.M. Eustice, L.L. Whitcomb: A survey of underwater vehicle navigation: Recent advances and new challenges, 7th Conf. Manoeuvring Control Mar. Craft (IFAC), Lisbon (2006)Google Scholar
  30. 51.30
    D.R. Yoerger, J.G. Cooke, J.J. Slotine: The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design, IEEE J. Ocean. Eng. 15, 167–178 (1990)CrossRefGoogle Scholar
  31. 51.31
    A.J. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown: Toward an improved understanding of thruster dynamics for underwater vehicles, IEEE J. Ocean. Eng. 20(4), 354–361 (1995)CrossRefGoogle Scholar
  32. 51.32
    L. Bachmayer, L.L. Whitcomb, M.A. Grosenbaugh: An accurate four-quadrant nonlinear dynamical model for marine trhusters: Theory and experimental validation, IEEE J. Ocean. Eng. 25, 146–159 (2000)CrossRefGoogle Scholar
  33. 51.33
    T.I. Fossen, M. Blanke: Nonlinear output feedback control of underwater vehicle propellersusing feedback form estimated axial flow velocity, IEEE J. Ocean. Eng. 25(2), 241–255 (2000)CrossRefGoogle Scholar
  34. 51.34
    W.P.A. Van Lammeren, J. van Manen, M.W.C. Oosterveld: The wageningen B-screw series, Trans. SNAME 77, 269–317 (1969)Google Scholar
  35. 51.35
    T.I. Fossen, T.I. Johansen: A survey of control allocation methods for ships and underwater vehicles, 14th IEEE Mediterr. Conf. Control Autom., Ancona (2006) pp. 1–6Google Scholar
  36. 51.36
    M. Stojanovic, J. Preisig: Underwater acoustic communication channels: Propagation models and statistical characterization, IEEE Commun. Mag. 47(1), 84–89 (2009)CrossRefGoogle Scholar
  37. 51.37
    D. Pompili, I. Akyildiz: Overview of networking protocols for underwater wireless communications, IEEE Commun. Mag. 47(1), 97–102 (2009)CrossRefGoogle Scholar
  38. 51.38
    K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru: Control architecture for autonomous underwater vehicles, IEEE Control Syst. 17, 48–64 (1997)CrossRefGoogle Scholar
  39. 51.39
    P. Oliveira, A. Pascoal, V. Silva, C. Silvestre: Mission control of the MARIUS AUV: System design, implementation, and sea trials, Int. J. Syst. Sci. 29(10), 1065–1080 (1998)CrossRefzbMATHGoogle Scholar
  40. 51.40
    D. Brutzman, M. Burns, M. Campbell, D. Davis, T. Healey, M. Holden, B. Leonhardt, D. Marco, D. McClarin, B. McGhee: NPS Phoenix AUV software integration and in-water testing, Proc. IEEE Symp. Auton. Underw. Veh. Technol. (AUV) (1996) pp. 99–108CrossRefGoogle Scholar
  41. 51.41
    A.P. Aguiar, A.M. Pascoal: Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents, Int. J. Control 80(7), 1092–1108 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 51.42
    A.A. Bennett, J.J. Leonard: A behavior-based approach to adaptive feature detection and following with autonomous underwater vehicles, IEEE J. Ocean. Eng. 25(2), 213–226 (2000)CrossRefGoogle Scholar
  43. 51.43
    M. Breivik, T.I. Fossen: Principles of guidance-based path following in 2D and 3D, 44th IEEE Conf. Decis. Control 8th Eur. Control Conf., Sevilla (2005)Google Scholar
  44. 51.44
    F.A. Papoulias: Bifurcation analysis of line of sight vehicle guidance using sliding modes, Int. J. Bifurc. Chaos 1(4), 849–865 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 51.45
    R. Rysdyk: UAV path following for constant line-of-sight, Proc. 2nd AIAA Unmanned Unltd. Syst. Technol. Oper. Aerosp., San Diego (2003)Google Scholar
  46. 51.46
    M.D. Feezor, F.Y. Sorrel, P.R. Blankinship, J.G. Bellingham: Autonomous underwater vehicle homing/docking via electromagnetic guidance, IEEE J. Ocean. Eng. 26(4), 515–521 (2001)CrossRefGoogle Scholar
  47. 51.47
    D. Wettergreen, A. Zelinsky, C. Gaskett: Autonomous guidance and control for an underwater robotic vehicle, Int. Conf. Field Serv. Robotics (1999)Google Scholar
  48. 51.48
    G. Antonelli, S. Chiaverini, R. Finotello, R. Schiavon: Real-time path planning and obstacle avoidance for RAIS: An autonomous underwater vehicle, IEEE J. Ocean. Eng. 26(2), 216–227 (2001)CrossRefGoogle Scholar
  49. 51.49
    J.C. Hyland, F.J. Taylor: Mine avoidance techniques for underwater vehicles, IEEE J. Ocean. Eng. 18, 340–350 (1993)CrossRefGoogle Scholar
  50. 51.50
    D.R. Yoerger, J.J. Slotine: Robust trajectory control of underwater vehicles, IEEE J. Ocean. Eng. 10, 462–470 (1985)CrossRefGoogle Scholar
  51. 51.51
    R. Cristi, F.A. Pappulias, A. Healey: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane, IEEE J. Ocean. Eng. 15(3), 152–160 (1990)CrossRefGoogle Scholar
  52. 51.52
    D.B. Marco, A.J. Healey: Command, control and navigation experimental results with the NPS ARIES AUV, IEEE J. Ocean. Eng. 26(4), 466–476 (2001)CrossRefGoogle Scholar
  53. 51.53
    M. Caccia, G. Veruggio: Guidance and control of a reconfigurable unmanned underwater vehicle, Control Eng. Prac. 8(1), 21–37 (2000)CrossRefGoogle Scholar
  54. 51.54
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco: A novel adaptive control law for underwater vehicles, IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)CrossRefGoogle Scholar
  55. 51.55
    G. Antonelli: On the use of adaptive/integral actions for 6-degrees-of-freedom control of autonomous underwater vehicles, IEEE J. Ocean. Eng. 32(2), 300–312 (2007)CrossRefGoogle Scholar
  56. 51.56
    M. Erol-Kantarci, H.T. Mouftah, S. Oktug: A survey of architectures and localization techniques for underwater acoustic sensor networks, IEEE Commun. Surv. Tutor. 13(3), 487–502 (2011)CrossRefGoogle Scholar
  57. 51.57
    A. Bahr, J.J. Leonard, M.F. Fallon: Cooperative localization for autonomous underwater vehicles, Int. J. Robotics Res. 28(6), 714–728 (2009)CrossRefGoogle Scholar
  58. 51.58
    S.B. Williams, I. Mahon: A terrain-aided tracking algorithm for marine systems. In: Field and Service Robotics, (Springer, Berlin, Heidelberg 2006) pp. 93–102CrossRefGoogle Scholar
  59. 51.59
    M. Dunbabin, P. Corke, G. Buskey: Low-cost vision-based AUV guidance system for reef navigation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2004) pp. 7–12Google Scholar
  60. 51.60
    J.J. Leonard, H.J.S. Feder: Decoupled stochastic mapping, IEEE J. Ocean. Eng. 26(4), 561–571 (2001)CrossRefGoogle Scholar
  61. 51.61
    S. Williams, G. Dissanayake, H. Durrant–Whyte: Towards terrain-aided navigation for underwater robotics, Adv. Robotics 15(5), 533–549 (2001)CrossRefGoogle Scholar
  62. 51.62
    P. Newman, J. Leonard: Pure range-only sub-sea SLAM, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2003) pp. 1921–1926Google Scholar
  63. 51.63
    T.W. McLain, S.M. Rock, M.J. Lee: Experiments in the coordinated control of an underwater arm/vehicle system, Auton. Robots 3(2), 213–232 (1996)CrossRefGoogle Scholar
  64. 51.64
    G. Antonelli (Ed.): Underwater Robots. Motion and Force Control of Vehicle-Manipulator Systems, Springer Tracts in Advanced Robotics (Springer, Berlin, Heidelberg 2014), 3rd edn.zbMATHGoogle Scholar
  65. 51.65
    J.S. Ferguson, A. Pope, B. Butler, R. Verrall: Theseus AUV – Two record breaking missions, Sea Technol. Mag. 40, 65–70 (1999)Google Scholar
  66. 51.66
    A. Alessandri, M. Caccia, G. Veruggio: Fault detection of actuator faults in unmanned underwater vehicles, Control Eng. Prac. 7, 357–368 (1999)CrossRefGoogle Scholar
  67. 51.67
    K.C. Yang, J. Yuh, S.K. Choi: Fault-tolerant system design of an autonomous underwater vehicle – ODIN: An experimental study, Int. J. Syst. Sci. 30(9), 1011–1019 (1999)CrossRefzbMATHGoogle Scholar
  68. 51.68
    G. Antonelli: A survey of fault detection/tolerance strategies for AUVs and ROVs. Recent advances. In: Fault Diagnosis and Tolerance for Mechatronic Systems, Springer Tracts in Advanced Robotics, ed. by F. Caccavale, L. Villani (Springer, Berlin, Heidelberg 2002) pp. 109–127Google Scholar
  69. 51.69
    T.K. Podder, G. Antonelli, N. Sarkar: An experimental investigation into the fault-tolerant control of an autonomous underwater vehicle, J. Adv. Robotics 15, 501–520 (2001)CrossRefGoogle Scholar
  70. 51.70
    M. Caccia, R. Bono, G. Bruzzone, G. Bruzzone, E. Spirandelli, G. Veruggio: Experiences on actuator fault detection, diagnosis and accomodation for ROVs, Int. Symp. Unmanned Untethered Submers. Technol. (2001)Google Scholar
  71. 51.71
    E. Fiorelli, P. Bhatta, N.E. Leonard, I. Shulman: Adaptive sampling using feedback control of an autonomous underwater glider fleet, Int. Symp. Unmanned Untethered Submers. Technol. (2003)Google Scholar
  72. 51.72
    N.E. Leonard, D.A. Paley, R.E. Davis, D.M. Fratantoni, F. Lekien, F. Zhang: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay, J. Field Robotics 27(6), 718–740 (2010)CrossRefGoogle Scholar
  73. 51.73
    S. Kalantar, U. Zimmer: Distributed shape control of homogeneous swarms of autonomous underwater vehicles, Auton. Robots 22(1), 37–53 (2006)CrossRefGoogle Scholar
  74. 51.74
    A. Pascoal, C. Silvestre, P. Oliveira: Vehicle and mission control of single and multiple autonomous marine robots. In: Advances in Unmanned Marine Vehicles, IEEE Control Engineering, ed. by G. Roberts, R. Sutton (Peregrinus, New York 2006) pp. 353–386CrossRefGoogle Scholar
  75. 51.75
    M. Dunbabin, I. Vasilescu, P. Corke, D. Rus: Experiments with cooperative networked control of underwater robots. In: Experimental Robotics, (Springer, Berlin, Heidelberg 2008) pp. 463–470CrossRefGoogle Scholar
  76. 51.76
    Marine Systems Simulator:
  77. 51.77
    TRIDENT project:

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gianluca Antonelli
    • 1
    Email author
  • Thor I. Fossen
    • 2
  • Dana R. Yoerger
    • 3
  1. 1.Department of Electrical and Information EngineeringUniversity of Cassino and Southern LazioCassinoItaly
  2. 2.Department of Engineering CyberenticsNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Applied Ocean Physics & EngineeringWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations