World Modeling

Abstract

In this chapter we describe popular ways to represent the environment of a mobile robot. For indoor environments, which are often stored using two-dimensional representations, we discuss occupancy grids, line maps, topological maps, and landmark-based representations. Each of these techniques has its own advantages and disadvantages. Whilst occupancy grid maps allow for quick access and can efficiently be updated, line maps are more compact. Also landmark-based maps can efficiently be updated and maintained, however, they do not readily support navigation tasks such as path planning like topological representations do.

Additionally, we discuss approaches suited for outdoor terrain modeling. In outdoor environments, the flat-surface assumption underling many mapping techniques for indoor environments is no longer valid. A very popular approach in this context are elevation and variants maps, which store the surface of the terrain over a regularly spaced grid. Alternatives to such maps are point clouds, meshes, or three-dimensional grids, which provide a greater flexibility but have higher storage demands.

2-D

two-dimensional

2.5-D

two-and-a-half-dimensional

3-D

three-dimensional

EKF

extended Kalman filter

EM

expectation maximization

SLAM

simultaneous localization and mapping

References

  1. 45.1
    H.P. Moravec, A.E. Elfes: High resolution maps from wide angle sonar, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1985)Google Scholar
  2. 45.2
    H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun: Principles of Robot Motion: Theory, Algorithms and Implementation (MIT Press, Cambridge 2005)MATHGoogle Scholar
  3. 45.3
    D.H. Douglas, T.K. Peucker: Algorithms for the reduction of the number of points required to represent a line or its caricature, Cdn. Cartogr. 10(2), 112–122 (1973)CrossRefGoogle Scholar
  4. 45.4
    D. Sack, W. Burgard: A comparison of methods for line extraction from range data, Proc. IFAC Symp. Intell. Auton. Veh. (IAV) (2004)Google Scholar
  5. 45.5
    P. Beeson, N.K. Jong, B. Kuipers: Towards autonomous topological place detection using the extended Voronoi graph, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)Google Scholar
  6. 45.6
    M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit: FastSLAM: A factored solution to the simultaneous localization and mapping problem, Proc. Nat. Conf. Artif. Intell. (AAAI) (2002)Google Scholar
  7. 45.7
    B.J. Kuipers, Y.-T. Byun: A robust qualitative method for spatial learning in unknown environments, Proc. Nat. Conf. Artif. Intell. (AAAI) (1988)Google Scholar
  8. 45.8
    H. Choset, K. Nagatani: Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit localization, IEEE Trans. Robotics Autom. 17(2), 125–137 (2001)CrossRefGoogle Scholar
  9. 45.9
    S. Thrun: Robotic mapping: A survey. In: Exploring Artificial Intelligence in the New Millenium, ed. by G. Lakemeyer, B. Nebel (Morgan Kaufmann, San Diego 2003)Google Scholar
  10. 45.10
    M. Maimone, P. Leger, J. Biesiadecki: Overview of the Mars exploration rovers’ autonomous mobility and vision capabilities, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)Google Scholar
  11. 45.11
    S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, R. Chatila: Autonomous rover navigation on unknown terrains: functions and integration, Int. J. Robotics Res. 21(10-11), 917–942 (2002)CrossRefGoogle Scholar
  12. 45.12
    R. Olea: Geostatistics for Engineers and Earth Scientists (Kluwer, Boston 1999)CrossRefGoogle Scholar
  13. 45.13
    A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-Calderon, M. Happold, H. Herman, R. Mandelbaum, T. Pilarki, P. Rander, S. Thayer, N. Vallidi, R. Warner: Toward reliable off road autonomous vehicles operating in challenging environments, Int. J. Robotics Res. 25(5-6), 449–483 (2006)CrossRefGoogle Scholar
  14. 45.14
    I.S. Kweon, T. Kanade: High-resolution terrain map from multiple sensor data, IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 278–292 (1992)CrossRefGoogle Scholar
  15. 45.15
    M. Montemerlo, S. Thrun: A multi-resolution pyramid for outdoor robot terrain perception, Proc. AAAI Nat. Conf. Artif. Intel., San Jose (2004)Google Scholar
  16. 45.16
    R. Triebel, P. Pfaff, W. Burgard: Multi-level surface maps for outdoor terrain mapping and loop closing, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2006)Google Scholar
  17. 45.17
    C. Wellington, A. Courville, A. Stentz: A generative model of terrain for autonomous navigation in vegetation, Int. J. Robotics Res. 25(12), 1287–1304 (2006)CrossRefGoogle Scholar
  18. 45.18
    P. Pfaff, R. Triebel, W. Burgard: An efficient extension to elevation maps for outdoor terrain mapping and loop closing, Int. J. Robotics Res. 26(2), 217–230 (2007)CrossRefGoogle Scholar
  19. 45.19
    D.M. Cole, P.M. Newman: Using laser range data for 3D SLAM in outdoor environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006)Google Scholar
  20. 45.20
    A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann: 6D SLAM – 3D mapping outdoor environments: Research articles, J. Field Robotics 24(8–9), 699–722 (2007)CrossRefMATHGoogle Scholar
  21. 45.21
    J. Elseberg, D. Borrmann, A. Nüchter: Efficient processing of large 3D point clouds, Proc. 23rd Int. Symp. Infor. Commun. Autom. Technol. (ICAT) (2011)Google Scholar
  22. 45.22
    R.B. Rusu, S. Cousins: 3D is here: Point cloud library (PCL), Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)Google Scholar
  23. 45.23
    N. Fairfield, G. Kantor, D. Wettergreen: Real-time SLAM with octree evidence grids for exploration in underwater tunnels, J. Field Robotics 24(1), 3–21 (2007)CrossRefGoogle Scholar
  24. 45.24
    A. Foessel: Scene Modeling from Motion-Free Radar Sensing, Ph.D. Thesis (Carnegie Mellon Univ., Pittsburgh 2002)Google Scholar
  25. 45.25
    K.M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, W. Burgard: OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems, Proc. ICRA Workshop Best Pract. 3D Percept. Model. Mob. Manip. (2010)Google Scholar
  26. 45.26
    J.-F. Lalonde, N. Vandapel, M. Hebert: Data structure for efficient processing in 3-D, Proc. Robotics Sci. Syst., Vol. I (2005) p. 48Google Scholar
  27. 45.27
    A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard: OctoMap: An efficient probabilistic 3D mapping framework based on octrees, Auton. Robots 34(3), 189–206 (2013)CrossRefGoogle Scholar
  28. 45.28
    K.M. Wurm, D. Hennes, D. Holz, R.B. Rusu, C. Stachniss, K. Konolige, W. Burgard: Hierarchies of octrees for efficient 3D mapping, Proc. IEEE/RSJ Int Conf. Intell. Robots Syst. (IROS) (2011)Google Scholar
  29. 45.29
    L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, M. Pollefeys: Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-board processing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)Google Scholar
  30. 45.30
    S. Oßwald, A. Hornung, M. Bennewitz: Improved proposals for highly accurate localization using range and vision data, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012)Google Scholar
  31. 45.31
    M. Ciocarlie, K. Hsiao, E.G. Jones, S. Chitta, R.B. Rusu, I.A. Sucan: Towards reliable grasping and manipulation in household environments, Int. Symp. Exp. Robotics (ISER) (2010)Google Scholar
  32. 45.32
    A. Hornung, M. Phillips, E.G. Jones, M. Bennewitz, M. Likhachev, S. Chitta: Navigation in three-dimensional cluttered environments for mobile manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012)Google Scholar
  33. 45.33
    J. Leal: Stochastic Environment Representation, Ph.D. Thesis (Univ. of Sydney, Sydney 2003)Google Scholar
  34. 45.34
    P. Heckbert, M. Garland: Optimal triangulation and quadric-based surface simplification, J. Comput. Geom. Theory Appl. 14(1-3), 49–65 (1999)MathSciNetCrossRefMATHGoogle Scholar
  35. 45.35
    A. Akbarzadeh: Towards urban 3d reconstruction from video, Proc. Int. Symp. 3D Data Vis. Transm. (2006)Google Scholar
  36. 45.36
    C. Frueh, S. Jain, A. Zakhor: Data processing algorithms for generating textured 3d building facade meshes from laser scans and camera images, Int. J. Comput. Vis. 61(2), 159–184 (2005)CrossRefGoogle Scholar
  37. 45.37
    I. Stamos, P. Allen: Geometry and texture recovery of scenes of large scales, Comput. Vis. Image Underst. 88, 94–118 (2002)CrossRefMATHGoogle Scholar
  38. 45.38
    D. Gennery: Traversability analysis and path planning for a planetary rover, Auton. Robotics 6, 131–146 (1999)CrossRefGoogle Scholar
  39. 45.39
    D. Ferguson, A. Stentz: The delayed D* algorithm for efficient path replanning, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)Google Scholar
  40. 45.40
    D. Ferguson, A. Stentz: Field D*: An interpolation-based path planner and replanner, Proc. Int. Symp. Robotics Res. (ISRR) (2005)Google Scholar
  41. 45.41
    M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun: Anytime dynamic A*: An anytime, replanning algorithm, Proc. Int. Conf. Autom. Plan. Sched. (ICAPS) (2005)Google Scholar
  42. 45.42
    B. Sofman, E. Lin, J. Bagnell, J. Cole, N. Vandapel, A. Stentz: Improving robot navigation through self-supervised online learning, J. Field Robotics 23(12), 1059–1075 (2006)CrossRefGoogle Scholar
  43. 45.43
    D. Stavens, S. Thrun: A self-supervised terrain roughness estimator for off-road autonomous driving, Uncertainty Artif. Intell., Boston (2006)Google Scholar
  44. 45.44
    A. Angelova, L. Matthies, D. Helmick, P. Perona: Slip prediction using visual information, Robotics Sci. Syst., Philadelphia (2006)Google Scholar
  45. 45.45
    D. Kim, J. Sun, S. Oh, J. Rehg, A. Bobick: Traversability classification using unsupervised on-line visual learning for outdoor robot navigation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006)Google Scholar
  46. 45.46
    S. Thrun, M. Montemerlo, A. Aron: Probabilistic terrain analysis for high-speed desert driving, Robotics Sci. Syst. (2005)Google Scholar
  47. 45.47
    R. Murrieta-Cid, C. Parra, M. Devy: Visual navigation in natural environments: From range and color data to a landmark-based model, Auton. Robotics 13(2), 143–168 (2002)CrossRefMATHGoogle Scholar
  48. 45.48
    D. Asmar, J. Zelek, S. Abdallah: Tree trunks as landmarks for outdoor vision SLAM, Proc. Conf. Comp. Vis. Pattern Recogn. Workshop (2006)Google Scholar
  49. 45.49
    I. Posner, D. Schroeter, P. Newman: Using scene similarity for place labelling, Int. Symp. Exp. Robotics (2006)Google Scholar
  50. 45.50
    A. Torralba, K.P. Murphy, W.T. Freeman, M.A. Rubin: Context-based vision system for place and object recognition, Proc. IEEE Int. Conf. Comput. Vis. (ICCV) (2003)Google Scholar
  51. 45.51
    D. Bradley, S. Thayer, A. Stentz, P. Rander: Vegetation Detection for Mobile Robot Navigation, Tech. Rep. CMU-RI-TR-04-12 (Carnegie Mellon Univ., Pittsburgh 2004)Google Scholar
  52. 45.52
    S. Kumar, J. Guivant, H. Durrant-Whyte: Informative representations of unstructured environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)Google Scholar
  53. 45.53
    S. Kumar, F. Ramos, B. Douillard, M. Ridley, H. Durrant-Whyte: A novel visual perception framework, Proc. 9th Int. Conf. Control Autom. Robotics Vis. (ICARCV) (2006)Google Scholar
  54. 45.54
    F. Ramos, S. Kumar, B. Upcroft, H. Durrant-Whyte: Representing natural objects in unstructured environments, NIPS Workshop Mach. Learn. Robotics (2005)Google Scholar
  55. 45.55
    C. Pantofaru, R. Unnikrishnan, M. Hebert: Toward generating labeled maps from color and range data for robot navigation, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (2003)Google Scholar
  56. 45.56
    D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, A. Ng: Discriminative learning of Markov random fields for segmentation of 3D scan data, Proc. Conf. Comp. Vis. Pattern Recogn. (CVPR) (2005)Google Scholar
  57. 45.57
    R. Triebel, K. Kersting, W. Burgard: Robust 3D scan point classification using associative Markov networks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006)Google Scholar
  58. 45.58
    J.F. Lalonde, N. Vandapel, D. Huber, M. Hebert: Natural terrain classification using three-dimensional ladar data for ground robot mobility, J. Field Robotics 23(10), 839–861 (2006)CrossRefGoogle Scholar
  59. 45.59
    M. Devy, R. Chatila, P. Fillatreau, S. Lacroix, F. Nashashibi: On autonomous navigation in a natural environment, Robotics Auton. Syst. 16(1), 5–16 (1995)CrossRefGoogle Scholar
  60. 45.60
    R. Manduchi, A. Castano, A. Talukder, L. Matthies: Obstacle detection and terrain classification for autonomous off-road navigation, Auton. Robotics 18(1), 81–102 (2005)CrossRefGoogle Scholar
  61. 45.61
    D. Huber, M. Hebert: 3D modeling using a statistical sensor model and stochastic search, Proc. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR) (2003) pp. 858–865Google Scholar
  62. 45.62
    S. Balakirsky, A. Lacaze: World modeling and behavior generation for autonomous ground vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000)Google Scholar
  63. 45.63
    A. Lacaze, K. Murphy, M. Delgiorno: Autonomous mobility for the demo III experimental unmanned vehicles, Proc. AUVSI Int. Conf. Unmanned Veh. (2002)Google Scholar
  64. 45.64
    P. Bellutta, R. Manduchi, L. Matthies, K. Owens, A. Rankin: Terrain perception for demo III, Proc. Intell. Veh. Symp. (2000)Google Scholar
  65. 45.65
    J.F. Lalonde, R. Unnikrishnan, N. Vandapel, M. Hebert: Scale selection for classification of point-sampled 3D surfaces, Proc. 5th Int. Conf. 3-D Digital Imaging Model. (3DIM) (2005)Google Scholar
  66. 45.66
    J. Macedo, R. Manduchi, L. Matthies: Ladar-based discrimination of grass from obstacles for autonomous navigation, Proc. 7th Int. Symp. Exp. Robotics (ISER) (2000)Google Scholar
  67. 45.67
    H. Chen, P. Meer, D. Tyler: Robust regression for data with multiple structures, Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn. (CVPR) (2001)Google Scholar
  68. 45.68
    R. Unnikrishnan, M. Hebert: Robust extraction of multiple structures from non-uniformly sampled data, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2003)Google Scholar
  69. 45.69
    D. Wolf, G. Sukhatme, D. Fox, W. Burgard: Autonomous terrain mapping and classification using hidden Markov models, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)Google Scholar
  70. 45.70
    C. Olson, L. Matthies, J. Wright, R. Li, K. Di: Visual terrain mapping for Mars exploration, Comput. Vis. Underst. 105, 73–85 (2007)CrossRefGoogle Scholar
  71. 45.71
    J. Nieto, J. Guivant, E. Nebot: The hybrid metric maps (hymms): A novel map representation for denseSLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)Google Scholar
  72. 45.72
    F. Ramos, J. Nieto, H. Durrant-Whyte: Recognising and modelling landmarks to close loops in outdoor SLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)Google Scholar
  73. 45.73
    D. Hähnel, D. Schulz, W. Burgard: Mobile robot mapping in populated environments, Adv. Robotics 17(7), 579–598 (2003)CrossRefGoogle Scholar
  74. 45.74
    C.-C. Wang, C. Thorpe, S. Thrun: Online simultaneous localization and mapping with detection and tracking of moving objects: Theory and results from a ground vehicle in crowded urban areas, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003)Google Scholar
  75. 45.75
    P. Biber, T. Duckett: Dynamic maps for long-term operation of mobile service robots, Proc. Robotics Sci. Syst. (2005)Google Scholar
  76. 45.76
    D. Meyer-Delius, J. Hess, G. Grisetti, W. Burgard: Temporary maps for robust localization in semi-static environments, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Taipei (2010)Google Scholar
  77. 45.77
    C. Stachniss, W. Burgard: Mobile robot mapping and localization in non-static environments, Proc. Nat. Conf. Artif. Intell. (AAAI), Pittsburgh (2005)Google Scholar
  78. 45.78
    D. Hähnel, R. Triebel, W. Burgard, S. Thrun: Map building with mobile robots in dynamic environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003)Google Scholar
  79. 45.79
    R. Siegwart, I. Nourbakhsh: Introduction to Autonomous Mobile Robots (MIT Press, Cambridge 2001)Google Scholar
  80. 45.80
    S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)MATHGoogle Scholar
  81. 45.81
    H. Samet: Foundations of Multidimensional and Metric Data Structures (Elsevier, Amsterdam 2006)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wolfram Burgard
    • 1
  • Martial Hebert
    • 2
  • Maren Bennewitz
    • 3
  1. 1.Institute of Computer ScienceUniversity of FreiburgFreiburgGermany
  2. 2.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  3. 3.Institute for Computer Science VIUniversity of BonnBonnGermany

Personalised recommendations