Networked Robots

  • Dezhen SongEmail author
  • Ken Goldberg
  • Nak-Young Chong
Part of the Springer Handbooks book series (SHB)


As of 2013, almost all robots have access to computer networks that offer extensive computing, memory, and other resources that can dramatically improve performance. The underlying enabling framework is the focus of this chapter: networked robots. Networked robots trace their origin to telerobots or remotely controlled robots. Telerobots are widely used to explore undersea terrains and outer space, to defuse bombs and to clean up hazardous waste. Until 1994, telerobots were accessible only to trained and trusted experts through dedicated communication channels. This chapter will describe relevant network technology, the history of networked robots as it evolves from teleoperation to cloud robotics, properties of networked robots, how to build a networked robot, example systems. Later in the chapter, we focus on the recent progress on cloud robotics, and topics for future research.


Cloud Computing Mobile Robot Augmented Reality Transmission Control Protocol Common Object Request Broker Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





asymmetric digital subscriber line






collision avoidance


computer-aided drafting


collision detection


common gateway interface


Collaborative Observatory for Nature Environments


common object request broker architecture


central processing unit


carrier-sense multiple-access


deoxyribonucleic acid


Department of Defense




first-in first-out


feasible minimum buffering time


fiber to the home


high data rate digital subscriber line


high-performance computing


hypertext markup language


hypertext transmission protocol


Institute of Electrical and Electronics Engineers


Internet Information Services


internet protocol


integrated services digital network


Internet service provider


Java server pages


multiple operator multiple robot


multiple operator single robot


operating system


personal roving presence


quality of service


quasistatic telerobotics


research and development


radio frequency identification


radio frequency


robot operating system


software development kit


spatial dynamic voting


single operator multiple robot


single operator single robot


transmission control protocol


unmanned aerial vehicle


user data protocol


Ubiquitous Robotic Companion


uniform resource locator


virtual reality modeling language


wide-area network


wireless markup language


world wide web


extensible hyper text markup language


extensible markup language


  1. 44.1
    K. Goldberg, R. Siegwart (Eds.): Beyond Webcams: An Introduction to Online Robots (MIT Press, Cambridge 2002)Google Scholar
  2. 44.2
    IEEE Technical Committee on Networked Robots:
  3. 44.3
    N. Tesla: Method of and apparatus for controlling mechanism of moving vessels or vehicles, US Patent 613809 A (1898)Google Scholar
  4. 44.4
    R. Goertz, R. Thompson: Electronically controlled manipulator, Nucleonics 12(11), 46–47 (1954)Google Scholar
  5. 44.5
    R.D. Ballard: A last long look at titanic, Nat. Geogr. 170(6), 698–727 (1986)Google Scholar
  6. 44.6
    A.K. Bejczy: Sensors, controls, and man-machine interface for advanced teleoperation, Science 208(4450), 1327–1335 (1980)CrossRefGoogle Scholar
  7. 44.7
    R.S. Mosher: Industrial manipulators, Sci. Am. 211(4), 88–96 (1964)CrossRefGoogle Scholar
  8. 44.8
    R. Tomovic: On man-machine control, Automatica 5, 401–404 (1969)CrossRefGoogle Scholar
  9. 44.9
    A. Bejczy, G. Bekey, R. Taylor, S. Rovetta: A research methodology for tele-surgery with time delays, 1st Int. Symp. Med. Robotics Comput. Assist. Surg. (MRCAS) (1994)Google Scholar
  10. 44.10
    M. Gertz, D. Stewart, P. Khosla: A human-machine interface for distributed virtual laboratories, IEEE Robotics Autom. Mag. 1, 5–13 (1994)CrossRefGoogle Scholar
  11. 44.11
    T. Sato, J. Ichikawa, M. Mitsuishi, Y. Hatamura: A new micro-teleoperation system employing a hand-held force feedback pencil, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994)Google Scholar
  12. 44.12
    T.B. Sheridan: Telerobotics, Automation, and Human Supervisory Control (MIT Press, Cambridge 1992)Google Scholar
  13. 44.13
  14. 44.14
    K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, J. Wiegley: Robot teleoperation via WWW, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995)Google Scholar
  15. 44.15
    K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, J. Wiegley: Beyond the web: Manipulating the physical world via the WWW, Comput. Netw. ISDN Syst. J. 28(1), 209–219 (1995)CrossRefGoogle Scholar
  16. 44.16
    B. Dalton, K. Taylor: A framework for internet robotics, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1998)Google Scholar
  17. 44.17
    K. Taylor, J. Trevelyan: The telelabs project, (1994)
  18. 44.18
    H. Hu, L. Yu, P.W. Tsui, Q. Zhou: Internet-based robotic systems for teleoperation, Assem. Automat. 21(2), 143–151 (2001)CrossRefGoogle Scholar
  19. 44.19
    R. Safaric, M. Debevc, R. Parkin, S. Uran: Telerobotics experiments via internet, IEEE Trans. Ind. Electron. 48(2), 424–431 (2001)CrossRefGoogle Scholar
  20. 44.20
    S. Jia, K. Takase: A corba-based internet robotic system, Adv. Robotics 15(6), 663–673 (2001)CrossRefGoogle Scholar
  21. 44.21
    S. Jia, Y. Hada, G. Ye, K. Takase: Distributed telecare robotic systems using corba as a communication architecture, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)Google Scholar
  22. 44.22
    J. Kim, B. Choi, S. Park, K. Kim, S. Ko: Remote control system using real-time MPEG-4 streaming technology for mobile robot, IEEE Int. Conf. Consum. Electron. (2002)Google Scholar
  23. 44.23
    T. Mirfakhrai, S. Payandeh: A delay prediction approach for teleoperation over the internet, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)Google Scholar
  24. 44.24
    K. Han, Y. Kim, J. Kim, S. Hsia: Internet control of personal robot between KAIST and UC Davis, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)Google Scholar
  25. 44.25
    L. Ngai, W.S. Newman, V. Liberatore: An experiment in internet-based, human-assisted robotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)Google Scholar
  26. 44.26
    R.C. Luo, T.M. Chen: Development of a multibehavior-based mobile robot for remote supervisory control through the internet, IEEE/ASME Trans. Mechatron. 5(4), 376–385 (2000)CrossRefGoogle Scholar
  27. 44.27
    D. Aarno, S. Ekvall, D. Kragi: Adaptive virtual fixtures for machine-assisted teleoperation tasks, IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1151–1156Google Scholar
  28. 44.28
    I. Belousov, S. Chebukov, V. Sazonov: Web-based teleoperation of the robot interacting with fast moving objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 685–690Google Scholar
  29. 44.29
    Z. Cen, A. Goradia, M. Mutka, N. Xi, W. Fung, Y. Liu: Improving the operation efficiency of supermedia enhanced internet based teleoperation via an overlay network, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 691–696Google Scholar
  30. 44.30
    N.P. Jouppi, S. Thomas: Telepresence systems with automatic preservation of user head height, local rotation, and remote translation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 62–68Google Scholar
  31. 44.31
    B. Ricks, C.W. Nielsen, M.A. Goodrich: Ecological displays for robot interaction: A new perspective, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2004) pp. 2855–2860Google Scholar
  32. 44.32
    D. Ryu, S. Kang, M. Kim, J. Song: Multi-modal user interface for teleoperation of ROBHAZ-DT2 field robot system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 1 (2004) pp. 168–173Google Scholar
  33. 44.33
    J. Su, Z. Luo: Incremental motion compression for telepresent walking subject to spatial constraints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 69–74Google Scholar
  34. 44.34
    I. Toshima, S. Aoki: Effect of driving delay with an acoustical tele-presence robot, telehead, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 56–61Google Scholar
  35. 44.35
    N. Chong, T. Kotoku, K. Ohba, K. Komoriya, N. Matsuhira, K. Tanie: Remote coordinated controls in multiple telerobot cooperation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (2000) pp. 3138–3343Google Scholar
  36. 44.36
    P. Cheng, V. Kumar: An almost communication-less approach to task allocation for multiple unmanned aerial vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1384–1389Google Scholar
  37. 44.37
    X. Ding, M. Powers, M. Egerstedt, S. Young, T. Balch: Executive decision support, IEEE Robotics Autom. Mag. 16(2), 73–81 (2009)CrossRefGoogle Scholar
  38. 44.38
    J. Liu, L. Sun, T. Chen, X. Huang, C. Zhao: Competitive multi-robot teleoperation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)Google Scholar
  39. 44.39
    Z. Zhang, Q. Cao, L. Zhang, C. Lo: A CORBA-based cooperative mobile robot system, Ind. Robot Int. J. 36(1), 36–44 (2009)CrossRefGoogle Scholar
  40. 44.40
    Y. Xu, D. Song: Systems and algorithms for autonomous and scalable crowd surveillance using robotic PTZ cameras assisted by a wide-angle camera, Auton. Robots 29(1), 53–66 (2010)CrossRefGoogle Scholar
  41. 44.41
    D. Sanders, J. Graham-Jones, A. Gegov: Improving ability of tele-operators to complete progressively more difficult mobile robot paths using simple expert systems and ultrasonic sensors, Ind. Robot Int. J. 37(5), 431–440 (2010)CrossRefGoogle Scholar
  42. 44.42
    S. Faridani, B. Lee, S. Glasscock, J. Rappole, D. Song, K. Goldberg: A networked telerobotic observatory for collaborative remote observation of avian activity and range change, IFAC Workshop Netw. Robots (2009)Google Scholar
  43. 44.43
    R. Bogue: Robots for monitoring the environment, Ind. Robot Int. J. 38(6), 560–566 (2011)CrossRefGoogle Scholar
  44. 44.44
    R. Murphy, J. Burke: From remote tool to shared roles, IEEE Robotics Autom. Mag. 15(4), 39–49 (2008)CrossRefGoogle Scholar
  45. 44.45
    E. Paulos, J. Canny, F. Barrientos: Prop: Personal roving presence, SIGGRAPH Vis. Proc. (1997) p. 99Google Scholar
  46. 44.46
    L. Takayama, E. Marder-Eppstein, H. Harris, J. Beer: Assisted driving of a mobile remote presence system: System design and controlled user evaluation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 1883–1889Google Scholar
  47. 44.47
    D. Lazewatsky, W. Smart: An inexpensive robot platform for teleoperation and experimentation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 1211–1216Google Scholar
  48. 44.48
    K. Taylor, J.P. Trevelyan: Australia’s telerobot on the web, 26th Symp. Ind. Robotics (1995) pp. 39–44Google Scholar
  49. 44.49
    A. Khamis, D.M. Rivero, F. Rodriguez, M. Salichs: Pattern-based architecture for building mobile robotics remote laboratories, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3284–3289Google Scholar
  50. 44.50
    C. Cosma, M. Confente, D. Botturi, P. Fiorini: Laboratory tools for robotics and automation education, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3303–3308Google Scholar
  51. 44.51
    K.W. Dorman, J.L. Pullen, W.O. Keksz, P.H. Eismann, K.A. Kowalski, J.P. Karlen: The servicing aid tool: A teleoperated robotics system for space applications, 7th Annu. Workshop Space Operat. Appl. Res. (SOAR), Vol. 1 (1994)Google Scholar
  52. 44.52
    C. Pollak, H. Hutter: A webcam as recording device for light microscopes, J. Comput.-Assist. Microsc. 10(4), 179–183 (1998)CrossRefGoogle Scholar
  53. 44.53
    K. Goldberg, D. Song, A. Levandowski: Collaborative teleoperation using networked spatial dynamic voting, Proceedings IEEE 91(3), 430–439 (2003)CrossRefGoogle Scholar
  54. 44.54
    J.J. Kuffner: Cloud-Enabled Robots, IEEE-RAS Int. Conf. Humanoid Robots (2010)Google Scholar
  55. 44.55
    K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, J. Wiegley: Desktop teleoperation via the World Wide Web, Proc. IEEE Int. Conf. Robotics Autom., Vol. 1 (1995) pp. 654–659Google Scholar
  56. 44.56
    G. McKee: What is networked robotics?, Inf. Control Autom. Robotics 15, 35–45 (2008)MathSciNetCrossRefGoogle Scholar
  57. 44.57
    E. Guizzo: Cloud robotics: Connected to the cloud, robots get smarter, IEEE Spectrum (2011)
  58. 44.58
    M. Tenorth, A.C. Perzylo, R. Lafrenz, M. Beetz: The RoboEarth language: Representing and exchanging knowledge about actions, objects, and environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1284–1289Google Scholar
  59. 44.59
    R. Arumugam, V.R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F.F. Kong, A.S. Kumar, K.D. Meng, G.W. Kit: DAvinCi: A cloud computing framework for service robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 3084–3089Google Scholar
  60. 44.60
    Z. Du, W. Yang, Y. Chen, X. Sun, X. Wang, C. Xu: Design of a robot cloud center, Int. Symp. Auton. Decentralized Syst. (2011) pp. 269–275Google Scholar
  61. 44.61
    G. Hu, W.P. Tay, Y. Wen: Cloud robotics: Architecture, challenges and applications, IEEE Network 26(3), 21–28 (2012)CrossRefGoogle Scholar
  62. 44.62
    K. Kamei, S. Nishio, N. Hagita, M. Sato: Cloud networked robotics, IEEE Network 26(3), 28–34 (2012)CrossRefGoogle Scholar
  63. 44.63
    D. Hunziker, M. Gajamohan, M. Waibel, R. D’Andrea: Rapyuta: The RoboEarth cloud engine, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)Google Scholar
  64. 44.64
    M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Gálvez-López, K. Häussermann, R. Janssen, J.M.M. Montiel, A. Perzylo, B. le Schieß, M. Tenorth, O. Zweigle, R. De Molengraft: RoboEarth, IEEE Robotics Autom. Mag. 18(2), 69–82 (2011)CrossRefGoogle Scholar
  65. 44.65
    RoboEarth: What is RoboEarth?,
  66. 44.66
    L. Atzori, A. Iera, G. Morabito: The internet of things: A survey, Comput. Netw. 54(15), 2787–2805 (2010)zbMATHCrossRefGoogle Scholar
  67. 44.67
    J. Walrand, P. Varaiya: High-Performance Communication Networks, 2nd edn. (Morgan Kaufmann Press, San Francisco 2000)zbMATHGoogle Scholar
  68. 44.68
    M.A. Peshkin, A.C. Sanderson: Minimization of energy in quasi-static manipulation, IEEE Trans. Robotics Autom. 5(1), 53–60 (1989)CrossRefGoogle Scholar
  69. 44.69
    M.T. Mason: On the scope of quasi-static pushing, 3rd Int. Symp. Robotics Res. (1986)Google Scholar
  70. 44.70
    E. Ladd, J. O’Donnell: Using Html 4, Xml, and Java 1.2 (QUE Press, Indianapolis 1998)Google Scholar
  71. 44.71
    H. Friz: Design of an Augmented Reality User Interface for an Internet based Telerobot using Multiple Monoscopic Views, Ph.D. Thesis (Technical Univ. Clausthal, Clausthal-Zellerfeld 2000)Google Scholar
  72. 44.72
    T. Fong, C. Thorpe: Vehicle teleoperation interfaces, Auton. Robots 11, 9–18 (2001)zbMATHCrossRefGoogle Scholar
  73. 44.73
    A. Birk, N. Vaskevicius, K. Pathak, S. Schwertfeger, J. Poppinga, H. Buelow: 3-D perception and modeling, IEEE Robotics Autom. Mag. 16(4), 53–60 (2009)CrossRefGoogle Scholar
  74. 44.74
    A. Kellyo, N. Chan, H. Herman, D. Huber, R. Meyers, P. Rander, R. Warner, J. Ziglar, E. Capstick: Real-time photorealistic virtualized reality interface for remote mobile robot control, Int. J. Robotics Res. 30(3), 384–404 (2011)CrossRefGoogle Scholar
  75. 44.75
    L. Conway, R.A. Volz, M.W. Walker: Teleautonomous systems: Projecting and coordinating intelligent action at a distance, IEEE Trans. Robotics Autom. 6(20), 146–158 (1990)CrossRefGoogle Scholar
  76. 44.76
    J. Larsson, M. Broxvall, A. Saffiotti: An evaluation of local autonomy applied to teleoperated vehicles in underground mines, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1745–1752Google Scholar
  77. 44.77
    L.B. Rosenberg: Virtual fixtures: Perceptual tools for telerobotic manipulation, IEEE Virtual Real. Annu. Int. Symp. (VRAIS) (1993) pp. 76–82CrossRefGoogle Scholar
  78. 44.78
    P. Marayong, M. Li, A. Okamura, G. Hager: Spatial motion constraints: Theory and demonstrations for robot guidance using virtual fixtures, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2003) pp. 1954–1959Google Scholar
  79. 44.79
    A. Bettini, P. Marayong, S. Lang, A. Okamura, G. Hager: Vision-assisted control for manipulation using virtual fixtures, IEEE Trans. Robotics 20(6), 953–966 (2004)CrossRefGoogle Scholar
  80. 44.80
    R. Azuma: A survey of augmented reality, Presence 6(4), 355–385 (1997)CrossRefGoogle Scholar
  81. 44.81
    K. Goldberg, B. Chen, R. Solomon, S. Bui, B. Farzin, J. Heitler, D. Poon, G. Smith: Collaborative teleoperation via the internet, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2000) pp. 2019–2024Google Scholar
  82. 44.82
    D. Song: Systems and Algorithms for Collaborative Teleoperation, Ph.D. Thesis (Univ. California, Berkeley 2004)Google Scholar
  83. 44.83
    D. Song: Sharing a Vision: Systems and Algorithms for Collaboratively-Teleoperated Robotic Cameras (Springer, Berlin, Heidelberg 2009)Google Scholar
  84. 44.84
    K. Goldberg, B. Chen: Collaborative teleoperation via the internet, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001)Google Scholar
  85. 44.85
    K. Goldberg, D. Song: Tele-Actor, Univ. of California, Berkeley
  86. 44.86
    D. Song, A. Pashkevich, K. Goldberg: Sharecam part II: Approximate and distributed algorithms for a collaboratively controlled robotic webcam, Proc. IEEE/RSJ Int. Conf. Intell. Robots (IROS), Vol. 2 (2003) pp. 1087–1093Google Scholar
  87. 44.87
    D. Song, K. Goldberg: Sharecam part I: Interface, system architecture, and implementation of a collaboratively controlled robotic webcam, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (2003) pp. 1080–1086Google Scholar
  88. 44.88
    D. Song, K. Goldberg: Approximate algorithms for a collaboratively controlled robotic camera, IEEE Trans. Robotics 23(5), 1061–1070 (2007)CrossRefGoogle Scholar
  89. 44.89
    D. Song, A.F. van der Stappen, K. Goldberg: Exact algorithms for single frame selection on multi-axis satellites, IEEE Trans. Autom. Sci. Eng. 3(1), 16–28 (2006)CrossRefGoogle Scholar
  90. 44.90
    Y. Xu, D. Song, J. Yi: An approximation algorithm for the least overlapping p-frame problem with non-partial coverage for networked robotic cameras, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008)Google Scholar
  91. 44.91
    D. Song, N. Qin, K. Goldberg: Systems, control models, and codec for collaborative observation of remote environments with an autonomous networked robotic camera, Auton. Robots 24(4), 435–449 (2008)CrossRefGoogle Scholar
  92. 44.92
    K. Goldberg, D. Song, I.Y. Song, J. McGonigal, W. Zheng, D. Plautz: Unsupervised scoring for scalable internet-based collaborative teleoperation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)Google Scholar
  93. 44.93
    J. Rappole, S. Glasscock, K. Goldberg, D. Song, S. Faridani: Range change among new world tropical and subtropical birds, Bonn. Zool. Monogr. 57, 151–167 (2011)Google Scholar
  94. 44.94
  95. 44.95
    C. Goldfeder, M. Ciocarlie, P.K. Allen: The Columbia grasp database, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 1710–1716Google Scholar
  96. 44.96
    A. Kasper, Z. Xue, R. Dillmann: The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics, Int. J. Robotics Res. 31(8), 927–934 (2012)CrossRefGoogle Scholar
  97. 44.97
    H. Dang, J. Weisz, P.K. Allen: Blind grasping: Stable robotic grasping using tactile feedback and hand kinematics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5917–5922Google Scholar
  98. 44.98
    H. Dang, P.K. Allen: Learning grasp stability, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 2392–2397Google Scholar
  99. 44.99
    J. Weisz, P.K. Allen: Pose error robust grasping from contact wrench space metrics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 557–562Google Scholar
  100. 44.100
    M. Popovic, G. Kootstra, J.A. Jorgensen, D. Kragic, N. Kruger: Grasping unknown objects using an Early Cognitive Vision system for general scene understanding, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 987–994Google Scholar
  101. 44.101
    B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, K. Goldberg: Cloud-based robot grasping with the Google object recognition engine, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)Google Scholar
  102. 44.102
    M. Ciocarlie, C. Pantofaru, K. Hsiao, G. Bradski, P. Brook, E. Dreyfuss: A side of data with my robot, IEEE Robotics Autom. Mag. 18(2), 44–57 (2011)CrossRefGoogle Scholar
  103. 44.103
    M.A. Moussa, M.S. Kamel: An experimental approach to robotic grasping using a connectionist architecture and generic grasping functions, IEEE Trans. Syst. Man Cybern. C 28(2), 239–253 (1998)CrossRefGoogle Scholar
  104. 44.104
    K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour, D. Kragic: Grasping known objects with humanoid robots: A box-based approach, Int. Conf. Adv. Robotics (2009)Google Scholar
  105. 44.105
    C. Goldfeder, P.K. Allen: Data-driven grasping, Auton. Robots 31(1), 1–20 (2011)CrossRefGoogle Scholar
  106. 44.106
    M. Ciocarlie, K. Hsiao, E.G. Jones, S. Chitta, R.B. Rusu, I.A. Sucan: Towards reliable grasping and manipulation in household environments, Intl. Symp. Exp. Robotics (2010) pp. 1–12Google Scholar
  107. 44.107
  108. 44.108
    S. Dalibard, A. Nakhaei, F. Lamiraux, J.-P. Laumond: Manipulation of documented objects by a walking humanoid robot, IEEE-RAS Int. Conf. Humanoid Robots (2010) pp. 518–523Google Scholar
  109. 44.109
    K. Lai, D. Fox: Object recognition in 3-D point clouds using web data and domain adaptation, Int. J. Robotics Res. 29(8), 1019–1037 (2010)CrossRefGoogle Scholar
  110. 44.110
    S. Gammeter, A. Gassmann, L. Bossard, T. Quack, L. Van Gool: Server-side object recognition and client-side object tracking for mobile augmented reality, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (2010) pp. 1–8Google Scholar
  111. 44.111
    M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin: A view of cloud computing, Communication ACM 53(4), 50 (2010)CrossRefGoogle Scholar
  112. 44.112
    Amazon Web Services,
  113. 44.113
    Amazon Elastic Cloud (EC2),
  114. 44.114
  115. 44.115
    Microsoft Azure,
  116. 44.116
    G. Juve, E. Deelman, G.B. Berriman, B.P. Berman, P. Maechling: An evaluation of the cost and performance of scientific workflows on Amazon EC2, J. Grid Comput. 10(1), 5–21 (2012)CrossRefGoogle Scholar
  117. 44.117
    P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, S. Saini, R. Biswas: Performance evaluation of Amazon EC2 for NASA HPC applications, Proc. 3rd Workshop Sci. Cloud Comput. Date (ScienceCloud) (2012)Google Scholar
  118. 44.118
    R. Tudoran, A. Costan, G. Antoniu, L. Bougé: A performance evaluation of Azure and Nimbus clouds for scientific applications, Proc. 2nd Int. Workshop Cloud Comput. Platf. (CloudCP) (2012) pp. 1–6Google Scholar
  119. 44.119
  120. 44.120
    N.K. Jangid: Real time cloud computing, Proc. 1st Natl. Conf. Data Manag. Secur., Jaipur (2011)Google Scholar
  121. 44.121
    J. Glover, D. Rus, N. Roy: Probabilistic models of object geometry for grasp planning. In: Robotics: Science and Systems IV, ed. by O. Brock, J. Trinkle, F. Ramos (MIT Press, Cambridge 2008)Google Scholar
  122. 44.122
    H. Wang, Y. Ma, G. Pratx, L. Xing: Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure, Phys. Med. Biol. 56(17), 175–181 (2011)CrossRefGoogle Scholar
  123. 44.123
    M. Sevior, T. Fifield, N. Katayama: Belle monte-carlo production on the Amazon EC2 cloud, J. Phys. 219(1), 012003 (2010)Google Scholar
  124. 44.124
    D. Nister, H. Stewenius: Scalable recognition with a vocabulary tree, IEEE Comput. Soc. Conf. Comp. Vis. Pattern Recognit., Vol. 2 (2006) pp. 2161–2168Google Scholar
  125. 44.125
    J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman: Object retrieval with large vocabularies and fast spatial matching, IEEE Conf. Comput. Vis. Pattern Recognit. (2007) pp. 1–8Google Scholar
  126. 44.126
    B. Bhargava, P. Angin, L. Duan: A mobile-cloud pedestrian crossing guide for the blind, Int. Conf. Adv. Comput. Commun. (2011)Google Scholar
  127. 44.127
    J.J.S. García: Using cloud computing as a HPC platform for embedded systems, (2011)
  128. 44.128
    J. van den Berg, P. Abbeel, K. Goldberg: LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information, Int. J. Robotics Res. 30(7), 895–913 (2011)CrossRefGoogle Scholar
  129. 44.129
    B. Kehoe, D. Berenson, K. Goldberg: Estimating part tolerance bounds based on adaptive cloud-based grasp planning with slip, Proc. IEEE Int. Conf. Automat. Sci. Eng. (2012)Google Scholar
  130. 44.130
    B. Kehoe, D. Berenson, K. Goldberg: Toward cloud-based grasping with uncertainty in shape: Estimating lower bounds on achieving force closure with zero-slip push grasps, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 576–583Google Scholar
  131. 44.131
    D. Berenson, P. Abbeel, K. Goldberg: A robot path planning framework that learns from experience, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3671–3678Google Scholar
  132. 44.132,
  133. 44.133
    What is MyRobots?,
  134. 44.134
    L. Dabbish, C. Stuart, J. Tsay, J. Herbsleb: Social coding in GitHub: transparency and collaboration in an open software repository, Proc. ACM Conf. Comp. Support. Coop. Work (2012) pp. 1277–1286Google Scholar
  135. 44.135
    A. Hars: Working for free? Motivations of participating in open source projects, Proc. 34th Annu. Hawaii Int. Conf. Syst. Sci. (2001)Google Scholar
  136. 44.136
    D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov: The Eucalyptus open-source cloud-computing system, IEEE/ACM Int. Symp. Clust. Comput. Grid (2009) pp. 124–131Google Scholar
  137. 44.137
    ROS (Robot Operating System),
  138. 44.138
    M. Quigley, B. Gerkey: ROS: An open-source robot operating system, ICRA Workshop Open Source Softw. (2009)Google Scholar
  139. 44.139
    rosjava, an implementation of ROS in pure Java with Android support,
  140. 44.140
    The African Robotics Network (AFRON): Ten Dollar Robot design challenge winners, (2012)
  141. 44.141
    Bullet Physics Library,
  142. 44.142
  143. 44.143
  144. 44.144
    E. Plaku, K.E. Bekris, L.E. Kavraki: OOPS for motion planning: An online, open-source, programming system, Proc. IEEE Int. Conf. Robotics Autom. (2007) pp. 3711–3716Google Scholar
  145. 44.145
    A.T. Miller, P.K. Allen: GraspIt! A versatile simulator for robotic grasping, IEEE Robotics Autom. Mag. 11(4), 110–122 (2004)CrossRefGoogle Scholar
  146. 44.146
    A. Sorokin, D. Berenson, S.S. Srinivasa, M. Hebert: People helping robots helping people: Crowdsourcing for grasping novel objects, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 2117–2122Google Scholar
  147. 44.147
    S. Davidson: Open-source hardware, IEEE Des. Test Comput. 21(5), 456–456 (2004)CrossRefGoogle Scholar
  148. 44.148
  149. 44.149
  150. 44.150
    H.H. King, L. Cheng, P. Roan, D. Friedman, S. Nia, J. Ma, D. Glozman, J. Rosen, B. Hannaford: Raven II: Open platform for surgical robotics research, Hamlyn Symp. Med. Robotics (2012)Google Scholar
  151. 44.151
    An open-source robo-surgeon, The Economist, (2012)
  152. 44.152
    L. von Ahn: Human computation, Des. Autom. Conf. (2009) pp. 418–419Google Scholar
  153. 44.153
    J.C. Gamboa Higuera, A. Xu, F. Shkurti, G. Dudek: Socially-driven collective path planning for robot missions, 9th Conf. Comput. Robot Vis. (2012) pp. 417–424Google Scholar
  154. 44.154
    Y. Gingold, A. Shamir, D. Cohen-Or: Micro perceptual human computation for visual tasks, ACM Trans. Graphics 31(5), 1–12 (2012)CrossRefGoogle Scholar
  155. 44.155
    M. Johnson-Roberson, J. Bohg, G. Skantze, J. Gustafson, R. Carlson, B. Rasolzadeh, D. Kragic: Enhanced visual scene understanding through human-robot dialog, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3342–3348Google Scholar
  156. 44.156
    A. Sorokin, D. Forsyth: Utility data annotation with Amazon Mechanical Turk, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops (2008) pp. 1–8Google Scholar
  157. 44.157
    C. Escolano, J. Antelis, J. Minguez: Human brain-teleoperated robot between remote places, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 4430–4437Google Scholar
  158. 44.158
    A. Akce, M. Johnson, T. Bretl: Remote teleoperation of an unmanned aircraft with a brain-machine interface: Theory and preliminary results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 5322–5327Google Scholar
  159. 44.159
    J. Roselln, R. Suárez, C. Rosales, A. Pérez: Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures, Auton. Robots 31(1), 87–102 (2011)CrossRefGoogle Scholar
  160. 44.160
    K. Onda, F. Arai: Parallel teleoperation of holographic optical tweezers using multi-touch user interface, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1069–1074Google Scholar
  161. 44.161
    P.X. Liu, M. Meng, S.X. Yang: Data communications for internet robots, Auton. Robots 15, 213–223 (2003)CrossRefGoogle Scholar
  162. 44.162
    W. Fung, N. Xi, W. Lo, B. Song, Y. Sun, Y. Liu, I.H. Elhajj: Task driven dynamic QOS based bandwidth allcoation for real-time teleoperation via the internet, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003)Google Scholar
  163. 44.163
    F. Zeiger, N. Kraemer, K. Schilling: Commanding mobile robots via wireless ad-hoc networks – A comparison of four ad-hoc routing protocol implementations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 590–595Google Scholar
  164. 44.164
    M. Amoretti, S. Bottazzi, M. Reggiani, S. Caselli: Evaluation of data distribution techniques in a corba-based telerobotic system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003)Google Scholar
  165. 44.165
    S. Bottazzi, S. Caselli, M. Reggiani, M. Amoretti: A software framework based on real time COBRA for telerobotics systems, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002)Google Scholar
  166. 44.166
    J. Chen, E. Haas, M. Barnes: Human performance issues and user interface design for teleoperated robots, IEEE Trans. Syst. Man Cybern. C 37(6), 1231–1245 (2007)CrossRefGoogle Scholar
  167. 44.167
    Y. Jia, N. Xi, Y. Wang, X. Li: Online identification of quality of teleoperator (QoT) for performance improvement of telerobotic operations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 451–456Google Scholar
  168. 44.168
    S. Livatino, G. Muscato, S. Sessa, C. Koffel, C. Arena, A. Pennisi, D. Di Mauro, F. Malkondu: Mobile robotic teleguide based on video images, IEEE Robotics Autom. Mag. 15(4), 58–67 (2008)CrossRefGoogle Scholar
  169. 44.169
    G. Podnar, J. Dolan, A. Elfes, S. Stancliff, E. Lin, J. Hosier, T. Ames, J. Moisan, T. Moisan, J. Higinbotham, E. Kulczycki: Operation of robotic science boats using the telesupervised adaptive ocean sensor fleet system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1061–1068Google Scholar
  170. 44.170
    Y. Kwon, S. Rauniar: E-quality for manufacturing (EQM) within the framework of internet-based systems, IEEE Trans. Syst. Man Cybern. C 37(6), 1365–1372 (2007)CrossRefGoogle Scholar
  171. 44.171
    L. Wang: Wise-shopfloor: An integrated approach for web-based collaborative manufacturing, IEEE Trans. Syst. Man Cybern. C 38(4), 562–573 (2008)CrossRefGoogle Scholar
  172. 44.172
    P. Debenest, M. Guarnieri, K. Takita, E. Fukushima, S. Hirose, K. Tamura, A. Kimura, H. Kubokawa, N. Iwama, F. Shiga: Expliner – Robot for inspection of transmission lines, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 3978–3984Google Scholar
  173. 44.173
    N. Pouliot, S. Montambault: Linescout technology: From inspection to robotic maintenance on live transmission power lines, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 1034–1040Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceTexas A&M UniversityCollege StationUSA
  2. 2.Department of Industrial Engineering and Operations ResearchUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Center for Intelligent RoboticsJapan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations