Telerobotics

  • Günter Niemeyer
  • Carsten Preusche
  • Stefano Stramigioli
  • Dongjun Lee

Abstract

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally, we suggest some further reading for a closer engagement with the field.

6-D

six-dimensional

ASM

advanced servomanipulator

AUV

autonomous aquatic vehicle

CEA

Commissariat à l’Énergie Atomique

CPU

central processing unit

DLR

German Aerospace Center

DOF

degree of freedom

EBA

energy bounding algorithm

EP

energy packet

EVA

extravehicular activity

I/O

input/output

ISS

international space station

JPL

Jet Propulsion Laboratory

LARS

Laparoscopic Assistant Robotic System

MIT

Massachusetts Institute of Technology

MMMS

multiple master multiple-slave

MMSS

multiple master single-slave

NASA

National Aeronautics and Space Agency

PC

passivity controller

PD

proportional–derivative

PO

passivity observer

PSPM

passive set-position modulation

RAMS

robot-assisted microsurgery

ROKVISS

robotics component verification on ISS

SMMS

single-master multiple-slave

SMSS

single-master single-slave

tEODor

telerob explosive ordnance disposal and observation robot

TSP

telesensor programming

UAV

unmanned aerial vehicle

WMR

wheeled mobile robot

ZOH

zero order hold

References

  1. 43.1
    M. Buss, G. Schmidt: Control problems in multi-modal telepresence systems. In: Advances in Control, ed. by P.M. Frank (Springer, London 1999) pp. 65–101CrossRefGoogle Scholar
  2. 43.2
    W.R. Ferell, T.B. Sheridan: Supervisory control of remote manipulation, IEEE Spectrum 4(10), 81–88 (1967)CrossRefGoogle Scholar
  3. 43.3
    R.C. Goertz: Fundamentals of general-purpose remote manipulators, Nucleonics 10(11), 36–42 (1952)Google Scholar
  4. 43.4
    R.C. Goertz: Mechanical master–slave manipulator, Nucleonics 12(11), 45–46 (1954)Google Scholar
  5. 43.5
    R.C. Goertz, F. Bevilacqua: A force-reflecting positional servomechanism, Nucleonics 10(11), 43–45 (1952)Google Scholar
  6. 43.6
    W.R. Ferell: Remote manipulation with transmission delay, IEEE Trans. Hum. Factors Electron. 6, 24–32 (1965)CrossRefGoogle Scholar
  7. 43.7
    T.B. Sheridan, W.R. Ferell: Remote manipulative control with transmission delay, IEEE Trans. Hum. Factors Electron. 4, 25–29 (1963)CrossRefGoogle Scholar
  8. 43.8
    F. Miyazaki, S. Matsubayashi, T. Yoshimi, S. Arimoto: A new control methodology towards advanced teleoperation of master–slave robot systems, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 997–1002Google Scholar
  9. 43.9
    R.J. Anderson, M.W. Spong: Asymptotic stability for force reflecting teleoperators with time delay, Int. J. Robotics Res. 11(2), 135–149 (1992)CrossRefGoogle Scholar
  10. 43.10
    G. Niemeyer, J.-J.E. Slotine: Stable adaptive teleoperation, IEEE J. Ocean. Eng. 16(1), 152–162 (1991)CrossRefGoogle Scholar
  11. 43.11
    J.E. Colgate: Robust impedance shaping telemanipulation, IEEE Trans. Robotics Autom. 9(4), 374–384 (1993)CrossRefGoogle Scholar
  12. 43.12
    B. Hannaford: A design framework for teleoperators with kinesthetic feedback, IEEE Trans. Robotics Autom. 5(4), 426–434 (1989)CrossRefGoogle Scholar
  13. 43.13
    D.A. Lawrence: Stability and transparency in bilateral teleoperation, IEEE Trans. Robotics Autom. 9(5), 624–637 (1993)CrossRefGoogle Scholar
  14. 43.14
    D. Kuban, H.L. Martin: An advanced remotely maintainable servomanipulator concept, Proc. 1984 Natl. Top. Meet. Robotics Remote Handl. Hostile Environ., Washington (1984)Google Scholar
  15. 43.15
    J. Vertut, P. Coiffet: Teleoperation and Robotics: Evolution and Development (Kogan Page, London 1985)CrossRefGoogle Scholar
  16. 43.16
    J. Vertut: MA23M contained servo manipulator with television camera, PICA and PIADE telescopic supports, with computer-integrated control, Proc. 28th Remote Syst. Technol. Conf. (1980) pp. 13–19Google Scholar
  17. 43.17
    J. Vertut, P. Coiffet: Bilateral servo manipulator MA23 in direct mode and via optimized computer control, Proc. 2nd Retote Manned Syst. Technol. Conf. (1977)Google Scholar
  18. 43.18
    A.K. Bejczy: Towards advanced teleoperation in space, Prog. Astronaut. Aeronaut 161, 107–138 (1994)Google Scholar
  19. 43.19
    G. Hirzinger, B. Brunner, J. Dietrich, J. Heindl: Sensor-based space robotics – ROTEX and its telerobotic features, IEEE Trans. Robotics Autom. 9(5), 649–663 (1993)CrossRefGoogle Scholar
  20. 43.20
    T.H. Massie, J.K. Salisbury: The phantom haptic interface: A device for probing virtual objects, Proc. ASME Int. Mech. Eng. Congr. Exhib., Chicago (1994) pp. 295–302Google Scholar
  21. 43.21
    P.S. Green, J.W. Hill, J.F. Jensen, A. Shah: Telepresence Surgery, IEEE Eng. Med. Bio. Mag. 14(3), 324–329 (1995)CrossRefGoogle Scholar
  22. 43.22
    R.H. Taylor, J. Funda, B. Eldridge, S. Gomory, K. Gruben, D. LaRose, M. Talamini, L. Kavoussi, J. Anderson: A telerobotic assistant for laparoscopic surgery, IEEE Eng. Med. Bio. Mag. 14(3), 279–288 (1995)CrossRefGoogle Scholar
  23. 43.23
    A.J. Madhani, G. Niemeyer, J.K. Salisbury: The black falcon: A teleoperated surgical instrument for minimally invasive surgery, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Victoria (1998) pp. 936–944Google Scholar
  24. 43.24
    S. Charles, H. Das, T. Ohm, C. Boswell, G. Rodriguez, R. Steele, D. Istrate: Dexterity-enhanced telerobotic microsurgery, Proc. Int. Conf. Adv. Robotics (1997) pp. 5–10Google Scholar
  25. 43.25
    G.S. Guthart, J.K. Salisbury: The Intuitive${}^{{\texttrademark}}$ telesurgery system: Overview and application, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 618–621Google Scholar
  26. 43.26
    J.M. Sackier, Y. Wang: Robotically assisted laparoscopic surgery: From concept to development, Surg. Endosc. 8(1), 63–66 (1994)CrossRefGoogle Scholar
  27. 43.27
    J. Marescaux, J. Leroy, F. Rubino, M. Vix, M. Simone, D. Mutter: Transcontinental robot assisted remote telesurgery: Feasibility and potential applications, Ann. Surg. 235, 487–492 (2002)CrossRefGoogle Scholar
  28. 43.28
    G.H. Ballantyne: Robotic surgery, telerobotic surgery, telepresence, and telementoring – Review of early clinical results, Surg. Endosc. 16(10), 1389–1402 (2002)CrossRefGoogle Scholar
  29. 43.29
    D.H. Birkett: Electromechanical instruments for endoscopic surgery, Minim. Invasive Ther. Allied Technol. 10(6), 271–274 (2001)CrossRefGoogle Scholar
  30. 43.30
    J. Rosen, B. Hannaford: Doc at a distance, IEEE Spectrum 8(10), 34–39 (2006)CrossRefGoogle Scholar
  31. 43.31
    A.M. Okamura: Methods for haptic feedback in teleoperated robot-assisted surgery, Ind. Robot 31(6), 499–508 (2004)CrossRefGoogle Scholar
  32. 43.32
    T. Ortmaier, B. Deml, B. Kübler, G. Passig, D. Reintsema, U. Seibold: Robot assisted force feedback surgery, Springer Tracts Adv. Robotics 31, 361–379 (2007)CrossRefGoogle Scholar
  33. 43.33
    B.M. Yamauchi: PackBot: A versatile platform for military robotics, Proc. SPIE 5422, 228–237 (2004)CrossRefGoogle Scholar
  34. 43.34
    R.R. Murphy: Trial by fire [rescue robots], IEEE Robotics Autom. Mag. 11(3), 50–61 (2004)CrossRefGoogle Scholar
  35. 43.35
    J. Wright, A. Trebi-Ollennu, F. Hartman, B. Cooper, S. Maxwell, J. Yen, J. Morrison: Driving a rover on mars using the rover sequencing and visualization program, Int. Conf. Instrumentation, Control Inf. Technol. (2005)Google Scholar
  36. 43.36
    G. Hirzinger, K. Landzettel, D. Reintsema, C. Preusche, A. Albu-Schäffer, B. Rebele, M. Turk: ROKVISS – Robotics component verification on ISS, Proc. 8th Int. Symp. Artif. Intell. Robotics Autom. Space (iSAIRAS) (2005), Session2BGoogle Scholar
  37. 43.37
    C. Preusche, D. Reintsema, K. Landzettel, G. Hirzinger: ROKVISS – Preliminary results for telepresence mode, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 4595–4601Google Scholar
  38. 43.38
    G. Hirzinger, K. Landzettel, B. Brunner, M. Fischer, C. Preusche, D. Reintsema, A. Albu-Schäffer, G. Schreiber, M. Steinmetz: DLR's robotics technologies for on-orbit servicing, Adv. Robotics 18(2), 139–174 (2004)CrossRefGoogle Scholar
  39. 43.39
    T.B. Sheridan: Telerobotics, Automation and Human Supervisory Control (MIT Press, Cambridge 1992)Google Scholar
  40. 43.40
    G. Hirzinger, J. Heindl, K. Landzettel, B. Brunner: Multisensory shared autonomy – A key issue in the space robot technology experiment ROTEX, Proc. RSJ/IEEE Int. Conf. Intell. Robots Syst. (IROS) (1992) pp. 221–230CrossRefGoogle Scholar
  41. 43.41
    B. Brunner, K. Arbter, G. Hirzinger: Task directed programming of sensor based robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1080–1087CrossRefGoogle Scholar
  42. 43.42
    A.K. Bejczy, W.S. Kim: Predictive displays and shared compliance control for time-delayed telemanipulation, Proc. IEEE/RSJ Int. Workshop Intell. Robots Syst. (IROS) (1990) pp. 407–412Google Scholar
  43. 43.43
    P. Backes, K. Tso: UMI: An interactive supervisory and shared control system for telerobotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1990) pp. 1096–1101CrossRefGoogle Scholar
  44. 43.44
    L. Conway, R. Volz, M. Walker: Tele-autonomous systems: Methods and architectures for intermingling autonomous and telerobotic technology, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1121–1130Google Scholar
  45. 43.45
    S. Hayati, S.T. Venkataraman: Design and implementation of a robot control system with traded and shared control capability, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1310–1315Google Scholar
  46. 43.46
    G. Hirzinger, B. Brunner, J. Dietrich, J. Heindl: ROTEX – The first remotely controlled robot in space, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 2604–2611Google Scholar
  47. 43.47
    W.B. Griffin, W.R. Provancher, M.R. Cutkosky: Feedback strategies for telemanipulation with shared control of object handling forces, Presence 14(6), 720–731 (2005)CrossRefGoogle Scholar
  48. 43.48
    T. Ortmaier, M. GrÖger, D.H. Boehm, V. Falk, G. Hirzinger: Motion estimation in beating heart surgery, IEEE Trans. Biomed. Eng. 52(10), 1729–1740 (2005)CrossRefGoogle Scholar
  49. 43.49
    L. Rosenberg: Virtual fixtures: Perceptual tools for telerobotic manipulation, Proc. IEEE Virtual Real. Int. Symp. (1993) pp. 76–82CrossRefGoogle Scholar
  50. 43.50
    J.J. Abbott, P. Marayong, A.M. Okamura: Haptic virtual fixtures for robot-assisted manipulation, Proc. 12th Int. Symp. Robotics Res. (2007) pp. 49–64CrossRefGoogle Scholar
  51. 43.51
    D.J. Lee, P.Y. Li: Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators, IEEE Trans. Robotics 21(5), 936–951 (2005)CrossRefGoogle Scholar
  52. 43.52
    M.J. Massimino, T.B. Sheridan, J.B. Roseborough: One handed tracking in six degrees of freedom, Proc. IEEE Int. Conf. Syst. Man Cybern. (1989) pp. 498–503CrossRefGoogle Scholar
  53. 43.53
    A. Ruesch, A.Y. Mersha, S. Stramigioli, R. Carloni: Kinetic scrolling-based position mapping for haptic teleoperation of unmanned aerial vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3116–3121Google Scholar
  54. 43.54
    A. Casals, L. Munoz, J. Amat: Workspace deformation based teleoperation for the increase of movement precision, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 2824–2829Google Scholar
  55. 43.55
    F. Conti, O. Khatib: Spanning large workspaces using small haptic devices, Proc. 1st Jt. Eurohaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. (2005) pp. 183–188CrossRefGoogle Scholar
  56. 43.56
    R.W. Daniel, P.R. McAree: Fundamental limits of performance for force reflecting teleoperation, Int. J. Robotics Res. 17(8), 811–830 (1998)CrossRefGoogle Scholar
  57. 43.57
    M.J. Massimino, T.B. Sheridan: Sensory substitution for force feedback in teleoperation, Presence Teleoperator Virtual Environ. 2(4), 344–352 (1993)CrossRefGoogle Scholar
  58. 43.58
    D.A. Kontarinis, R.D. Howe: Tactile display of vibratory information in teleoperation and virtual environments, Presence Teleoperator Virtual Environ. 4(4), 387–402 (1995)CrossRefGoogle Scholar
  59. 43.59
    D.A. Kontarinis, J.S. Son, W.J. Peine, R.D. Howe: A tactile shape sensing and display system for teleoperated manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 641–646Google Scholar
  60. 43.60
    J.J. Gil, A. Avello, Á. Rubio, J. Flórez: Stability analysis of a 1 DOF haptic interface using the Routh–Hurwitz criterion, IEEE Trans. Control Syst. Technol. 12(4), 583–588 (2004)CrossRefGoogle Scholar
  61. 43.61
    N. Hogan: Controlling impedance at the man/ machine interface, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1626–1631Google Scholar
  62. 43.62
    R.J. Adams, B. Hannaford: Stable haptic interaction with virtual environments, IEEE Trans. Robotics Autom. 15(3), 465–474 (1999)CrossRefGoogle Scholar
  63. 43.63
    K. Hashtrudi-Zaad, S.E. Salcudean: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators, Int. J. Robotics Res. 20(6), 419–445 (2001)CrossRefGoogle Scholar
  64. 43.64
    Y. Yokokohji, T. Yoshikawa: Bilateral control of master-slave manipulators for ideal kinesthetic coupling – Formulation and experiment, IEEE Trans. Robotics Autom. 10(5), 605–620 (1994)CrossRefGoogle Scholar
  65. 43.65
    K.B. Fite, J.E. Speich, M. Goldfarb: Transparency and stability robustness in two-channel bilateral telemanipulation, ASME J. Dyn. Syst. Meas. Control 123(3), 400–407 (2001)CrossRefGoogle Scholar
  66. 43.66
    S.E. Salcudean, M. Zhu, W.-H. Zhu, K. Hashtrudi-Zaad: Transparent bilateral teleoperation under position and rate control, Int. J. Robotics Res. 19(12), 1185–1202 (2000)CrossRefGoogle Scholar
  67. 43.67
    W.R. Ferrell: Remote manipulation with transmission delay, IEEE Trans. Hum. Factors Electron. 6, 24–32 (1965)CrossRefGoogle Scholar
  68. 43.68
    T.B. Sheridan: Space teleoperation through time delay: Review and prognosis, IEEE Trans. Robotics Autom. 9(5), 592–606 (1993)CrossRefGoogle Scholar
  69. 43.69
    A. Eusebi, C. Melchiorri: Force reflecting telemanipulators with time-delay: Stability analysis and control design, IEEE Trans. Robotics Autom. 14(4), 635–640 (1998)CrossRefGoogle Scholar
  70. 43.70
    W.S. Kim, B. Hannaford, A.K. Bejczy: Force-reflection and shared compliant control in operating telemanipulators with time delays, IEEE Trans. Robotics Autom. 8(2), 176–185 (1992)CrossRefGoogle Scholar
  71. 43.71
    K. Hashtrudi-Zaad, S.E. Salcudean: Transparency in time-delayed systems and the effect of local force feedback for transparent teleoperation, IEEE Trans. Robotics Autom. 18(1), 108–114 (2002)CrossRefGoogle Scholar
  72. 43.72
    R. Oboe, P. Fiorini: A design and control environment for internet-based telerobotics, Int. J. Robotics Res. 17(4), 433–449 (1998)CrossRefGoogle Scholar
  73. 43.73
    S. Munir, W.J. Book: Control techniques and programming issues for time delayed internet based teleoperation, ASME J. Dyn. Syst. Meas. Control 125(2), 205–214 (2003)CrossRefGoogle Scholar
  74. 43.74
    S. Hirche, M. Buss: Transparent data reduction in networked telepresence and teleaction systems. Part II: Time-delayed communication, Presence Teleoperator Virtual Environ. 16(5), 532–542 (2007)CrossRefGoogle Scholar
  75. 43.75
    R.J. Anderson, M.W. Spong: Bilateral control of tele-operators with time delay, IEEE Trans. Autom. Control 34(5), 494–501 (1989)CrossRefGoogle Scholar
  76. 43.76
    G. Niemeyer, J.-J.E. Slotine: Telemanipulation with time delays, Int. J. Robotics Res. 23(9), 873–890 (2004)CrossRefGoogle Scholar
  77. 43.77
    S. Stramigioli, A. van der Schaft, B. Maschke, C. Melchiorri: Geometric scattering in robotic telemanipulation, IEEE Trans. Robotics Autom. 18(4), 588–596 (2002)CrossRefGoogle Scholar
  78. 43.78
    N.A. Tanner, G. Niemeyer: High-frequency acceleration feedback in wave variable telerobotics, IEEE/ASME Trans. Mechatron. 11(2), 119–127 (2006)CrossRefGoogle Scholar
  79. 43.79
    S. Munir, W.J. Book: Internet-based teleoperation using wave variables with prediction, IEEE/ASME Trans. Mechatron. 7(2), 124–133 (2002)CrossRefGoogle Scholar
  80. 43.80
    D.J. Lee, M.W. Spong: Passive bilateral teleoperation with constant time delay, IEEE Trans. Robotics 22(2), 269–281 (2006)CrossRefGoogle Scholar
  81. 43.81
    E. Nuno, L. Basanez, R. Ortega, M.W. Spong: Position tracking for non-linear teleoperators with variable time delay, Int. J. Robotics Res. 28(7), 895–910 (2009)CrossRefGoogle Scholar
  82. 43.82
    K. Huang, D.J. Lee: Consensus-based peer-to-peer control architecture for multiuser haptic interaction over the internet, IEEE Trans. Robotics 29(2), 417–431 (2013)CrossRefGoogle Scholar
  83. 43.83
    K. Huang, D.J. Lee: Hybrid pd-based control framework for passive bilateral teleoperation over the Internet, Proc. IFAC World Congr. (2011) pp. 1064–1069Google Scholar
  84. 43.84
    B. Hannaford, J.H. Ryu: Time domain passivity control of haptic interfaces, IEEE Trans. Robotics Autom. 18(1), 1–10 (2002)CrossRefGoogle Scholar
  85. 43.85
    J.-H. Ryu, C. Preusche, B. Hannaford, G. Hirzinger: Time domain passivity control with reference energy following, IEEE Trans. Control Syst. Technol. 13(5), 737–742 (2005)CrossRefGoogle Scholar
  86. 43.86
    J. Artigas, C. Preusche, G. Hirzinger: Time domain passivity-based telepresence with time delay, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 4205–4210Google Scholar
  87. 43.87
    J. Ryu, C. Preusche: Stable bilateral control of teleoperators under time-varying communication delays: Time domain passivity approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 3508–3513Google Scholar
  88. 43.88
    D.J. Lee, K. Huang: Passive-set-position-modulation framework for interactive robotic systems, IEEE Trans. Robotics Autom. 26(2), 354–369 (2010)CrossRefGoogle Scholar
  89. 43.89
    J.P. Kim, J. Ryu: Robustly stable haptic interaction control using an energy-bounding algorithm, Int. J. Robotics Res. 29(6), 666–679 (2010)CrossRefGoogle Scholar
  90. 43.90
    M.C.J. Franken, S. Stramigioli, S. Misra, S. Secchi, A. Macchelli: Bilateral telemanipulation with time delays: A two-layer approach combining passivity and transparency, IEEE Trans. Robotics 27(4), 741–756 (2011)CrossRefGoogle Scholar
  91. 43.91
    V. Duindam, A. Macchelli, S. Stramigioli, H. Bruyninckx: Modeling and Control of Complex Physical Systems (Springer, Berlin, Heidelberg 2009)MATHCrossRefGoogle Scholar
  92. 43.92
    S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-Free Approach, Lecture Notes in Control and Information Sciences, Vol. 266 (Springer, London 2001)MATHGoogle Scholar
  93. 43.93
    S. Stramigioli, C. Secchi, A.J. Van der Schaft, C. Fantuzzi: Sampled Data Systems Passivity and Discrete Port-Hamiltonian Systems, IEEE Trans. Robotics 21(4), 574–587 (2005)CrossRefGoogle Scholar
  94. 43.94
    D.J. Lee, O. Martinez-Palafox, M.W. Spong: Bilateral teleoperation of a wheeled mobile robot over delayed communication networks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 3298–3303Google Scholar
  95. 43.95
    N. Chopra, M.W. Spong, R. Lozano: Synchronization of bilateral teleoperators with time delay, Automatica 44, 2142–2148 (2008)MathSciNetMATHCrossRefGoogle Scholar
  96. 43.96
    J.-J.E. Slotine, W. Li: On the adaptive control of robot manipulators, Int. J. Robotics Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  97. 43.97
    D.J. Lee, D. Xu: Feedback r-passivity of lagrangian systems for mobile robot teleoperation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 2118–2123Google Scholar
  98. 43.98
    S. Stramigioli, R. Mahony, P. Corke: A novel approach to haptic tele-operation of aerial robot vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 5302–5308Google Scholar
  99. 43.99
    D.J. Lee, A. Franchi, H.-I. Son, C. Ha, H.H. Bülthoff, P.R. Giordano: Semi-autonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles, IEEE/ASME Trans. Mech. 18, 1334–1345 (2013)CrossRefGoogle Scholar
  100. 43.100
    H.I. Son, A. Franchi, L.L. Chuang, J. Kim, H.H. Bülthoff, P.R. Giordano: Human-centered design and evaluation of haptic cueing for teleoperation of multiple mobile robots, IEEE Trans. Cybern. 43(2), 597–609 (2013)CrossRefGoogle Scholar
  101. 43.101
    D.J. Lee, M.W. Spong: Bilateral teleoperation of multiple cooperative robots over delayed communication networks: Theory, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 362–367Google Scholar
  102. 43.102
    P.F. Hokayem, M.W. Spong: Bilateral teleoperation: An historical survey, Automatica 42, 2035–2057 (2006)MathSciNetMATHCrossRefGoogle Scholar
  103. 43.103
    A. Franchi, C. Secchi, H.I. Son, H.H. Bülthoff, P.R. Giordano: Bilateral teleoperation of groups of mobile robots with time-varying topology, IEEE Trans. Robotics 28(5), 1019–1033 (2012)CrossRefGoogle Scholar
  104. 43.104
    G. Hwang, H. Hashimoto: Development of a human-robot-shared controlled teletweezing system, IEEE Trans. Control Sys. Technol. 15(5), 960–966 (2007)CrossRefGoogle Scholar
  105. 43.105
    E.J. Rodriguez-Seda, J.J. Troy, C.A. Erignac, P. Murray, D.M. Stipanovic, M.W. Spong: Bilateral teleoperation of multiple mobile agents: Coordinated motion and collision avoidance, IEEE Trans. Control Sys. Technol. 18(4), 984–992 (2010)CrossRefGoogle Scholar
  106. 43.106
    D.J. Lee, P.Y. Li: Passive decomposition of multiple mechanical systems under motion coordination requirements, IEEE Trans. Autom. Control 58(1), 230–235 (2013)MathSciNetCrossRefGoogle Scholar
  107. 43.107
    P. Malysz, S. Sirouspour: Trilateral teleoperation control of kinematically redundant robotic manipulators, Int. J. Robotics Res. 30(13), 1643–1664 (2011)CrossRefGoogle Scholar
  108. 43.108
    B. Khademian, K. Hashtrudi-Zaad: Shared control architectures for haptic training: performance and coupled stability analysis, Int. J. Robotics Res. 30(13), 1627–1642 (2011)CrossRefGoogle Scholar
  109. 43.109
    M. Ferre, M. Buss, R. Aracil, C. Melchiorri, C. Balague (Eds.): Advances in Telerobotics, Springer Tracts in Advanced Robotics, Vol. 31 (Springer, Berlin, Heidelberg 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Günter Niemeyer
    • 1
  • Carsten Preusche
    • 2
  • Stefano Stramigioli
    • 3
  • Dongjun Lee
    • 4
  1. 1.Disney ResearchGlendaleUSA
  2. 2.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)WesslingGermany
  3. 3.Faculty of Electrical Engineering, Mathematics & Computer Science, Control LaboratoryUniversity of TwenteEnschedeNetherlands
  4. 4.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations