Mechanism and Actuation

  • Victor ScheinmanEmail author
  • J. Michael McCarthy
  • Jae-Bok Song
Part of the Springer Handbooks book series (SHB)


This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.24.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.


Speed Ratio Revolute Joint Parallel Robot Task Space Hydraulic Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

alternating current


adaptive suspension vehicle


direct current


degree of freedom


electroactive polymer


electromotive force


microelectromechanical system


mean time between failures


National Aeronautics and Space Agency




permanent magnet


rotary vector


series elastic actuator


shape memory alloy


variable reluctance


  1. 4.1
    D.T. Greenwood: Classical Dynamics (Prentice Hall, Upper Saddle River 1977)Google Scholar
  2. 4.2
    F.C. Moon: Applied Dynamics (Wiley, New York 1998)CrossRefzbMATHGoogle Scholar
  3. 4.3
    S.-M. Song, K.J. Waldron: Machines that Walk: The Adaptive Suspension Vehicle (MIT Press, Cambridge 1988)Google Scholar
  4. 4.4
    M.T. Mason, J.K. Salisbury: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)Google Scholar
  5. 4.5
    R.P. Paul: Robot Manipulators: Mathematics, Programming, and Control (MIT Press, Cambridge 1981)Google Scholar
  6. 4.6
    J.J. Craig: Introduction to Robotics: Mechanics and Control (Addison-Wesley, Reading 1989)zbMATHGoogle Scholar
  7. 4.7
    O. Bottema, B. Roth: Theoretical Kinematics (North-Holland, Amsterdam 1979)zbMATHGoogle Scholar
  8. 4.8
    J.M. McCarthy: An Introduction to Theoretical Kinematics (MIT Press, Cambridge 2013)Google Scholar
  9. 4.9
    L.W. Tsai: Robot Analysis. The Mechanics of Serial and Parallel Manipulators (Wiley, New York 1999)Google Scholar
  10. 4.10
    T. Lozano-Perez: Spatial Planning: A configuration space approach, IEEE Trans. Comput. 32(2), 108–120 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 4.11
    J.C. Latombe: Robot Motion Planning (Kluwer, Boston 1991)CrossRefzbMATHGoogle Scholar
  12. 4.12
    R. Vijaykumar, K. Waldron, M.J. Tsai: Geometric optimization of manipulator structures for working volume and dexterity. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 99–111Google Scholar
  13. 4.13
    K. Gupta: On the nature of robot workspace. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 120–129Google Scholar
  14. 4.14
    I. Chen, J. Burdick: Determining task optimal modular robot assembly configurations, Proc. IEEE Robotics Autom. Conf. (1995) pp. 132–137Google Scholar
  15. 4.15
    P. Chedmail, E. Ramstei: Robot mechanisms synthesis and genetic algorithms, Proc. IEEE Robotics Autom. Conf. (1996) pp. 3466–3471CrossRefGoogle Scholar
  16. 4.16
    P. Chedmail: Optimization of multi-DOF mechanisms. In: Computational Methods in Mechanical Systems, ed. by J. Angeles, E. Zakhariev (Springer, Berlin, Heidlberg 1998) pp. 97–129CrossRefGoogle Scholar
  17. 4.17
    C. Leger, J. Bares: Automated Synthesis and Optimization of Robot Configurations, Proc. ASME Design Tech. Conf., Atlanta (1998), paper no. DETC98/Mech-5945 CD-ROMGoogle Scholar
  18. 4.18
    F.C. Park: Distance metrics on the rigid body motions with applications to mechanism design, ASME J. Mech. Des. 117(1), 48–54 (1995)CrossRefGoogle Scholar
  19. 4.19
    J.M.R. Martinez, J. Duffy: On the metrics of rigid body displacements for infinite and finite bodies, ASME J. Mech. Des. 117(1), 41–47 (1995)CrossRefGoogle Scholar
  20. 4.20
    M. Zefran, V. Kumar, C. Croke: Choice of Riemannian metrics for rigid body kinematics, Proc. ASME Design Tech. Conf., Irvine (1996), paper no. DETC96/Mech-1148Google Scholar
  21. 4.21
    Q. Lin, J.W. Burdick: On well-defined kinematic metric functions, Proc. Int. Conf. Robotics Autom., San Francisco (2000) pp. 170–177Google Scholar
  22. 4.22
    C. Gosseli: On the design of efficient parallel mechanisms. In: Computational Methods in Mechanical Systems, ed. by J. Angeles, E. Zakhariev (Springer, Berlin, Heidelberg 1998) pp. 68–96CrossRefGoogle Scholar
  23. 4.23
    J.V. Albro, G.A. Sohl, J.E. Bobrow, F. Park: On the computation of optimal high-dives, Proc. Int. Conf. Robotics Autom., San Francisco (2000) pp. 3959–3964Google Scholar
  24. 4.24
    G.E. Shilov: An Introduction to the Theory of Linear Spaces (Dover, New York 1974)zbMATHGoogle Scholar
  25. 4.25
    J.K. Salisbury, J.J. Craig: Articulated hands: Force control and kinematic issues, Int. J. Robotics Res. 1(1), 4–17 (1982)CrossRefGoogle Scholar
  26. 4.26
    J. Angeles, C.S. Lopez-Cajun: Kinematic isotropy and the conditioning index of serial manipulators, Int. J. Robotics Res. 11(6), 560–571 (1992)CrossRefGoogle Scholar
  27. 4.27
    J. Angeles, D. Chabla: On isotropic sets of points in the plane. Application to the design of robot architectures. In: Advances in Robot Kinematics, ed. by J. Lenarčič, M.M. Stanišić (Kluwer, Boston 2000) pp. 73–82CrossRefGoogle Scholar
  28. 4.28
    E.F. Fichter: A Stewart platform-based manipulator: General theory and practical construction. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 165–190Google Scholar
  29. 4.29
    J.P. Merlet: Parallel Robots (Kluwer, Boston 1999)zbMATHGoogle Scholar
  30. 4.30
    J.M. Hervé: Analyse structurelle des méchanismes par groupe des déplacements, Mech. Mach. Theory 13(4), 437–450 (1978)CrossRefGoogle Scholar
  31. 4.31
    J.M. Hervé: The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mech. Mach. Theory 34, 719–730 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 4.32
    A.P. Murray, F. Pierrot, P. Dauchez, J.M. McCarthy: A planar quaternion approach to the kinematic synthesis of a parallel manipulator, Robotica 15(4), 361–365 (1997)CrossRefGoogle Scholar
  33. 4.33
    A. Murray, M. Hanchak: Kinematic synthesis of planar platforms with RPR, PRR, and RRR chains. In: Advances in Robot Kinematics, ed. by J. Lenarčič, M.M. Stanišić (Kluwer, Boston 2000) pp. 119–126CrossRefGoogle Scholar
  34. 4.34
    J.M. McCarthy, G.S. Soh: Geometric Design of Linkages, 2nd edn. (Springer, Berlin, Heidelberg 2010)zbMATHGoogle Scholar
  35. 4.35
    V. Kumar: Instantaneous kinematics of parallel-chain robotic mechanisms, J. Mech. Des. 114(3), 349–358 (1992)CrossRefGoogle Scholar
  36. 4.36
    C. Gosselin, J. Angeles: The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator, ASME J. Mech. Transmiss. Autom. Des. 110(3), 35–41 (1988)CrossRefGoogle Scholar
  37. 4.37
    J. Lee, J. Duffy, M. Keler: The optimum quality index for the stability of in-parallel planar platform devices, Proc. ASME Design Eng. Tech. Conf., Irvine (1996), paper no. 96-DETC/MECH-1135Google Scholar
  38. 4.38
    J. Lee, J. Duffy, K. Hunt: A practical quality index based on the octahedral manipulator, Int. J. Robotics Res. 17(10), 1081–1090 (1998)CrossRefGoogle Scholar
  39. 4.39
    S.E. Salcudean, L. Stocco: Isotropy and actuator optimization in haptic interface design, Proc. Int. Conf. Robotics Autom., San Francisco (2000) pp. 763–769Google Scholar
  40. 4.40
    L.-W. Tsai, S. Joshi: Kinematics and optimization of a spatial 3-UPU parallel manipulator, J. Mech. Des. 122, 439–446 (2000)CrossRefGoogle Scholar
  41. 4.41
    Q. Jin, T.-L. Yang: Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators, J. Mech. Des. 126(3), 625–639 (2004)CrossRefGoogle Scholar
  42. 4.42
    X. Kong, C.M. Gosselin: Type synthesis of three-degree-of-freedom spherical parallel manipulators, Int. J. Robotics Res. 23, 237–245 (2004)CrossRefGoogle Scholar
  43. 4.43
    T.A. Hess-Coelho: Topological synthesis of a parallel wrist mechanism, J. Mech. Des. 128(1), 230–235 (2006)CrossRefGoogle Scholar
  44. 4.44
    E.I. Rivin: Mechanical Design of Robots (McGraw-Hill, New York 1988) p. 368Google Scholar
  45. 4.45
    R.C. Juvinall, K.M. Marshek: Fundamentals of Machine Component Design, 4th edn. (Wiley, New York 2005) p. 832Google Scholar
  46. 4.46
    J.E. Shigley, C.R. Mischke: Mechanical Engineering Design, 7th edn. (McGraw-Hill, New York 2004) p. 1056Google Scholar
  47. 4.47
    J.E. Shigley, C.R. Mischke: Standard Handbook of Machine Design, 2nd edn. (McGraw-Hill, New York 1996) p. 1700Google Scholar
  48. 4.48
    N. Sclater, N. Chironis: Mechanisms and Mechanical Devices Sourcebook, 4th edn. (McGraw Hill, New York 2007) p. 512Google Scholar
  49. 4.49
    Intuitive Surgical EndoWrist Insturments,
  50. 4.50
    J.P. Trevelyan: Sensing and control for shearing robots, IEEE Trans. Robotics Autom. 5(6), 716–727 (1989)CrossRefGoogle Scholar
  51. 4.51
    J.P. Trevelyan, P.D. Kovesi, M. Ong, D. Elford: ET: A wrist mechanism without singular positions, Int. J. Robotics Res. 4(4), 71–85 (1986)CrossRefGoogle Scholar
  52. 4.52
    C. de Silva: Sensors and Actuators: Control Systems Instrumentation (CRC, Boca Raton 2007)Google Scholar
  53. 4.53
    J. Hollerbach, I. Hunter, J. Ballantyne: A Comparative analysis of actuator technologies for robotics, Robotics Rev. 2, 299–342 (1992)Google Scholar
  54. 4.54
    Boston Dynamics, Waltham, MA, USA: Big Dog Robot,
  55. 4.55
    Raytheon, Waltham MA, USA: Sarcos Exoskeleton,
  56. 4.56
    International Submarine Engineering, Port Coquitlam, BC, Canada: Magnum 7,
  57. 4.57
    Shadow Robot Company, London, UK: Air muscles and pneumatic hands,
  58. 4.58
    Johns Hopkins, Baltimore, USA: Pneumatic Stepper Motor and MrBot,
  59. 4.59
    The Baxter Robot Rethink Robotics,
  60. 4.60
    Singapore Institute for Neurotechnology, NeuroRehabilitation Laboratory:

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Victor Scheinman
    • 1
    Email author
  • J. Michael McCarthy
    • 2
  • Jae-Bok Song
    • 3
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Mechanical EngineeringUniversity of California at IrvineIrvineUSA
  3. 3.Department of Mechanical EngineeringKorea UniversitySeoulKorea

Personalised recommendations