Cooperative Manipulation

Abstract

This chapter is devoted to cooperative manipulation of a common object by means of two or more robotic arms. The chapter opens with a historical overview of the research on cooperative manipulation, ranging from early 1970s to very recent years. Kinematics and dynamics of robotic arms cooperatively manipulating a tightly grasped rigid object are presented in depth. As for the kinematics and statics, the chosen approach is based on the so-called symmetric formulation; fundamentals of dynamics and reduced-order models for closed kinematic chains are discussed as well. A few special topics, such as the definition of geometrically meaningful cooperative task space variables, the problem of load distribution, and the definition of manipulability ellipsoids, are included to give the reader a complete picture of modeling and evaluation methodologies for cooperative manipulators. Then, the chapter presents the main strategies for controlling both the motion of the cooperative system and the interaction forces between the manipulators and the grasped object; in detail, fundamentals of hybrid force/position control, proportional–derivative (PD)-type force/position control schemes, feedback linearization techniques, and impedance control approaches are given. In the last section further reading on advanced topics related to control of cooperative robots is suggested; in detail, advanced nonlinear control strategies are briefly discussed (i. e., intelligent control approaches, synchronization control, decentralized control); also, fundamental results on modeling and control of cooperative systems possessing some degree of flexibility are briefly outlined.

6-D

six-dimensional

PD

proportional–derivative

References

  1. 39.1
    S. Fujii, S. Kurono: Coordinated computer control of a pair of manipulators, Proc. 4th IFToMM World Congr. (1975) pp. 411–417Google Scholar
  2. 39.2
    E. Nakano, S. Ozaki, T. Ishida, I. Kato: Cooperational control of the anthropomorphous manipulator MELARM, Proc. 4th Int. Symp. Ind. Robots, Tokyo (1974) pp. 251–260Google Scholar
  3. 39.3
    K. Takase, H. Inoue, K. Sato, S. Hagiwara: The design of an articulated manipulator with torque control ability, Proc. 4th Int. Symp. Ind. Robots, Tokyo (1974) pp. 261–270Google Scholar
  4. 39.4
    S. Kurono: Cooperative control of two artificial hands by a mini-computer, Prepr. 15th Jt. Conf. Autom. Control (1972) pp. 365–366, (in Japanese)Google Scholar
  5. 39.5
    A.J. Koivo, G.A. Bekey: Report of workshop on coordinated multiple robot manipulators: planning, control, and applications, IEEE J. Robotics Autom. 4(1), 91–93 (1988)Google Scholar
  6. 39.6
    P. Dauchez, R. Zapata: Co-ordinated control of two cooperative manipulators: The use of a kinematic model, Proc. 15th Int. Symp. Ind. Robots, Tokyo (1985) pp. 641–648Google Scholar
  7. 39.7
    N.H. McClamroch: Singular systems of differential equations as dynamic models for constrained robot systems, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 21–28Google Scholar
  8. 39.8
    T.J. Tarn, A.K. Bejczy, X. Yun: New nonlinear control algorithms for multiple robot arms, IEEE Trans. Aerosp. Electron. Syst. 24(5), 571–583 (1988)CrossRefGoogle Scholar
  9. 39.9
    S. Hayati: Hybrid position/force control of multi-arm cooperating robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 82–89Google Scholar
  10. 39.10
    M. Uchiyama, N. Iwasawa, K. Hakomori: Hybrid position/force control for coordination of a two-arm robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1242–1247Google Scholar
  11. 39.11
    M. Uchiyama, P. Dauchez: A symmetric hybrid position/force control scheme for the coordination of two robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Philadelphia (1988) pp. 350–356Google Scholar
  12. 39.12
    M. Uchiyama, P. Dauchez: Symmetric kinematic formulation and non-master/slave coordinated control of two-arm robots, Adv. Robotics 7(4), 361–383 (1993)CrossRefGoogle Scholar
  13. 39.13
    I.D. Walker, R.A. Freeman, S.I. Marcus: Analysis of motion and internal force loading of objects grasped by multiple cooperating manipulators, Int. J. Robotics Res. 10(4), 396–409 (1991)CrossRefGoogle Scholar
  14. 39.14
    R.G. Bonitz, T.C. Hsia: Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Diego (1994) pp. 1521–1527Google Scholar
  15. 39.15
    D. Williams, O. Khatib: The virtual linkage: A model for internal forces in multi-grasp manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 1025–1030CrossRefGoogle Scholar
  16. 39.16
    K.S. Sang, R. Holmberg, O. Khatib: The augmented object model: cooperative manipulation and parallel mechanisms dynmaics, Proc. 2000 IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1995) pp. 470–475Google Scholar
  17. 39.17
    J.T. Wen, K. Kreutz-Delgado: Motion and force control of multiple robotic manipulators, Automatica 28(4), 729–743 (1992)MathSciNetCrossRefMATHGoogle Scholar
  18. 39.18
    T. Yoshikawa, X.Z. Zheng: Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object, Int. J. Robotics Res. 12, 219–230 (1993)CrossRefGoogle Scholar
  19. 39.19
    V. Perdereau, M. Drouin: Hybrid external control for two robot coordinated motion, Robotica 14, 141–153 (1996)CrossRefGoogle Scholar
  20. 39.20
    H. Bruhm, J. Deisenroth, P. Schadler: On the design and simulation-based validation of an active compliance law for multi-arm robots, Robotics Auton. Syst. 5, 307–321 (1989)CrossRefGoogle Scholar
  21. 39.21
    S.A. Schneider, R.H. Cannon Jr.: Object impedance control for cooperative manipulation: Theory and experimental results, IEEE Trans. Robotics Autom. 8, 383–394 (1992)CrossRefGoogle Scholar
  22. 39.22
    R.G. Bonitz, T.C. Hsia: Internal force-based impedance control for cooperating manipulators, IEEE Trans. Robotics Autom. 12, 78–89 (1996)CrossRefGoogle Scholar
  23. 39.23
    Y.-R. Hu, A.A. Goldenberg, C. Zhou: Motion and force control of coordinated robots during constrained motion tasks, Int. J. Robotics Res. 14, 351–365 (1995)CrossRefGoogle Scholar
  24. 39.24
    Y.-H. Liu, S. Arimoto: Decentralized adaptive and nonadaptive position/force controllers for redundant manipulators in cooperation, Int. J. Robotics Res. 17, 232–247 (1998)CrossRefGoogle Scholar
  25. 39.25
    P. Chiacchio, S. Chiaverini, B. Siciliano: Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system, ASME J. Dyn. Syst. Meas. Control 118, 691–697 (1996)CrossRefMATHGoogle Scholar
  26. 39.26
    F. Caccavale, P. Chiacchio, S. Chiaverini: Task-space regulation of cooperative manipulators, Automatica 36, 879–887 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. 39.27
    G.R. Luecke, K.W. Lai: A joint error-feedback approach to internal force regulation in cooperating manipulator systems, J. Robotics Syst. 14, 631–648 (1997)CrossRefMATHGoogle Scholar
  28. 39.28
    F. Caccavale, P. Chiacchio, S. Chiaverini: Stability analysis of a joint space control law for a two-manipulator system, IEEE Trans. Autom. Control 44, 85–88 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. 39.29
    P. Hsu: Coordinated control of multiple manipulator systems, IEEE Trans. Robotics Autom. 9, 400–410 (1993)CrossRefGoogle Scholar
  30. 39.30
    F. Basile, F. Caccavale, P. Chiacchio, J. Coppola, C. Curatella: Task-oriented motion planning for multi-arm robotic systems, Robotics Comp.-Integr. Manuf. 28, 569–582 (2012)CrossRefGoogle Scholar
  31. 39.31
    P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Global task space manipulability ellipsoids for multiple arm systems, IEEE Trans. Robotics Autom. 7, 678–685 (1991)CrossRefGoogle Scholar
  32. 39.32
    S. Lee: Dual redundant arm configuration optimization with task-oriented dual arm manipulability, IEEE Trans. Robotics Autom. 5, 78–97 (1989)CrossRefGoogle Scholar
  33. 39.33
    T. Kokkinis, B. Paden: Kinetostatic performance limits of cooperating robot manipulators using force-velocity polytopes, Proc. ASME Winter Annu. Meet. Robotics Res., San Francisco (1989)Google Scholar
  34. 39.34
    P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Task space dynamic analysis of multiarm system configurations, Int. J. Robotics Res. 10, 708–715 (1991)CrossRefGoogle Scholar
  35. 39.35
    D.E. Orin, S.Y. Oh: Control of force distribution in robotic mechanisms containing closed kinematic chains, Trans. ASME J. Dyn. Syst. Meas. Control 102, 134–141 (1981)CrossRefGoogle Scholar
  36. 39.36
    Y.F. Zheng, J.Y.S. Luh: Optimal load distribution for two industrial robots handling a single object, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Phila. (1988) pp. 344–349Google Scholar
  37. 39.37
    I.D. Walker, S.I. Marcus, R.A. Freeman: Distribution of dynamic loads for multiple cooperating robot manipulators, J. Robotics Syst. 6, 35–47 (1989)CrossRefMATHGoogle Scholar
  38. 39.38
    M. Uchiyama: A unified approach to load sharing, motion decomposing, and force sensing of dual arm robots, 5th Int. Symp. Robotics Res., ed. by H. Miura, S. Arimoto (1990) pp. 225–232Google Scholar
  39. 39.39
    M.A. Unseren: A new technique for dynamic load distribution when two manipulators mutually lift a rigid object. Part 1: The proposed technique, Proc. 1st World Autom. Congr. (WAC), Maui, Vol. 2 (1994) pp. 359–365Google Scholar
  40. 39.40
    M.A. Unseren: A new technique for dynamic load distribution when two manipulators mutually lift a rigid object. Part 2: Derivation of entire system model and control architecture, Proc. 1st World Autom. Congr. (WAC), Maui, Vol. 2 (1994) pp. 367–372Google Scholar
  41. 39.41
    M. Uchiyama, T. Yamashita: Adaptive load sharing for hybrid controlled two cooperative manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) Sacramento (1991) pp. 986–991Google Scholar
  42. 39.42
    M. Uchiyama, Y. Kanamori: Quadratic programming for dextrous dual-arm manipulation, Trans. IMACS/SICE Int. Symp. Robotics Mechatron. Manuf. Syst., Kobe (1993) pp. 367–372CrossRefGoogle Scholar
  43. 39.43
    Y.F. Zheng, M.Z. Chen: Trajectory planning for two manipulators to deform flexible beams, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 1019–1024CrossRefGoogle Scholar
  44. 39.44
    M.M. Svinin, M. Uchiyama: Coordinated dynamic control of a system of manipulators coupled via a flexible object, Prepr. 4th IFAC Symp. Robot Control, Capri (1994) pp. 1005–1010Google Scholar
  45. 39.45
    T. Yukawa, M. Uchiyama, D.N. Nenchev, H. Inooka: Stability of control system in handling of a flexible object by rigid arm robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (1996) pp. 2332–2339CrossRefGoogle Scholar
  46. 39.46
    M. Yamano, J.-S. Kim, A. Konno, M. Uchiyama: Cooperative control of a 3D dual-flexible-arm robot, J. Intell. Robotics Syst. 39, 1–15 (2004)CrossRefGoogle Scholar
  47. 39.47
    T. Miyabe, M. Yamano, A. Konno, M. Uchiyama: An approach toward a robust object recovery with flexible manipulators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Maui (2001) pp. 907–912Google Scholar
  48. 39.48
    T. Miyabe, A. Konno, M. Uchiyama, M. Yamano: An approach toward an automated object retrieval operation with a two-arm flexible manipulator, Int. J. Robotics Res. 23, 275–291 (2004)CrossRefGoogle Scholar
  49. 39.49
    M. Uchiyama, A. Konno: Modeling, controllability and vibration suppression of 3D flexible robots. In: Robotics Research, The 7th Int. Symp, ed. by G. Giralt, G. Hirzinger (Springer, London 1996) pp. 90–99CrossRefGoogle Scholar
  50. 39.50
    K. Munawar, M. Uchiyama: Slip compensated manipulation with cooperating multiple robots, 36th IEEE Conf. Decis. Control, San Diego (1997)Google Scholar
  51. 39.51
    D. Sun, J.K. Mills: Adaptive synchronized control for coordination of multirobot assembly tasks, IEEE Trans. Robotics Autom. 18, 498–510 (2002)CrossRefGoogle Scholar
  52. 39.52
    A. Rodriguez-Angeles, H. Nijmeijer: Mutual synchronization of robots via estimated state feedback: a cooperative approach, IEEE Trans. Control Syst. Technol. 12, 542–554 (2004)CrossRefGoogle Scholar
  53. 39.53
    K.-Y. Lian, C.-S. Chiu, P. Liu: Semi-decentralized adaptive fuzzy control for cooperative multirobot systems with H-inf motion/internal force tracking performance, IEEE Trans. Syst. Man Cybern. 32, 269–280 (2002)CrossRefGoogle Scholar
  54. 39.54
    W. Gueaieb, F. Karray, S. Al-Sharhan: A robust adaptive fuzzy position/force control scheme for cooperative manipulators, IEEE Trans. Control Syst. Technol. 11, 516–528 (2003)CrossRefGoogle Scholar
  55. 39.55
    W. Gueaieb, F. Karray, S. Al-Sharhan: A robust hybrid intelligent position/force control scheme for cooperative manipulators, IEEE/ASME Trans. Mechatron. 12, 109–125 (2007)CrossRefGoogle Scholar
  56. 39.56
    J. Gudiño-Lau, M.A. Arteaga, L.A. Muñoz, V. Parra-Vega: On the control of cooperative robots without velocity measurements, IEEE Trans. Control Syst. Technol. 12, 600–608 (2004)CrossRefGoogle Scholar
  57. 39.57
    R. Tinos, M.H. Terra, J.Y. Ishihara: Motion and force control of cooperative robotic manipulators with passive joints, IEEE Trans. Control Syst. Technol. 14, 725–734 (2006)CrossRefGoogle Scholar
  58. 39.58
    H. Inoue: Computer controlled bilateral manipulator, Bulletin JSME 14(69), 199–207 (1971)CrossRefGoogle Scholar
  59. 39.59
    M. Uchiyama, T. Kitano, Y. Tanno, K. Miyawaki: Cooperative multiple robots to be applied to industries, Proc. World Autom. Congr. (WAC), Montpellier (1996) pp. 759–764Google Scholar
  60. 39.60
    B.M. Braun, G.P. Starr, J.E. Wood, R. Lumia: A framework for implementing cooperative motion on industrial controllers, IEEE Trans. Robotics Autom. 20, 583–589 (2004)CrossRefGoogle Scholar
  61. 39.61
    D. Sun, J.K. Mills: Manipulating rigid payloads with multiple robots using compliant grippers, IEEE/ASME Trans. Mechatron. 7, 23–34 (2002)CrossRefGoogle Scholar
  62. 39.62
    M.R. Cutkosky, I. Kao: Computing and controlling the compliance of a robot hand, IEEE Trans. Robotics Autom. 5, 151–165 (1989)CrossRefGoogle Scholar
  63. 39.63
    A. Jazidie, T. Tsuji, M. Nagamachi, K. Ito: Multi-point compliance control for dual-arm robots utilizing kinematic redundancy, Trans. Soc. Instr. Control Eng. 29, 637–646 (1993)Google Scholar
  64. 39.64
    T. Tsuji, A. Jazidie, M. Kaneko: Distributed trajectory generation for multi-arm robots via virtual force interactions, IEEE Trans. Syst. Man Cybern. 27, 862–867 (1997)CrossRefGoogle Scholar
  65. 39.65
    O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal: Coordination and decentralized cooperation of multiple mobile manipulators, J. Robotics Syst. 13, 755–764 (1996)CrossRefGoogle Scholar
  66. 39.66
    J. Fink, N. Michael, S. Kim, V. Kumar: Planning and control for cooperative manipulation and transportation with aerial robots, Int. J. Robotics Res. 30, 324–334 (2011)CrossRefMATHGoogle Scholar
  67. 39.67
    J.Y.S. Luh, Y.F. Zheng: Constrained relations between two coordinated industrial robots for motion control, Int. J. Robotics Res. 6, 60–70 (1987)CrossRefGoogle Scholar
  68. 39.68
    A.J. Koivo, M.A. Unseren: Reduced order model and decoupled control architecture for two manipulators holding a rigid object, ASME J. Dyn. Syst. Meas. Control 113, 646–654 (1991)CrossRefMATHGoogle Scholar
  69. 39.69
    M.A. Unseren: Rigid body dynamics and decoupled control architecture for two strongly interacting manipulators manipulators, Robotica 9, 421–430 (1991)CrossRefGoogle Scholar
  70. 39.70
    J. Duffy: The fallacy of modern hybrid control theory that is based on Orthogonal Complements of twist and wrench spaces, J. Robotics Syst. 7, 139–144 (1990)CrossRefGoogle Scholar
  71. 39.71
    K.L. Doty, C. Melchiorri, C. Bonivento: A theory of generalized inverses applied to robotics, Int. J. Robotics Res. 12, 1–19 (1993)CrossRefGoogle Scholar
  72. 39.72
    O. Khatib: Object manipulation in a multi-effector robot system. In: Robotics Research, Vol. 4, ed. by R. Bolles, B. Roth (MIT Press, Cambridge 1988) pp. 137–144Google Scholar
  73. 39.73
    O. Khatib: Inertial properties in robotic manipulation: An object level framework, Int. J. Robotics Res. 13, 19–36 (1995)CrossRefGoogle Scholar
  74. 39.74
    F. Caccavale, P. Chiacchio, A. Marino, L. Villani: Six-DOF impedance control of dual-arm cooperative manipulators, IEEE/ASME Trans. Mechatron. 13, 576–586 (2008)CrossRefGoogle Scholar
  75. 39.75
    T.G. Sugar, V. Kumar: Control of cooperating mobile manipulators, IEEE Trans. Robotics Autom. 18, 94–103 (2002)CrossRefGoogle Scholar
  76. 39.76
    C.P. Tang, R.M. Bhatt, M. Abou-Samah, V. Krovi: Screw-theoretic analysis framework for cooperative payload transport by mobile manipulator collectives, IEEE/ASME Trans. Mechatron. 11, 169–178 (2006)CrossRefGoogle Scholar
  77. 39.77
    H. Bai, J.T. Wen: Cooperative load transport: A formation-control perspective, IEEE Trans. Robotics 26, 742–750 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of EngineeringUniversity of BasilicataPotenzaItaly
  2. 2.Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations