Grasping

Abstract

This chapter introduces fundamental models of grasp analysis. The overall model is a coupling of models that define contact behavior with widely used models of rigid-body kinematics and dynamics. The contact model essentially boils down to the selection of components of contact force and moment that are transmitted through each contact. Mathematical properties of the complete model naturally give rise to five primary grasp types whose physical interpretations provide insight for grasp and manipulation planning.

After introducing the basic models and types of grasps, this chapter focuses on the most important grasp characteristic: complete restraint. A grasp with complete restraint prevents loss of contact and thus is very secure. Two primary restraint properties are form closure and force closure. A form closure grasp guarantees maintenance of contact as long as the links of the hand and the object are well-approximated as rigid and as long as the joint actuators are sufficiently strong. As will be seen, the primary difference between form closure and force closure grasps is the latter’s reliance on contact friction. This translates into requiring fewer contacts to achieve force closure than form closure.

The goal of this chapter is to give a thorough understanding of the all-important grasp properties of form and force closure. This will be done through detailed derivations of grasp models and discussions of illustrative examples. For an in-depth historical perspective and a treasure-trove bibliography of papers addressing a wide range of topics in grasping, the reader is referred to [38.1].

3-D

three-dimensional

DH

Denavit–Hartenberg

DLR

Deutsches Zentrum für Luft- und Raumfahrt

DOF

degree of freedom

HF

hard finger

LP

linear program

PwoF

point-contact-without-friction

SF

soft finger

References

  1. 38.1
    A. Bicchi: Hands for dextrous manipulation and powerful grasping: A difficult road towards simplicity, IEEE Trans. Robotics Autom. 16, 652–662 (2000)CrossRefGoogle Scholar
  2. 38.2
    J.K. Salisbury: Kinematic and Force Analysis of Articulated Hands, Ph.D. Thesis (Stanford University, Stanford 1982)Google Scholar
  3. 38.3
    A.T. Miller, P.K. Allen: GraspIt! A versatile simulator for robotic grasping, IEEE Robotics Autom. Mag. 11(4), 110–122 (2004)CrossRefGoogle Scholar
  4. 38.4
    M. Malvezzi, G. Gioioso, G. Salvietti, D. Prattichizzo: SynGrasp: A matlab toolbox for underactuated and compliant hands, IEEE Robotics Autom. Mag. 22(4), 52–68 (2015)CrossRefGoogle Scholar
  5. 38.5
    M. Malvezzi, G. Gioioso, G. Salvietti, D. Prattichizzo, A. Bicchi: Syngrasp: A matlab toolbox for grasp analysis of human and robotic hands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 1088–1093Google Scholar
  6. 38.6
    SynGrasp: A MATLAB Toolbox for Grasp Analysis of Human and Robotic Hands, http://syngrasp.dii.unisi.it/
  7. 38.7
    M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, G. Hirzinger: The DLR hand arm system, IEEE Conf. Robotics Autom. (2011) pp. 3175–3182Google Scholar
  8. 38.8
    K. Salisbury, W. Townsend, B. Ebrman, D. DiPietro: Preliminary design of a whole-arm manipulation system (WAMS), Proc. IEEE Int. Conf. Robotics Autom. (1988) pp. 254–260Google Scholar
  9. 38.9
    M.S. Ohwovoriole, B. Roth: An extension of screw theory, J. Mech. Des. 103, 725–735 (1981)CrossRefGoogle Scholar
  10. 38.10
    K.H. Hunt: Kinematic Geometry of Mechanisms (Oxford Univ. Press, Oxford 1978)MATHGoogle Scholar
  11. 38.11
    T.R. Kane, D.A. Levinson, P.W. Likins: Spacecraft Dynamics (McGraw Hill, New York 1980)Google Scholar
  12. 38.12
    J.J. Craig: Introduction to Robotics: Mechanics and Control, 2nd edn. (Addison-Wesley, Reading 1989)MATHGoogle Scholar
  13. 38.13
    J.K. Salisbury, B. Roth: Kinematic and force analysis of articulated mechanical hands, J. Mech. Transm. Autom. Des. 105(1), 35–41 (1983)CrossRefGoogle Scholar
  14. 38.14
    M.T. Mason, J.K. Salisbury Jr: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)Google Scholar
  15. 38.15
    A. Bicchi: On the closure properties of robotic grasping, Int. J. Robotics Res. 14(4), 319–334 (1995)CrossRefGoogle Scholar
  16. 38.16
    D. Prattichizzo, A. Bicchi: Consistent task specification for manipulation systems with general kinematics, ASME J. Dyn. Syst. Meas. Control 119(4), 760–767 (1997)CrossRefMATHGoogle Scholar
  17. 38.17
    J. Kerr, B. Roth: Analysis of multifingered hands, Int. J. Robotics Res. 4(4), 3–17 (1986)CrossRefGoogle Scholar
  18. 38.18
    G. Strang: Introduction to Linear Algebra (Wellesley-Cambridge Press, Wellesley 1993)MATHGoogle Scholar
  19. 38.19
    R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robot Manipulation (CRC, Boca Raton 1993)Google Scholar
  20. 38.20
    D. Prattichizzo, A. Bicchi: Dynamic analysis of mobility and graspability of general manipulation systems, IEEE Trans. Robotics Autom. 14(2), 241–258 (1998)CrossRefGoogle Scholar
  21. 38.21
    A. Bicchi: On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation, Int. J. Robotics Auton. Syst. 13, 127–147 (1994)CrossRefGoogle Scholar
  22. 38.22
    A.M. Dollar, R.D. Howe: Joint coupling and actuation design of underactuated hands for unstructured environments, Int. J. Robotics Res. 30, 1157–1169 (2011)CrossRefGoogle Scholar
  23. 38.23
    L. Birglen, T. Lalibertè, C. Gosselin: Underactuated robotic hands, Springer Tracts in Advanced Robotics (Springer, Berlin, Heidelberg 2008)MATHGoogle Scholar
  24. 38.24
    M.G. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, A. Bicchi: Adaptive synergies for a humanoid robot hand, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2012) pp. 7–14Google Scholar
  25. 38.25
    M. Gabiccini, A. Bicchi, D. Prattichizzo, M. Malvezzi: On the role of hand synergies in the optimal choice of grasping forces, Auton. Robots 31, 235–252 (2011)CrossRefGoogle Scholar
  26. 38.26
    M. Malvezzi, D. Prattichizzo: Evaluation of grasp stiffness in underactuated compliant hands, Proc. IEEE Int. Conf. Robotics Autom. (2013) pp. 2074–2079Google Scholar
  27. 38.27
    S.F. Chen, I. Kao: Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers, Int. J. Robotics Res. 19(9), 835–847 (2000)CrossRefGoogle Scholar
  28. 38.28
    M.R. Cutkosky, I. Kao: Computing and controlling the compliance of a robotic hand, IEEE Trans. Robotics Autom. 5(2), 151–165 (1989)CrossRefGoogle Scholar
  29. 38.29
    A. Albu-Schaffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimbock, S. Wolf, G. Hirzinger: Soft robotics, IEEE Robotics Autom, Mag. 15(3), 20–30 (2008)Google Scholar
  30. 38.30
    A. Bicchi: Force distribution in multiple whole-limb manipulation, Proc. IEEE Int. Conf. Robotics Autom. (1993)Google Scholar
  31. 38.31
    F. Reuleaux: The Kinematics of Machinery (Macmillan, New York 1876), Republished by Dover, New York, 1963Google Scholar
  32. 38.32
    T. Omata, K. Nagata: Rigid body analysis of the indeterminate grasp force in power grasps, IEEE Trans. Robotics Autom. 16(1), 46–54 (2000)CrossRefGoogle Scholar
  33. 38.33
    J.C. Trinkle: The Mechanics and Planning of Enveloping Grasps, Ph.D. Thesis (University of Pennsylvania, Department of Systems Engineering, 1987)Google Scholar
  34. 38.34
    K. Lakshminarayana: Mechanics of Form Closure, Tech. Rep., Vol. 78-DET-32 (ASME, New York 1978)Google Scholar
  35. 38.35
    E. Rimon, J. Burdick: Mobility of bodies in contact i: A 2nd order mobility index for multiple-finger grasps, IEEE Trans. Robotics Autom. 14(5), 696–708 (1998)CrossRefGoogle Scholar
  36. 38.36
    B. Mishra, J.T. Schwartz, M. Sharir: On the existence and synthesis of multifinger positive grips, Algorithmica 2(4), 541–558 (1987)MathSciNetCrossRefMATHGoogle Scholar
  37. 38.37
    P. Somov: Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen, Z. Math. Phys. 42, 133–153 (1897)Google Scholar
  38. 38.38
    P. Somov: Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen, Z. Math. Phys. 42, 161–182 (1897)Google Scholar
  39. 38.39
    A.J. Goldman, A.W. Tucker: Polyhedral convex cones. In: Linear Inequalities and Related Systems, ed. by H.W. Kuhn, A.W. Tucker (Princeton Univ., York 1956) pp. 19–40Google Scholar
  40. 38.40
    X. Markenscoff, L. Ni, C.H. Papadimitriou: The geometry of grasping, Int. J. Robotics Res. 9(1), 61–74 (1990)CrossRefGoogle Scholar
  41. 38.41
    D.G. Luenberger: Linear and Nonlinear Programming, 2nd edn. (Addison-Wesley, Reading 1984)MATHGoogle Scholar
  42. 38.42
    G. Muscio. J.C. Trinkle: Grasp Closure Analysis of Bilaterally Constrained Objects, Tech. Rep. Ser., Vol. 13-01 (Department of Computer Science, Rensselear Polytechnic Institute, Troy 2013) Google Scholar
  43. 38.43
  44. 38.44
    C. Ferrari, J. Canny: Planning optimal grasps, Proc. IEEE Int. Conf. Robotics Autom. (1986) pp. 2290–2295Google Scholar
  45. 38.45
    V.D. Nguyen: The Synthesis of Force Closure Grasps in the Plane, M.S. Thesis Ser. (MIT Department of Mechanical Engineering, Cambridge 1985), AI-TR861Google Scholar
  46. 38.46
    R.D. Howe, M.R. Cutkosky: Practical force-motion models for sliding manipulation, Int. J. Robotics Res. 15(6), 557–572 (1996)CrossRefGoogle Scholar
  47. 38.47
    L. Han, J.C. Trinkle, Z. Li: Grasp analysis as linear matrix inequality problems, IEEE Trans. Robotics Autom. 16(6), 663–674 (2000)CrossRefGoogle Scholar
  48. 38.48
    J.C. Trinkle: On the stability and instantaneous velocity of grasped frictionless objects, IEEE Trans. Robotics Autom. 8(5), 560–572 (1992)CrossRefGoogle Scholar
  49. 38.49
    K.H. Hunt, A.E. Samuel, P.R. McAree: Special configurations of multi-finger multi-freedom grippers –A kinematic study, Int. J. Robotics Res. 10(2), 123–134 (1991)CrossRefGoogle Scholar
  50. 38.50
    D.J. Montana: The kinematics of multi-fingered manipulation, IEEE Trans. Robotics Autom. 11(4), 491–503 (1995)CrossRefGoogle Scholar
  51. 38.51
    Y. Nakamura, K. Nagai, T. Yoshikawa: Dynamics and stability in coordination of multiple robotic mechanisms, Int. J. Robotics Res. 8, 44–61 (1989)CrossRefGoogle Scholar
  52. 38.52
    J.S. Pang, J.C. Trinkle: Stability characterizations of rigid body contact problems with coulomb friction, Z. Angew. Math. Mech. 80(10), 643–663 (2000)MathSciNetCrossRefMATHGoogle Scholar
  53. 38.53
    M.R. Cutkosky: Robotic Grasping and Fine Manipulation (Kluwer, Norwell 1985)CrossRefGoogle Scholar
  54. 38.54
    W.S. Howard, V. Kumar: On the stability of grasped objects, IEEE Trans. Robotics Autom. 12(6), 904–917 (1996)CrossRefGoogle Scholar
  55. 38.55
    A.B.A. Cole, J.E. Hauser, S.S. Sastry: Kinematics and control of multifingered hands with rolling contacts, IEEE Trans. Autom. Control 34, 398–404 (1989)MathSciNetCrossRefMATHGoogle Scholar
  56. 38.56
    R.I. Leine, C. Glocker: A set-valued force law for spatial Coulomb–Contensou friction, Eur. J. Mech. A 22(2), 193–216 (2003)MathSciNetCrossRefMATHGoogle Scholar
  57. 38.57
    M. Buss, H. Hashimoto, J. Moore: Dexterous hand grasping force optimization, IEEE Trans. Robotics Autom. 12(3), 406–418 (1996)CrossRefGoogle Scholar
  58. 38.58
    V. Nguyen: Constructing force-closure grasps, Int. J. Robotics Res. 7(3), 3–16 (1988)CrossRefGoogle Scholar
  59. 38.59
    E. Rimon, J.W. Burdick: Mobility of bodies in contact II: How forces are generated by curvature effects, Proc. IEEE Int. Conf. Robotics Autom. (1998) pp. 2336–2341Google Scholar
  60. 38.60
    R.B. McGhee, D.E. Orin: A mathematical programming approach to control of positions and torques in legged locomotion systems, Proc. ROMANCY (1976)Google Scholar
  61. 38.61
    K. Waldron: Force and motion management in legged locomotion, IEEE J. Robotics Autom. 2(4), 214–220 (1986)CrossRefGoogle Scholar
  62. 38.62
    T. Yoshikawa, K. Nagai: Manipulating and grasping forces in manipulation by multi-fingered grippers, Proc. IEEE Int. Conf. Robotics Autom. (1987) pp. 1998–2007Google Scholar
  63. 38.63
    V. Kumar, K. Waldron: Force distribution in closed kinematic chains, IEEE J. Robotics Autom. 4(6), 657–664 (1988)CrossRefGoogle Scholar
  64. 38.64
    M. Buss, L. Faybusovich, J. Moore: Dikin-type algortihms for dexterous grasping force optimization, Int. J. Robotics Res. 17(8), 831–839 (1998)CrossRefGoogle Scholar
  65. 38.65
    D. Prattichizzo, J.K. Salisbury, A. Bicchi: Contact and grasp robustness measures: Analysis and experiments. In: Experimental Robotics-IV, Lecture Notes in Control and Information Sciences, Vol. 223, ed. by O. Khatib, K. Salisbury (Springer, Berlin, Heidelberg 1997) pp. 83–90Google Scholar
  66. 38.66
    A.M. Dollar, R.D. Howe: The highly adaptive sdm hand: Design and performance evaluation, Int. J. Robotics Res. 29(5), 585–597 (2010)CrossRefGoogle Scholar
  67. 38.67
    M.G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, A. Bicchi: Adaptive synergies for the design and control of the Pisa/IIT SoftHand, Int. J. Robotics Res. 33(5), 768–782 (2014)CrossRefGoogle Scholar
  68. 38.68
    M.T. Ciocarlie, P.K. Allen: Hand posture subspaces for dexterous robotic grasping, Int. J. Robotics Res. 28(7), 851–867 (2009)CrossRefGoogle Scholar
  69. 38.69
    T. Wimbock, B. Jahn, G. Hirzinger: Synergy level impedance control for multifingered hands, IEEE/RSJ Int Conf Intell. Robots Syst. (IROS) (2011) pp. 973–979Google Scholar
  70. 38.70
    D. Prattichizzo, M. Malvezzi, M. Gabiccini, A. Bicchi: On the manipulability ellipsoids of underactuated robotic hands with compliance, Robotics Auton. Syst. 60(3), 337–346 (2012)CrossRefGoogle Scholar
  71. 38.71
    D. Prattichizzo, M. Malvezzi, M. Gabiccini, A. Bicchi: On motion and force controllability of precision grasps with hands actuated by soft synergies, IEEE Trans. Robotics 29(6), 1440–1456 (2013)CrossRefGoogle Scholar
  72. 38.72
    M.R. Dogar, S.S. Srinivasa: A framework for push-grasping in clutter, Robotics Sci. Syst. (2011)Google Scholar
  73. 38.73
    M. Posa, R. Tedrake: Direct trajectory optimization of rigid body dynamical systems through contact, Proc. Workshop Algorithm. Found. Robotics (2012)Google Scholar
  74. 38.74
    L. Zhang, J.C. Trinkle: The application of particle filtering to grasp acquistion with visual occlusion and tactile sensing, Proc. IEEE Int. Conf Robotics Autom. (2012)Google Scholar
  75. 38.75
    P. Hebert, N. Hudson, J. Ma, J. Burdick: Fusion of stereo vision, force-torque, and joint sensors for estimation of in-hand object location, Proc. IEEE Int. Conf. Robotics Autom. (2011) pp. 5935–5941Google Scholar
  76. 38.76
    S. Haidacher, G. Hirzinger: Estimating finger contact location and object pose from contact measurements in 3nd grasping, Proc. IEEE Int. Conf. Robotics Autom. (2003) pp. 1805–1810Google Scholar
  77. 38.77
    T. Schlegl, M. Buss, T. Omata, G. Schmidt: Fast dextrous re-grasping with optimal contact forces and contact sensor-based impedance control, Proc. IEEE Int. Conf. Robotics Autom. (2001) pp. 103–108Google Scholar
  78. 38.78
    G. Muscio, F. Pierri, J.C. Trinkle: A hand/arm controller that simultaneously regulates internal grasp forces and the impedance of contacts with the environment, IEEE Conf. Robotics Autom. (2014)Google Scholar
  79. 38.79
    M.A. Roa, R. Suarez: Computation of independent contact regions for grasping 3-D objects, IEEE Trans. Robotics 25(4), 839–850 (2009)CrossRefGoogle Scholar
  80. 38.80
    M.A. Roa, R. Suarez: Influence of contact types and uncertainties in the computation of independent contact regions, Proc. IEEE Int. Conf. Robotics Autom. (2011) pp. 3317–3323Google Scholar
  81. 38.81
    A. Rodriguez, M.T. Mason, S. Ferry: From caging to grasping, Int. J. Robotics Res. 31(7), 886–900 (2012)CrossRefGoogle Scholar
  82. 38.82
    C. Davidson, A. Blake: Error-tolerant visual planning of planar grasp, 6th Int. Conf. Comput. Vis. (1998) pp. 911–916Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of SienaSienaItaly
  2. 2.Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations