Motion for Manipulation Tasks

Abstract

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

2-D

two-dimensional

3-D

three-dimensional

6-D

six-dimensional

CF

contact formation

DOF

degree of freedom

GCR

goal-contact relaxation

IK

inverse kinematics

PC

principal contact

PID

proportional–integral–derivative

RCC

remote center of compliance

SRCC

spatial remote center compliance

References

  1. 36.1
    M.T. Mason: Mechanics of Robotic Manipulation (MIT Press, Cambridge 2001)Google Scholar
  2. 36.2
    H. Inoue: Force Feedback in Precise Assembly Tasks, Tech. Rep. Vol. 308 (Artificial Intelligence Laboratory, MIT, Cambridge 1974)Google Scholar
  3. 36.3
    T. Lozano-Pérez, M. Mason, R.H. Taylor: Automatic synthesis of fine-motion strategies for robots, Int. J. Robotics Res. 31(1), 3–24 (1984)CrossRefGoogle Scholar
  4. 36.4
    O. Khatib: A unified approach to motion and force control of robot manipulators: The operational space formulation, Int. J. Robotics Autom. 3(1), 43–53 (1987)CrossRefGoogle Scholar
  5. 36.5
    O. Khatib, K. Yokoi, O. Brock, K.-S. Chang, A. Casal: Robots in human environments, Arch. Control Sci. 11(3/4), 123–138 (2001)MATHGoogle Scholar
  6. 36.6
    G. Strang: Linear Algegra and Its Applications (Brooks Cole, New York 1988)Google Scholar
  7. 36.7
    H. Seraji: An on-line approach to coordinated mobility and manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta, Vol. 1 (1993) pp. 28–35CrossRefGoogle Scholar
  8. 36.8
    J.M. Cameron, D.C. MacKenzie, K.R. Ward, R.C. Arkin, W.J. Book: Reactive control for mobile manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta, Vol. 3 (1993) pp. 228–235CrossRefGoogle Scholar
  9. 36.9
    M. Egerstedt, X. Hu: Coordinated trajectory following for mobile manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000)Google Scholar
  10. 36.10
    P. Ögren, M. Egerstedt, X. Hu: Reactive mobile manipulation using dyanmic trajectory tracking, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francicso (2000) pp. 3473–3478Google Scholar
  11. 36.11
    J. Tan, N. Xi, Y. Wang: Integrated task planning and control for mobile manipulators, Int. J. Robotics Res. 22(5), 337–354 (2003)CrossRefGoogle Scholar
  12. 36.12
    Y. Yamamoto, X. Yun: Unified analysis on mobility and manipulability of mobile manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Detroit (1999) pp. 1200–1206Google Scholar
  13. 36.13
    L. Sentis, O. Khatib: Control of free-floating humanoid robots through task prioritization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Barcelona (2005)Google Scholar
  14. 36.14
    L. Sentis, O. Khatib: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives, Int. J. Hum. Robotics 2(4), 505–518 (2005)CrossRefGoogle Scholar
  15. 36.15
    O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robotics Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  16. 36.16
    M. Huber, R.A. Grupen: A feedback control structure for on-line learning tasks, Robotics Auton. Syst. 22(3-4), 303–315 (1997)CrossRefGoogle Scholar
  17. 36.17
    R. Alami, J.P. Laumond, T. Siméon: Two manipulation planning algorithms, Proc. Workshop Algorithm. Found. Robotics (1994)Google Scholar
  18. 36.18
    S.M. LaValle: Planning Algorithms (Cambridge Univ., Cambridge 2006)MATHCrossRefGoogle Scholar
  19. 36.19
    R. Grossman, A. Nerode, A. Ravn, H. Rischel (Eds.): Hybrid Systems (Springer, Berlin, Heidelberg 1993)Google Scholar
  20. 36.20
    J.M. Ahuactzin, K. Gupta, E. Mazer: Manipulation planning for redundant robots: A practical approach, Int. J. Robotics Res. 17(7), 731–747 (1998)CrossRefGoogle Scholar
  21. 36.21
    Y. Koga: On Computing Multi-Arm Manipulation Trajectories, Ph.D. Thesis (Stanford University, Stanford 1995)Google Scholar
  22. 36.22
    D. Bertram, J.J. Kuffner, T. Asfour, R. Dillman: A unified approach to inverse kinematics and path planning for redundant manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1874–1879Google Scholar
  23. 36.23
    D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker: Soft robotics: Biological inspiration, state of the art, and future research, Appl. Bionics Biomech. 5(3), 99–117 (2008)CrossRefGoogle Scholar
  24. 36.24
    B.A. Jones, I.D. Walker: Kinematics for multisection continuum robots, IEEE Trans. Robotics 22(1), 43–55 (2006)CrossRefGoogle Scholar
  25. 36.25
    S. Neppalli, M.A. Csencsits, B.A. Jones, I. Walker: A geometrical approach to inverse kinematics for continuum manipulators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 3565–3570Google Scholar
  26. 36.26
    J. Li, J. Xiao: Determining grasping configurations for a spatial continuum manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 4207–4214Google Scholar
  27. 36.27
    J. Xiao, R. Vatcha: Real-time adaptive motion planning for a continuum manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 5919–5926Google Scholar
  28. 36.28
    J. Li, J. Xiao: Progressive generation of force-closure grasps for an n-section continuum manipulator, Proc. IEEE Int. Conf. Robotics Auto. (ICRA) (2013) pp. 4016–4022Google Scholar
  29. 36.29
    J. Li, J. Xiao: Progressive, continuum grasping in cluttered space, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 4563–4568Google Scholar
  30. 36.30
    G.S. Chirikjian, J.W. Burdick: Kinematically optimal hyperredundant manipulator configurations, IEEE Trans. Robotics Autom. 11(6), 794–798 (1995)CrossRefGoogle Scholar
  31. 36.31
    G. Boothroyd: Assembly Automation and Product Design, 2nd edn. (Taylor Francis, Boca Raton 2005)CrossRefGoogle Scholar
  32. 36.32
    D. Whitney, O.L. Gilbert, M. Jastrzebski: Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies, Res. Eng. Des. 64, 191–210 (1994)CrossRefGoogle Scholar
  33. 36.33
    P. Jimenez: Survey on assembly sequencing: A combinatorial and geometrical perspective, J. Intell. Manuf. l24, 235–250 (2013)CrossRefGoogle Scholar
  34. 36.34
    B. Shirinzadeh: Issues in the design of the reconfigurable fixture modules for robotic assembly, J. Manuf. Syst. 121, 1–14 (1993)CrossRefGoogle Scholar
  35. 36.35
    T. Lozano-Pérez: Spatial planning: A configuration space approach, IEEE Trans. Comput. C-32(2), 108–120 (1983)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.36
    R. Desai: On Fine Motion in Mechanical Assembly in Presence of Uncertainty, Ph.D. Thesis (University of Michigan, Ann Arbor 1989)Google Scholar
  37. 36.37
    J. Xiao: Automatic determination of topological contacts in the presence of sensing uncertainties, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 65–70CrossRefGoogle Scholar
  38. 36.38
    J. Xiao, X. Ji: On automatic generation of high-level contact state space, Int. J. Robotics Res. 20(7), 584–606 (2001)CrossRefGoogle Scholar
  39. 36.39
    S.N. Simunovic: Force information in assembly processes, Proc. 5th Int. Symp. Ind. Robots (1975) pp. 415–431Google Scholar
  40. 36.40
    S.H. Drake: Using Compliance in Lieu of Sensory Feedback for Automatic Assembly, Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 1989)Google Scholar
  41. 36.41
    D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Control 104, 65–77 (1982)MATHCrossRefGoogle Scholar
  42. 36.42
    R.L. Hollis: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: Design, modeling, and control, IEEE Trans. Robotics Autom. 7(3), 320–332 (1991)MathSciNetCrossRefGoogle Scholar
  43. 36.43
    S. Joo, F. Miyazaki: Development of variable RCC and ITS application, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Victoria, Vol. 3 (1998) pp. 1326–1332Google Scholar
  44. 36.44
    H. Kazerooni: Direct-drive active compliant end effector (active RCC), IEEE J. Robotics Autom. 4(3), 324–333 (1988)CrossRefGoogle Scholar
  45. 36.45
    R.H. Sturges, S. Laowattana: Fine motion planning through constraint network analysis, Proc. Int. Symp. Assem. Task Plan. (1995) pp. 160–170Google Scholar
  46. 36.46
    D.E. Whitney: Historic perspective and state of the art in robot force control, Int. J. Robotics Res. 6(1), 3–14 (1987)CrossRefGoogle Scholar
  47. 36.47
    M. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robotics Autom. 6(4), 473–482 (1990)CrossRefGoogle Scholar
  48. 36.48
    J.M. Schimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robotics Autom. 8(2), 213–227 (1992)CrossRefGoogle Scholar
  49. 36.49
    J.M. Schimmels: A linear space of admittance control laws that guarantees force assembly with friction, IEEE Trans. Robotics Autom. 13(5), 656–667 (1997)CrossRefGoogle Scholar
  50. 36.50
    S. Hirai, T. Inatsugi, K. Iwata: Learning of admittance matrix elements for manipulative operations, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1996) pp. 763–768CrossRefGoogle Scholar
  51. 36.51
    S. Lee, H. Asada: A perturbation/correlation method for force guided robot assembly, IEEE Trans. Robotics Autom. 15(4), 764–773 (1999)CrossRefGoogle Scholar
  52. 36.52
    H. Asada: Representation and learning of nonlinear compliance using neural nets, IEEE Trans. Robotics Autom. 9(6), 863–867 (1993)CrossRefGoogle Scholar
  53. 36.53
    J. Simons, H. Van Brussel, J. De Schutter, J. Verhaert: A self-learning automaton with variable resolution for high precision assembly by industrial robots, IEEE Trans. Autom. Control 27(5), 1109–1113 (1982)MATHCrossRefGoogle Scholar
  54. 36.54
    V. Gullapalli, J.A. Franklin, H. Benbrahim: Acquiring robot skills via reinforcement learning, IEEE Control Syst. 14(1), 13–24 (1994)CrossRefGoogle Scholar
  55. 36.55
    Q. Wang, J. De Schutter, W. Witvrouw, S. Graves: Derivation of compliant motion programs based on human demonstration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 2616–2621CrossRefGoogle Scholar
  56. 36.56
    R. Cortesao, R. Koeppe, U. Nunes, G. Hirzinger: Data fusion for robotic assembly tasks based on human skills, IEEE Trans. Robotics Autom. 20(6), 941–952 (2004)CrossRefGoogle Scholar
  57. 36.57
    K. Ikeuchi, T. Suehiro: Toward an assembly plan from observation. Part I: Task recognition with polyhedral objects, IEEE Trans. Robotics Autom. 10(3), 368–385 (1994)CrossRefGoogle Scholar
  58. 36.58
    H. Onda, H. Hirokawa, F. Tomita, T. Suehiro, K. Takase: Assembly motion teaching system using position/forcesimulator-generating control program, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1997) pp. 938–945Google Scholar
  59. 36.59
    H. Onda, T. Suehiro, K. Kitagaki: Teaching by demonstration of assembly motion in VR – non-deterministic search-type motion in the teaching stage, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002) pp. 3066–3072CrossRefGoogle Scholar
  60. 36.60
    Y. Kobari, T. Nammoto, J. Kinugawa, K. Kosuge: Vision based compliant motion control for part assembly, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 293–298Google Scholar
  61. 36.61
    T. Lozano-Pérez, M.T. Mason, R.H. Taylor: Automatic synthesis of fine-motion strategies for robot, Int. J. Robotics Res. 31(1), 3–24 (1984)CrossRefGoogle Scholar
  62. 36.62
    B.R. Donald: Error Detection and Recovery in Robotics (Springer, Berlin, Heidelberg 1989)MATHGoogle Scholar
  63. 36.63
    J. Canny: On computability of fine motion plans, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 177–182Google Scholar
  64. 36.64
    M. Erdmann: Using backprojections for fine motion planning with uncertainty, Int. J. Robotics Res. 5(1), 19–45 (1986)CrossRefGoogle Scholar
  65. 36.65
    J.C. Latombe: Robot Motion Planning (Kluwer, Dordrecht 1991)MATHCrossRefGoogle Scholar
  66. 36.66
    B. Dufay, J.C. Latombe: An approach to automatic programming based on inductive learning, Int. J. Robotics Res. 3(4), 3–20 (1984)CrossRefGoogle Scholar
  67. 36.67
    H. Asada, S. Hirai: Towards a symbolic-level force feedback: Recognition of assembly process states, Proc. Int. Symp. Robotics Res. (1989) pp. 290–295Google Scholar
  68. 36.68
    J. Xiao, R. Volz: On replanning for assembly tasks using robots in the presence of uncertainties, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 638–645Google Scholar
  69. 36.69
    J. Xiao: Replanning with compliant rotations in the presence of uncertainties, Proc. Int. Symp. Intell. Control, Glasgow (1992) pp. 102–107Google Scholar
  70. 36.70
    G. Dakin, R. Popplestone: Simplified fine-motion planning in generalized contact space, Proc. Int. Symp. Intell. Control (1992) pp. 281–287Google Scholar
  71. 36.71
    G. Dakin, R. Popplestone: Contact space analysis for narrow-clearance assemblies, Proc. Int. Symp. Intell. Control (1993) pp. 542–547CrossRefGoogle Scholar
  72. 36.72
    J. Rosell, L. Basañez, R. Suárez: Compliant-motion planning and execution for robotic assembly, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 2774–2779Google Scholar
  73. 36.73
    R. Taylor: The Synthesis of Manipulator Control Programs from Task-Level Specifications, Ph.D. Thesis (Stanford University, Stanford 1976)Google Scholar
  74. 36.74
    R.A. Brooks: Symbolic error analysis and robot planning, Int. J. Robotics Res. 1(4), 29–68 (1982)CrossRefGoogle Scholar
  75. 36.75
    R.A. Smith, P. Cheeseman: On the representation and estimation of spatial uncertaity, Int. J. Robotics Res. 5(4), 56–68 (1986)CrossRefGoogle Scholar
  76. 36.76
    S.-F. Su, C. Lee: Manipulation and propagation of uncertainty and verification of applicability of actions in assembly tasks, IEEE Trans. Syst. Man Cybern. 22(6), 1376–1389 (1992)MATHCrossRefGoogle Scholar
  77. 36.77
    S.-F. Su, C. Lee, W. Hsu: Automatic generation of goal regions for assembly tasks in the presence of uncertainty, IEEE Trans. Robotics Autom. 12(2), 313–323 (1996)CrossRefGoogle Scholar
  78. 36.78
    J. Hopcroft, G. Wilfong: Motion of objects in contact, Int. J. Robotics Res. 4(4), 32–46 (1986)MATHCrossRefGoogle Scholar
  79. 36.79
    F. Avnaim, J.D. Boissonnat, B. Faverjon: A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1988) pp. 1656–1661Google Scholar
  80. 36.80
    R. Brost: Computing metric and topological properties of c-space obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 170–176Google Scholar
  81. 36.81
    B. Donald: A search algorithm for motion planning with six degrees of freedom, Artif. Intell. 31(3), 295–353 (1987)MATHCrossRefGoogle Scholar
  82. 36.82
    L. Joskowicz, R.H. Taylor: Interference-free insertion of a solid body into a cavity: An algorithm and a medical application, Int. J. Robotics Res. 15(3), 211–229 (1996)CrossRefGoogle Scholar
  83. 36.83
    H. Hirukawa: On motion planning of polyhedra in contact, Proc. Workshop Algorithm. Found. Robotics, Toulouse (1996) pp. 381–391Google Scholar
  84. 36.84
    S.J. Buckley: Planning compliant motion strategies, Proc. Int. Symp. Intell. Control (1988) pp. 338–343Google Scholar
  85. 36.85
    E. Sacks: Path planning for planar articulated robots using configuration spaces and compliant motion, IEEE Trans. Robotics Autom. 19(3), 381–390 (2003)CrossRefGoogle Scholar
  86. 36.86
    C. Laugier: Planning fine motion strategies by reasoning in the contact space, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 653–659Google Scholar
  87. 36.87
    B.J. McCarragher, H. Asada: A discrete event approach to the control of robotic assembly tasks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1993) pp. 331–336CrossRefGoogle Scholar
  88. 36.88
    B.J. McCarragher, H. Asada: The discrete event modeling and trajectory planning of robotic assembly tasks, ASME J. Dyn. Syst. Meas. Control 117, 394–400 (1995)MATHCrossRefGoogle Scholar
  89. 36.89
    R. Suárez, L. Basañez, J. Rosell: Using configuration and force sensing in assembly task planning and execution, Proc. Int. Symp. Assem. Task Plan. (1995) pp. 273–279Google Scholar
  90. 36.90
    H. Hirukawa, Y. Papegay, T. Matsui: A motion planning algorithm for convex polyhedra in contact under translation and rotation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Diego (1994) pp. 3020–3027Google Scholar
  91. 36.91
    X. Ji, J. Xiao: Planning motion compliant to complex contact states, Int. J. Robotics Res. 20(6), 446–465 (2001)CrossRefGoogle Scholar
  92. 36.92
    L.E. Kavraki, P. Svestka, J.C. Latombe, M. Overmars: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robotics Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  93. 36.93
    B. Hannaford, P. Lee: Hidden Markov model analysis of force/torque information in telemanipulation, Int. J. Robotics Res. 10(5), 528–539 (1991)CrossRefGoogle Scholar
  94. 36.94
    G.E. Hovland, B.J. McCarragher: Hidden Markov models as a process monitor in robotic assembly, Int. J. Robotics Res. 17(2), 153–168 (1998)CrossRefGoogle Scholar
  95. 36.95
    T. Takahashi, H. Ogata, S. Muto: A method for analyzing human assembly operations for use in automatically generating robot commands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2, Atlanta (1993) pp. 695–700CrossRefGoogle Scholar
  96. 36.96
    P. Sikka, B.J. McCarragher: Rule-based contact monitoring using examples obtained by task demonstration, Proc. 15th Int. Jt. Conf. Artif. Intell., Nagoya (1997) pp. 514–521Google Scholar
  97. 36.97
    E. Cervera, A. Del Pobil, E. Marta, M. Serna: Perception-based learning for motion in contact in task planning, J. Intell. Robots Syst. 17(3), 283–308 (1996)CrossRefGoogle Scholar
  98. 36.98
    L.M. Brignone, M. Howarth: A geometrically validated approach to autonomous robotic assembly, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Lausanne (2002) pp. 1626–1631CrossRefGoogle Scholar
  99. 36.99
    M. Nuttin, J. Rosell, R. Suárez, H. Van Brussel, L. Basañez, J. Hao: Learning approaches to contact estimation in assembly tasks with robots, Proc. 3rd Eur. Workshop Learn. Robotics, Heraklion (1995)Google Scholar
  100. 36.100
    L.J. Everett, R. Ravari, R.A. Volz, M. Skubic: Generalized recognition of single-ended contact formations, IEEE Trans. Robotics Autom. 15(5), 829–836 (1999)CrossRefGoogle Scholar
  101. 36.101
    M. Skubic, R.A. Volz: Identifying single-ended contact formations from force sensor patterns, IEEE Trans. Robotics Autom. 16(5), 597–603 (2000)CrossRefGoogle Scholar
  102. 36.102
    S. Hirai, H. Asada: Kinematics and statics of manipulation using the theory of polyhedral convex cones, Int. J. Robotics Res. 12(5), 434–447 (1993)CrossRefGoogle Scholar
  103. 36.103
    H. Hirukawa, T. Matsui, K. Takase: Automatic determination of possible velocity and applicable force of frictionless objects in contact from a geometric model, IEEE Trans. Robotics Autom. 10(3), 309–322 (1994)CrossRefGoogle Scholar
  104. 36.104
    B.J. McCarragher, H. Asada: Qualitative template matching using dynamic process models for state transition recognition of robotic assembly, ASME J. Dyn. Syst. Meas. Control 115(2), 261–269 (1993)CrossRefGoogle Scholar
  105. 36.105
    T.M. Schulteis, P.E. Dupont, P.A. Millman, R.D. Howe: Automatic identification of remote environments, Proc. ASME Dyn. Syst. Control Div., Atlanta (1996) pp. 451–458Google Scholar
  106. 36.106
    A.O. Farahat, B.S. Graves, J.C. Trinkle: Identifying contact formations in the presence of uncertainty, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Pittsburg (1995) pp. 59–64Google Scholar
  107. 36.107
    J. Xiao, L. Zhang: Contact constraint analysis and determination of geometrically valid contact formations from possible contact primitives, IEEE Trans. Robotics Autom. 13(3), 456–466 (1997)CrossRefGoogle Scholar
  108. 36.108
    H. Mosemann, T. Bierwirth, F.M. Wahl, S. Stoeter: Generating polyhedral convex cones from contact graphs for the identification of assembly process states, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 744–749Google Scholar
  109. 36.109
    J. Xiao, L. Zhang: Towards obtaining all possible contacts – Growing a polyhedron by its location uncertainty, IEEE Trans. Robotics Autom. 12(4), 553–565 (1996)CrossRefGoogle Scholar
  110. 36.110
    M. Spreng: A probabilistic method to analyze ambiguous contact situations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 543–548CrossRefGoogle Scholar
  111. 36.111
    N. Mimura, Y. Funahashi: Parameter identification of contact conditions by active force sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Diego (1994) pp. 2645–2650Google Scholar
  112. 36.112
    B. Eberman: A model-based approach to Cartesian manipulation contact sensing, Int. J. Robotics Res. 16(4), 508–528 (1997)CrossRefGoogle Scholar
  113. 36.113
    T. Debus, P. Dupont, R. Howe: Contact state estimation using multiple model estimation and Hidden Markov model, Int. J. Robotics Res. 23(4-5), 399–413 (2004)CrossRefGoogle Scholar
  114. 36.114
    J. De Geeter, H. Van Brussel, J. De Schutter, M. Decréton: Recognizing and locating objects with local sensors, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (1996) pp. 3478–3483CrossRefGoogle Scholar
  115. 36.115
    J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimating first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robotics Res. 18(12), 1161–1184 (1999)CrossRefGoogle Scholar
  116. 36.116
    T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyhedral contact formation identification for autonomous compliant motion: Exact nonlinear bayesian filtering, IEEE Trans. Robotics 21(1), 124–129 (2005)CrossRefGoogle Scholar
  117. 36.117
    T. Lefebvre, H. Bruyninckx, J. De Schutter: Online statistical model recognition and state estimation for autonomous compliant motion systems, IEEE Trans. Syst. Man Cybern. C 35(1), 16–29 (2005)CrossRefGoogle Scholar
  118. 36.118
    K. Gadeyne, T. Lefebvre, H. Bruyninckx: Bayesian hybrid model-state estimation applied to simultaneous contact formation recognition and geometrical parameter estimation, Int. J. Robotics Res. 24(8), 615–630 (2005)CrossRefGoogle Scholar
  119. 36.119
    K. Kitagaki, T. Ogasawara, T. Suehiro: Methods to detect contact state by force sensing in an edge mating task, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 701–706CrossRefGoogle Scholar
  120. 36.120
    T. Lefebvre, H. Bruyninckx, J. De Schutter: Task planning with active sensing for autonomous compliant motion, Int. J. Robotics Res. 24(1), 61–82 (2005)CrossRefGoogle Scholar
  121. 36.121
    T. Debus, P. Dupont, R. Howe: Distinguishability and identifiability testing of contact state models, Adv. Robotics 19(5), 545–566 (2005)CrossRefGoogle Scholar
  122. 36.122
    W. Meeussen, J. Xiao, J. De Schutter, H. Bruyninckx, E. Staffetti: Automatic verification of contact states taking into account manipulator constraints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 3583–3588Google Scholar
  123. 36.123
    N.S. Bedrossian: Classification of singular configurations for redundant manipulators, Proc. 1990 IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 818–823Google Scholar
  124. 36.124
    F.-T. Cheng, T.-L. Hour, Y.-Y. Sun, T.-H. Chen: Study and resolution of singularities for a 6-DOF PUMA manipulator, IEEE Trans. Syst. Man Cybern. B 27(2), 332–343 (1997)CrossRefGoogle Scholar
  125. 36.125
    A. Sarić, J. Xiao, J. Shi: Robotic surface assembly via contact state transitions, Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE) (2013) pp. 954–959Google Scholar
  126. 36.126
    J. Park, R. Cortesao, O. Khatib: Multi-contact compliant motion control for robotic manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 4789–4794Google Scholar
  127. 36.127
    W. Meeussen, E. Staffetti, H. Bruyninckx, J. Xiao, J. De Schutter: Integration of planning and execution in force controlled compliant motion, J. Robotics Auton. Syst. 56(5), 437–450 (2008)CrossRefGoogle Scholar
  128. 36.128
    A. Stolt, M. Linderoth, A. Robertsson, R. Johansson: Force controlled robotic assembly without a force sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (2012) pp. 1538–1543Google Scholar
  129. 36.129
    S. Tachi, T. Sakaki, H. Arai, S. Nishizawa, J.F. Pelaez-Polo: Impedance control of a direct-drive manipulator without using force sensors, Adv. Robotics 5(2), 183–205 (1990)CrossRefGoogle Scholar
  130. 36.130
    M. Van Damme, B. Beyl, V. Vanderborght, V. Grosu, R. Van Ham, I. Vanderniepen, A. Matthys, D. Lefeber: Estimating robot end-effector force from noisy actuator torque measurements, Proc. Int. Conf. Robotics Autom. (ICRA), Shanghai (2011) pp. 1108–1113Google Scholar
  131. 36.131
    D.E. Koditschek: Exact robot navigation by means of potential functions: Some topological considerations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1–6Google Scholar
  132. 36.132
    E. Rimon, D.E. Koditschek: Exact robot navigation using artificial potential fields, IEEE Trans. Robotics Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  133. 36.133
    E. Rimon, D.E. Koditschek: The construction of analytic diffeomorphisms for exact robot navigation on star worlds, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 21–26Google Scholar
  134. 36.134
    J. Barraquand, J.-C. Latombe: Robot motion planning: A distributed representation approach, Int. J. Robotics Res. 10(6), 628–649 (1991)CrossRefGoogle Scholar
  135. 36.135
    C.I. Connolly, J.B. Burns, R. Weiss: Path planning using Laplace's equation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 2102–2106CrossRefGoogle Scholar
  136. 36.136
    C.I. Connolly, R.A. Grupen: One the applications of harmonic functions to robotics, J. Robotics Syst. 10(7), 931–946 (1993)MATHCrossRefGoogle Scholar
  137. 36.137
    S.H.J. Feder, E.J.-J. Slotine: Real-time path planning using harmonic potentials in dynamic environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Albuquerque (1997) pp. 811–874Google Scholar
  138. 36.138
    J.-O. Kim, P. Khosla: Real-time obstacle avoidance using harmonic potential functions, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Sacramento (1991) pp. 790–796Google Scholar
  139. 36.139
    K. Sato: Collision avoidance in multi-dimensional space using Laplace potential, Proc. 15th Conf. Robotics Soc. Jpn. (1987) pp. 155–156Google Scholar
  140. 36.140
    S.M. LaValle, P. Konkimalla: Algorithms for computing numerical optimal feedback motion strategies, Int. J. Robotics Res. 20(9), 729–752 (2001)CrossRefGoogle Scholar
  141. 36.141
    A. van der Schaft, H. Schumacher: An Introduction to Hybrid Dynamical Systems (Springer, Belin, Heidelberg 2000)MATHCrossRefGoogle Scholar
  142. 36.142
    W. Choi, J.-C. Latombe: A reactive architecture for planning and executing robot motions with incomplete knowledge, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 1, Osaka (1991) pp. 24–29Google Scholar
  143. 36.143
    D.C. Conner, H. Choset, A.A. Rizzi: Integrated planning and control for convex-bodied nonholonomic systems using local feedback control policies, Proc. Robotics Sci. Syst., Philadelphia (2006)Google Scholar
  144. 36.144
    D.C. Conner, A.A. Rizzi, H. Choset: Composition of local potential functions for global robot control and navigation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas (2003) pp. 3546–3551Google Scholar
  145. 36.145
    S.R. Lindemann, S.M. LaValle: Smooth feedback for car-like vehicles in polygonal environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Rome (2007)Google Scholar
  146. 36.146
    L. Yang, S.M. LaValle: The sampling-based neighborhood graph: A framework for planning and executing feedback motion strategies, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Taipei (2003)Google Scholar
  147. 36.147
    C. Belta, V. Isler, G.J. Pappas: Discrete abstractions for robot motion planning and control in polygonal environments, IEEE Trans. Robotics Autom. 21(5), 864–871 (2005)CrossRefGoogle Scholar
  148. 36.148
    R.R. Burridge, A.A. Rizzi, D.E. Koditschek: Sequential composition of dynamically dexterous robot behaviors, Int. J. Robotics Res. 18(6), 534–555 (1999)CrossRefGoogle Scholar
  149. 36.149
    S.R. Lindemann, S.M. LaValle: Computing smooth feedback plans over cylindrical algebraic decompositions, Proc. Robotics Sci. Syst. (RSS), Philadephia (2006)Google Scholar
  150. 36.150
    Y. Yang, O. Brock: Elastic roadmaps: Globally task-consitent motion for autonomous mobile manipulation, Proc. Robotics Sci. Syst. (RSS), Philadephia (2006)Google Scholar
  151. 36.151
    S. Quinlan, O. Khatib: Elastic bands: Connecting path planning and control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2, Atlanta (1993) pp. 802–807CrossRefGoogle Scholar
  152. 36.152
    M. Khatib, H. Jaouni, R. Chatila, J.-P. Laumond: How to implement dynamic paths, Proc. Int. Symp. Exp. Robotics (1997) pp. 225–236, PreprintsGoogle Scholar
  153. 36.153
    O. Brock, O. Khatib: Elastic strips: A framework for motion generation in human environments, Int. J. Robotics Res. 21(12), 1031–1052 (2002)CrossRefGoogle Scholar
  154. 36.154
    M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, J. Dyn. Syst. Meas. Control 103(2), 126–133 (1981)CrossRefGoogle Scholar
  155. 36.155
    R. Featherstone, S. Sonck, O. Khatib: A general contact model for dynamically-decoupled force/motion control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Detroit (1999) pp. 3281–3286Google Scholar
  156. 36.156
    J. Park, O. Khatib: Multi-link multi-contact force control for manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Barcelona (2005)Google Scholar
  157. 36.157
    D.C. Ruspini, O. Khatib: A framework for multi-contact multi-body dynamic simulation and haptic display, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Takamatsu (2000) pp. 1322–1327Google Scholar
  158. 36.158
    K.-S. Chang, R. Holmberg, O. Khatib: The augmented object model: Cooperative manipluation and parallel mechanism dynamics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000) pp. 470–475Google Scholar
  159. 36.159
    O. Khatib: Object Manipulation in a multi-effector robot system. In: Robotics Research 4, ed. by R. Bolles, B. Roth (MIT Press, Cambridge 1988) pp. 137–144Google Scholar
  160. 36.160
    D. Williams, O. Khatib: The virtual linkage: A model for internal forces in multi-grasp manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1, Altanta (1993) pp. 1030–1035Google Scholar
  161. 36.161
    J.A. Adams, R. Bajcsy, J. Kosecka, V. Kuma, R. Mandelbaum, M. Mintz, R. Paul, C. Wang, Y. Yamamoto, X. Yun: Cooperative material handling by human and robotic agents: Module development and system synthesis, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Pittsburgh (1995) pp. 200–205Google Scholar
  162. 36.162
    S. Hayati: Hybrid postiion/force control of multi-arm cooperating robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 82–89Google Scholar
  163. 36.163
    D. Jung, G. Cheng, A. Zelinsky: Experiments in realizing cooperation between autonomous mobile robots, Proc. Int. Symp. Exp. Robotics (1997) pp. 513–524Google Scholar
  164. 36.164
    T.-J. Tarn, A.K. Bejczy, X. Yun: Design of dynamic control of two cooperating robot arms: Closed chain formulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 7–13Google Scholar
  165. 36.165
    M. Uchiyama, P. Dauchez: A symmetric hybrid position/force control scheme for the coordination of two robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Philadelphia (1988) pp. 350–356Google Scholar
  166. 36.166
    X. Yun, V.R. Kumar: An approach to simultaneious control fo trajecotry and integraction forces in dual-arm configurations, IEEE Trans. Robotics Autom. 7(5), 618–625 (1991)CrossRefGoogle Scholar
  167. 36.167
    Y.F. Zheng, J.Y.S. Luh: Joint torques for control of two coordinated moving robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 1375–1380Google Scholar
  168. 36.168
    T. Bretl, Z. McCarthy: Quasi-static manipulation of a Kirchhoff elastic rod based on a geometric analysis of equilibrium configurations, Int. J. Robotics Res. 33(1), 48–68 (2014)CrossRefGoogle Scholar
  169. 36.169
    J. Russakow, O. Khatib, S.M. Rock: Extended operational space formation for serial-to-parallel chain (branching) manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1, Nagoya (1995) pp. 1056–1061Google Scholar
  170. 36.170
    K.-S. Chang, O. Khatib: Operational space dynamics: Efficient algorithms for modelling and control of branching mechanisms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000) pp. 850–856Google Scholar
  171. 36.171
    K. Kreutz-Delgado, A. Jain, G. Rodriguez: Recursive formulation of operational space control, Int. J. Robotics Res. 11(4), 320–328 (1992)CrossRefGoogle Scholar
  172. 36.172
    M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch, R. Siegwart: Quadrupedal locomotion using hierarchical operational space control, Int. J. Robotics Res. 33(8), 1047–1062 (2014)CrossRefGoogle Scholar
  173. 36.173
    B. Bayle, J.-Y. Fourquet, M. Renaud: A coordination strategy for mobile manipulation, Proc. Int. Conf. Intell. Auton. Syst., Venice (2000) pp. 981–988Google Scholar
  174. 36.174
    B. Bayle, J.-Y. Fourquet, M. Renaud: Generalized path generation for a mobile manipulator, Proc. Int. Conf. Mech. Des. Prod., Cairo (2000) pp. 57–66Google Scholar
  175. 36.175
    B. Bayle, J.-Y. Fourquet, M. Renaud: Using manipulability with nonholonomic mobile manipulators, Proc. Int. Conf. Field Serv. Robotics, Helsinki (2001) pp. 343–348Google Scholar
  176. 36.176
    J. Peters, S. Schaal: Reinforcement learning for operational space control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Rome (2007)Google Scholar
  177. 36.177
    T. Simeon, J. Cortes, A. Sahbani, J.P. Laumond: A manipulation planner for pick and place operations under continuous grasps and placements, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)Google Scholar
  178. 36.178
    A. Miller, P. Allen: Examples of 3D grasp quality computations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (1999)Google Scholar
  179. 36.179
    A.T. Miller: Graspit: A Versatile Simulator for Robotic Grasping, Ph.D. Thesis (New York, Columbia University 2001)Google Scholar
  180. 36.180
    G. Wilfong: Motion panning in the presence of movable obstacles, Proc. ACM Symp. Comput. Geom. (1988) pp. 279–288Google Scholar
  181. 36.181
    M. Erdmann, T. Lozano-Perez: On multiple moving objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 1419–1424Google Scholar
  182. 36.182
    P.C. Chen, Y.K. Hwang: Pracitcal path planning among movable obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1991) pp. 444–449Google Scholar
  183. 36.183
    M. Stilman, J.J. Kuffner: Navigation among movable obstacles: Real-time reasoning in complex environments, Int. J. Hum. Robotics 2(4), 1–24 (2005)Google Scholar
  184. 36.184
    M. Stilman, J.-U. Shamburek, J.J. Kuffner, T. Asfour: Manipulation planning among movable obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)Google Scholar
  185. 36.185
    D. Nieuwenhuisen, A.F. van der Stappen, M.H. Overmars: An effective framework for path planning amidst movable obstacles, Proc. Workshop Algorithm. Found. Robotics (2006)Google Scholar
  186. 36.186
    K.M. Lynch, M.T. Mason: Stable pushing: Mechanics, controllability, and planning, Int. J. Robotics Res. 15(6), 533–556 (1996)CrossRefGoogle Scholar
  187. 36.187
    P. Tang, J. Xiao: Generation of point-contact state space between strictly curved objects. In: Robotics Science and Systems II, ed. by G.S. Sukhatme, S. Schaal, W. Burgard, D. Fox (MIT Press, Cambridge 2007) pp. 239–246Google Scholar
  188. 36.188
    H. Nakagaki, K. Kitagaki, T. Ogasawara, H. Tsukune: Study of deformation and insertion tasks of a flexible wire, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 2397–2402CrossRefGoogle Scholar
  189. 36.189
    W. Kraus Jr., B.J. McCarragher: Case studies in the manipulation of flexible parts using a hybrid position/force approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 367–372CrossRefGoogle Scholar
  190. 36.190
    J.Y. Kim, D.J. Kang, H.S. Cho: A flexible parts assembly algorithm based on a visual sensing system, Proc. Int. Symp. Assem. Task Plan. (2001) pp. 417–422Google Scholar
  191. 36.191
    B.J. Unger, A. Nocolaidis, P.J. Berkelman, A. Thompson, R.L. Klatzky, R.L. Hollis: Comparison of 3-D haptic peg-in-hole tasks in real and virtual environments, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 1751–1756Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Computer ScienceUniversity of North CarolinaCharlotteUSA

Personalised recommendations