Inertial Sensing, GPS and Odometry

Abstract

This chapter examines how certain properties of the world can be exploited in order for a robot or other device to develop a model of its own motion or pose (position and orientation) relative to an external frame of reference. Although this is a critical problem for many autonomous robotic systems, the problem of establishing and maintaining an orientation or position estimate of a mobile agent has a long history in terrestrial navigation.

3-D

three-dimensional

AHRS

attitude and heading reference system

ASCII

American standard code for information interchange

C/A

coarse-acquisition

CORS

continuous operating reference station

DGPS

differential global positioning system

DOF

degree of freedom

DOP

dilution of precision

ECEF

earth-centred, earth-fixed

EGNOS

European Geostationary Navigation Overlay Service

FAA

Federal Aviation Administration

FOG

fiber-optic gyro

GBAS

ground based augmentation system

GLONASS

globalnaya navigatsionnaya sputnikovaya sistema

GLS

global navigation satellite system

GPS

global positioning system

ICC

instantaneous center of curvature

IMU

inertial measurement unit

INS

inertial navigation system

IRNSS

Indian regional navigational satellite system

MEMS

microelectromechanical system

MSAS

multifunctional satellite augmentation system

NDGPS

nationwide different GPS system

NMEA

National Marine Electronics Association

NRTK

network real-time kinematic

PDOP

positional dilution of precision

PPS

precise positioning system

PRN

pseudo-random noise

PVA

position, velocity, and attitude

QZSS

quasi-zenith satellite system

RAIM

receiver autonomous integrity monitor

RG

rate gyro

RIG

rate-integrating gyro

RLG

ring laser gyroscope

RTCMS C104

Radio Technical Commission for Maritime Services Special Committee 104

RTK

real-time kinematics

SA

selective availability

SBAS

satellite-based augmentation system

SPS

standard position system

UTC

universal coordinated time

WAAS

wide-area augmentation system

WGS

World Geodetic System

References

  1. 29.1
    Vitruvius: Ten Books on Architecture (Harvard Univ. Press, London 1914) p. 301, English translation by M. H. MorganGoogle Scholar
  2. 29.2
    G. Dudek, M. Jenkin: Computational Principles of Mobile Robotics, 2nd edn. (Cambridge Univ. Press, Cambridge 2010)CrossRefMATHGoogle Scholar
  3. 29.3
    E. Maloney: Dutton’s Navigation and Piloting (US Naval Institute Press, Annapolis 1985)Google Scholar
  4. 29.4
    J.G.F. Bohnenberger: Beschreibung einer Maschine zur Erläuterung der Geseze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der lezteren, Tüb. Bl. Naturw. Arzneik. 3, 72–83 (1817)Google Scholar
  5. 29.5
    T.P. Hughes: Elmer Sperry: Inventor and Engineer (The Johns Hopkins Univ. Press, Baltimore 1993)Google Scholar
  6. 29.6
    H.W. Sorg: From Serson to Draper – Two centuries of gyroscopic development, Navigation 23, 313–324 (1976)CrossRefGoogle Scholar
  7. 29.7
    W. Davenport: Gyro! The Life and Times of Lawrence Sperry (Charles Scribner, New York 1978)Google Scholar
  8. 29.8
    J.F. Wagner: From Bohnenberger’s machine to integrated navigation systems, 200 years of inertial navigation, Photogramm. Week (2005)Google Scholar
  9. 29.9
    R.P. Feynman, R.B. Leighton, M. Sands: The Feynman Lectures on Physics (Addison-Wesley, Reading 1963)MATHGoogle Scholar
  10. 29.10
    T.F.T. Submarine: Navpers 16160 Standards and Curriculum Division Training (Bureau of Naval Personnel United States Navy, Arlington 1946)Google Scholar
  11. 29.11
    G. Sagnac: L’ether lumineux demontre par l’effect du vent relatif d’ether dans un interferometre en rotation uniforme, C. R. Acad. Sci. Paris 157, 708–710 (1913)Google Scholar
  12. 29.12
    G. Sagnac: Sur la preuve de la realitet de l’ether lumineaux par l’experience de l’interferographe tournant, C. R. Acad. Sci. Paris 157, 1410–1413 (1913)Google Scholar
  13. 29.13
    F. Harress: Die Geschwindigkeit des Lichtes in bewegten Körpern, Ph.D. Thesis (Richters, Jena 1912)Google Scholar
  14. 29.14
    A.A. Michelson, H.G. Gale: The effect of the Earth’s rotation on the velocity of light, J. Astrophys. 61, 140–145 (1925)CrossRefGoogle Scholar
  15. 29.15
    S. Ekeziel, H.J. Arditty: Fiber-Optic Rotation Sensors, Springer Ser. Opt. Sci. (Springer, Berlin, Heidelberg 1982)Google Scholar
  16. 29.16
    G.E. Stedman: Ring-laser tests of fundamental physics and geophysics, Rep. Prog. Phys. 60, 615–688 (1997)CrossRefGoogle Scholar
  17. 29.17
    D. Mackenzie: From the luminiferous ether to the Boeing 757: A history of the laser gyroscope, Technol. Cult. 34(3), 475–515 (1993)CrossRefGoogle Scholar
  18. 29.18
    E. Foxlin, M. Harringon, Y. Altshuler: Miniature 6-DOF inertial system for tracking HMDs, SPIE Proc. 3362 (1998) pp. 214–228Google Scholar
  19. 29.19
    M. Mostafa: History of inertial navigation systems in survey applications, J. Am. Soc. Photogramm. Remote Sens. 67, 1225–1227 (2001)Google Scholar
  20. 29.20
    A.J. Van Dierendonck, P. Fenton, T. Ford: Theory and performance of narrow correlator spacing in a GPS receiver, Navigation 39, 265–283 (1992)CrossRefGoogle Scholar
  21. 29.21
    A. Rietdorf, C. Daub, P. Loef: Precise positioning in real-time using navigation satellites and telecommunication, Proc. 3rd Workshop Posit. Navig. Commun. (2006) pp. 123–128Google Scholar
  22. 29.22
    J. Rios, E. White: Low cost solid state GPS/INS package, Proc. Inst. Navig. Conf. (2000)Google Scholar
  23. 29.23
    R. Siegwart, I.R. Nourbakhsh: Introduction to Autonomous Mobile Robots (MIT Press, Cambridge 2004)Google Scholar
  24. 29.24
    H.R. Everett: Sensors for Mobile Robots: Theory and Application (Peters, Wellesley 1995)Google Scholar
  25. 29.25
    A. Leick: GPS Satellite Surveying (Wiley, Hoboken 2004)Google Scholar
  26. 29.26
    P. Misra, P. Enge: Global Positioning System: Signals, Measurements, and Performance (Ganga-Jamuna Press, Lincoln 2006)Google Scholar
  27. 29.27
    J. Farrell, M. Barth: The Global Positioning System and Inertial Navigation (McGraw-Hill, New York 1989)Google Scholar
  28. 29.28
    M.S. Grewal, L.R. Weill, A.P. Andrews: Global Positioning Systems, Inertial Navigation, and Integration (Wiley, Hoboken 2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceMcGill UniversityMontrealCanada
  2. 2.Department of Electrical Engineering and Computer ScienceYork UniversityTorontoCanada

Personalised recommendations