Micro-/Nanorobots

Abstract

The field of microrobotics covers the robotic manipulation of objects with dimensions in the millimeter to micron range as well as the design and fabrication of autonomous robotic agents that fall within this size range. Nanorobotics is defined in the same way only for dimensions smaller than a micron. With the ability to position and orient objects with micron- and nanometer-scale dimensions, manipulation at each of these scales is a promising way to enable the assembly of micro- and nanosystems, including micro- and nanorobots.

This chapter overviews the state of the art of both micro- and nanorobotics, outlines scaling effects, actuation, and sensing and fabrication at these scales, and focuses on micro- and nanorobotic manipulation systems and their application in microassembly, biotechnology, and the construction and characterization of micro and nanoelectromechanical systems (MEMS/NEMS). Material science, biotechnology, and micro- and nanoelectronics will also benefit from advances in these areas of robotics.

0-D

zero-dimensional

1-D

one-dimensional

2-D

two-dimensional

3-D

three-dimensional

ABF

artificial bacterial flagella

AC

alternating current

AFM

atomic force microscope

AM

actuator for manipulation

AP

antipersonnel

ASIC

application-specific integrated circuit

CCD

charge-coupled device

CCW

counterclockwise

CNT

carbon nanotube

CU

control unit

CVD

chemical vapor deposition

CW

clockwise

DNA

deoxyribonucleic acid

DOF

degree of freedom

DPN

dip-pen nanolithography

DRIE

deep reactive ion etching

e-beam

electron-beam

EBID

electron-beam induced deposition

EDM

electrical discharge machining

FESEM

field-emission SEM

HMDS

hexamethyldisilazane

HRTEM

high-resolution transmission electron microscope

IC

integrated circuit

IR

infrared

LIGA

Lithographie, Galvanoumformung, Abformung

MBE

molecular-beam epitaxy

MEMS

microelectromechanical system

MITI

Ministry of International Trade and Industry

MOCVD

metallo-organic chemical vapor deposition

MST

microsystem technology

MWNT

multiwalled carbon nanotube

NEMS

nanoelectromechanical system

NRM

nanorobotic manipulator

OM

optical microscope

PCI

peripheral component interconnect

PID

proportional–integral–derivative

PMMA

polymethyl methacrylate

PR

positive photoresist

PS

power source

PVDF

polyvinylidene fluoride

PVD

physical vapor deposition

PZT

lead zirconate titanate

QD

quantum dot

RIE

reactive-ion etching

RT

room temperature

SEM

scanning electron microscope

SET

single electron transistor

SMA

shape memory alloy

SNOM

scanning near-field optical microscopy

SOI

silicon-on-insulator

SPM

scanning probe microscope

STM

scanning tunneling microscope

SWNT

single-walled carbon nanotube

TEM

transmission electron microscope

UHV

ultrahigh-vacuum

UV

ultraviolet

vdW

van der Waals

ZP

zona pellucida

References

  1. 27.1
    R.P. Feynman: There's plenty of room at the bottom, Caltech Eng. Sci. 23, 22–36 (1960)Google Scholar
  2. 27.2
    R.S. Muller: Microdynamics, Sens. Actuators A 21(1), 1–8 (1990)MathSciNetCrossRefGoogle Scholar
  3. 27.3
    A.M. Flynn, R.A. Brooks, W.M. Wells, D.S. Barrett: The world's largest one cubic inch robot, IEEE Micro Electro Mech. Syst. (MEMS) (1989) pp. 98–101Google Scholar
  4. 27.4
    W. Trimmer, R. Jebens: Actuators for micro robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1547–1552Google Scholar
  5. 27.5
    S. Fatikow, U. Rembold: An automated microrobot-based desktop station for micro assembly and handling of micro-objects, IEEE Conf. Emerg. Technol. Fact. Autom. (EFTA'96) (1996) pp. 586–592Google Scholar
  6. 27.6
    B.J. Nelson, Y. Zhou, B. Vikramaditya: Sensor-based microassembly of hybrid MEMS devices, IEEE Control Syst. Mag. 18, 35–45 (1998)CrossRefGoogle Scholar
  7. 27.7
    K. Suzumori, T. Miyagawa, M. Kimura, Y. Hasegawa: Micro inspection robot for 1-in pipes, IEEE/ASME Trans. Mechatron. 4, 286–292 (1999)CrossRefGoogle Scholar
  8. 27.8
    M. Takeda: Applications of MEMS to industrial inspection, Proc. 14th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (2001) pp. 182–191Google Scholar
  9. 27.9
    T. Frank: Two-Axis electrodynamic micropositioning devices, J. Micromech. Microeng. 8, 114–118 (1989)CrossRefGoogle Scholar
  10. 27.10
    N. Kawahara, N. Kawahara, T. Suto, T. Hirano, Y. Ishikawa, T. Kitahara, N. Ooyama, T. Ataka: Microfactories: New applications of micromachine technology to the manufacture of small products, Res. J. Microsyst. Technol. 3, 37–41 (1997)CrossRefGoogle Scholar
  11. 27.11
    Y. Sun, B.J. Nelson: Microrobotic cell injection, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 620–625Google Scholar
  12. 27.12
    P. Dario, M.C. Carrozza, L. Lencioni, B. Magnani, S. Dapos Attanasio: A micro robotic system for colonoscopy, Proc. Int. Conf. Robotics Autom. (ICRA) (1997) pp. 1567–1572CrossRefGoogle Scholar
  13. 27.13
    F. Tendick, S.S. Sastry, R.S. Fearing, M. Cohn: Application of micromechatronics in minimally invasive surgery, IEEE/ASME Trans. Mechatron. 3, 34–42 (1998)CrossRefGoogle Scholar
  14. 27.14
    G. Iddan, G. Meron, A. Glukhovsky, P. Swain: Wireless capsule endoscopy, Nature 405, 417 (2000)CrossRefGoogle Scholar
  15. 27.15
    K.B. Yesin, K. Vollmers, B.J. Nelson: Analysis and design of wireless magnetically guided microrobots in body fluids, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 1333–1338Google Scholar
  16. 27.16
    M.C. Roco, R.S. Williams, P. Alivisatos: Nanotechnology Research Directions. Vision for Nanotechnology in the Next Decade (Kluwer, Dordrecht 2000)Google Scholar
  17. 27.17
    M.L. Downey, D.T. Moore, G.R. Bachula, D.M. Etter, E.F. Carey, L.A. Perine: National Nanotechnology Initiative: Leading to the Next Industrial Revolution, A Report by the Interagency Working Group on Nanoscience, Engineering and Technology (Committee on Technology, National Science and Technology Council, Washington 2000)Google Scholar
  18. 27.18
    K. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York 1992)Google Scholar
  19. 27.19
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982)CrossRefGoogle Scholar
  20. 27.20
    W.F. Degrado: Design of peptides and proteins, Adv. Protein Chem. 39, 51–124 (1998)CrossRefGoogle Scholar
  21. 27.21
    G.M. Whitesides, B. Grzybowski: Self-assembly at all scales, Science 295, 2418–2421 (2002)CrossRefGoogle Scholar
  22. 27.22
    R. Fearing: Survey of sticking effects for micro-parts, Proc. IEEE/RSJ Int. Conf. Int. Robots Syst. (1995) pp. 212–217Google Scholar
  23. 27.23
    E.L. Wolf: Nanophysics and Nanotechnology (Wiley-VCH, Weinheim 2004)Google Scholar
  24. 27.24
    T. Ebefors, G. Stemme: Microrobotics. In: The MEMS Handbook, ed. by M. Gad-el-Hak (CRC, Boca Raton 2002)Google Scholar
  25. 27.25
    C.-J. Kim, A.P. Pisano, R.S. Muller: Silicon-processed overhanging microgripper, IEEE/ASME J. Microelectromechanical Syst. 1, 31–36 (1992)CrossRefGoogle Scholar
  26. 27.26
    C. Liu, T. Tsao, Y.-C. Tai, C.-M. Ho: Surface micromachined magnetic actuators, Proc. 7th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1994) pp. 57–62Google Scholar
  27. 27.27
    J. Judy, D.L. Polla, W.P. Robbins: A linear piezoelectric stepper motor with submicron displacement and centimeter travel, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 428–437 (1990)CrossRefGoogle Scholar
  28. 27.28
    K. Nakamura, H. Ogura, S. Maeda, U. Sangawa, S. Aoki, T. Sato: Evaluation of the micro wobbler motor fabricated by concentric build-up process, Proc. 8th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1995) pp. 374–379Google Scholar
  29. 27.29
    A. Teshigahara, M. Watanabe, N. Kawahara, I. Ohtsuka, T. Hattori: Performance of a 7-mm microfabricated car, IEEE/ASME J. Microelectromechanical Syst. 4, 76–80 (1995)CrossRefGoogle Scholar
  30. 27.30
    K.R. Udayakumar, S.F. Bart, A.M. Flynn, J. Chen, L.S. Tavrow, L.E. Cross, R.A. Brooks, D.J. Ehrlich: Ferroelectric thin film ultrasonic micromotors, Proc. 4th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1991) pp. 109–113CrossRefGoogle Scholar
  31. 27.31
    P. Dario, R. Valleggi, M.C. Carrozza, M.C. Montesi, M. Cocco: Review – Microactuators for microrobots: A critical survey, J. Micromech. Microeng. 2, 141–157 (1992)CrossRefGoogle Scholar
  32. 27.32
    I. Shimoyama: Scaling in microrobots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (1995) pp. 208–211Google Scholar
  33. 27.33
    R.S. Fearing: Powering 3-dimensional microrobots: power density limitations, tutorial on Micro Mechatronics and Micro Robotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998)Google Scholar
  34. 27.34
    R.G. Gilbertson, J.D. Busch: A survey of micro-actuator technologies for future spacecraft missions, J. Br. Interplanet. Soc. 49, 129–138 (1996)Google Scholar
  35. 27.35
    M. Mehregany, P. Nagarkar, S.D. Senturia, J.H. Lang: Operation of microfabricated harmonic and ordinary side-drive motors, Proc. 3rd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1990) pp. 1–8Google Scholar
  36. 27.36
    Y.C. Tai, L.S. Fan, R.S. Mulle: IC-processed micro-motors: design, technology, and testing, Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1989) pp. 1–6Google Scholar
  37. 27.37
    T. Ohnstein, T. Fukiura, J. Ridley, U. Bonne: Micromachined silicon microvalve, Proc. 3rd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1990) pp. 95–99Google Scholar
  38. 27.38
    L.Y. Chen, S.L. Zhang, J.J. Yao, D.C. Thomas, N.C. MacDonald: Selective chemical vapor deposition of tungsten for microdynamic structures, Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1989) pp. 82–87Google Scholar
  39. 27.39
    K. Yanagisawa, H. Kuwano, A. Tago: An electromagnetically driven microvalve, Proc. 7th Int. Conf. Solid-State Sens. Actuators (1993) pp. 102–105Google Scholar
  40. 27.40
    M. Esashi, S. Shoji, A. Nakano: Normally close microvalve and micropump fabricated on a silicon wafer, Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1989) pp. 29–34Google Scholar
  41. 27.41
    R. Petrucci, K. Simmons: An introduction to piezoelectric crystals, Sens. J. Appl.Sens. Technol. 11(5), 26–31 (1994)Google Scholar
  42. 27.42
    J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. Michael: Scanning Electron Microscopy and X-ray Microanalysis (Kluwer, New York 2003)CrossRefGoogle Scholar
  43. 27.43
    G. Binnig, H. Rohrer: In touch with atoms, Rev. Mod. Phys. 71, S324–S330 (1999)CrossRefGoogle Scholar
  44. 27.44
    G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 93–96 (1986)CrossRefGoogle Scholar
  45. 27.45
    M.J. Doktycz, C.J. Sullivan, P.R. Hoyt, D.A. Pelletier, S. Wu, D.P. Allison: AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces, Ultramicroscopy 97, 209–216 (2003)CrossRefGoogle Scholar
  46. 27.46
    S.A. Campbell: The Science and Engineering of Microelectronic Fabrication (Oxford Univ. Press, New York 2001)Google Scholar
  47. 27.47
    C.J. Jaeger: Introduction to Microelectronic Fabrication (Prentice Hall, Upper Saddle River 2002)Google Scholar
  48. 27.48
    J.D. Plummer, M.D. Deal, P.B. Griffin: Silicon VLSI Technology (Prentice Hall, Upper Saddle River 2000)Google Scholar
  49. 27.49
    M. Gad-el-Hak (Ed.): The MEMS Handbook (CRC, Boca Raton 2002)MATHGoogle Scholar
  50. 27.50
    T.-R. Hsu: MEMS and Microsystems Design and Manufacture (McGraw-Hill, New York 2002)Google Scholar
  51. 27.51
    G.T.A. Kovacs: Micromachined Transducers Sourcebook (McGraw-Hill, New York 1998)Google Scholar
  52. 27.52
    G.T.A. Kovacs, N.I. Maluf, K.A. Petersen: Bulk micromachining of silicon, Proc. IEEE Int. Conf. Robotics Autom. (1998) pp. 1536–1551Google Scholar
  53. 27.53
    P. Rai-Choudhury (Ed.): Handbook of Microlithography, Micromachining and Microfabrication (SPIE, Bellingham 1997)Google Scholar
  54. 27.54
    S.Y. Chou: Nano-imprint lithography and lithographically induced self-assembly, MRS Bulletin 26, 512–517 (2001)CrossRefGoogle Scholar
  55. 27.55
    M.A. Herman: Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, New York 1996)CrossRefGoogle Scholar
  56. 27.56
    J.S. Frood, G.J. Davis, W.T. Tsang: Chemical Beam Epitaxy and Related Techniques (Wiley, New York 1997)Google Scholar
  57. 27.57
    S. Mahajan, K.S.S. Harsha: Principles of Growth and Processing of Semiconductors (McGraw-Hill, New York 1999)Google Scholar
  58. 27.58
    C.A. Mirkin: Dip-pen nanolithography: automated fabrication of custom multicomponent, sub-100 nanometer surface architectures, MRS Bulletin 26, 535–538 (2001)CrossRefGoogle Scholar
  59. 27.59
    C.A. Harper: Electronic Packaging and Interconnection Handbook (McGraw-Hill, New York 2000)Google Scholar
  60. 27.60
    K.F. Bohringer, R.S. Fearing, K.Y. Goldberg: Microassembly. In: Handbook of Industrial Robotics, ed. by S. Nof (Wiley, New York 1999) pp. 1045–1066CrossRefGoogle Scholar
  61. 27.61
    G. Yang, J.A. Gaines, B.J. Nelson: A supervisory wafer-level 3D microassembly system for hybrid MEMS fabrication, J. Intell. Robotics Syst. 37, 43–68 (2003)CrossRefGoogle Scholar
  62. 27.62
    P. Dario, M. Carrozza, N. Croce, M. Montesi, M. Cocco: Non-traditional technologies for microfabrication, J. Micromech. Microeng. 5, 64–71 (1995)CrossRefGoogle Scholar
  63. 27.63
    W. Benecke: Silicon microactuators: activation mechanisms and scaling problems, Proc. IEEE Int. Conf. Solid-State Sens. Actuators (1991) pp. 46–50Google Scholar
  64. 27.64
    A. Menciassi, A. Eisinberg, M. Mazzoni, P. Dario: A sensorized electro discharge machined superelastic alloy microgripper for micromanipulation: simulation and characterization, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002) pp. 1591–1595CrossRefGoogle Scholar
  65. 27.65
    T.R. Hsu: Packaging design of microsystems and meso-scale devices, IEEE Trans. Adv. Packag. 23, 596–601 (2000)CrossRefGoogle Scholar
  66. 27.66
    L. Lin: MEMS post-packaging by localized heating and bonding, IEEE Trans. Adv. Packag. 23, 608–616 (2000)MathSciNetCrossRefGoogle Scholar
  67. 27.67
    A. Tixier, Y. Mita, S. Oshima, J.P. Gouy, H. Fujita: 3-D microsystem packaging for interconnecting electrical, optical and mechanical microdevices to the external world, Proc. 13th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (2000) pp. 698–703Google Scholar
  68. 27.68
    M.J. Madou: Fundamentals of Microfabrication (CRC, Boca Raton 2002)Google Scholar
  69. 27.69
    I. Shimoyama, O. Kano, H. Miura: 3D micro-structures folded by Lorentz force, Proc. 11th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1998) pp. 24–28Google Scholar
  70. 27.70
    K.F. Bohringer, B.R. Donald, L. Kavraki, F.L. Lamiraux: Part orientation with one or two stable equilibria using programmable vector fields, IEEE Trans. Robot. Autom. 16, 157–170 (2000)CrossRefGoogle Scholar
  71. 27.71
    V. Kaajakari, A. Lal: An electrostatic batch assembly of surface MEMS using ultrasonic triboelectricity, Proc. 14th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (2001) pp. 10–13Google Scholar
  72. 27.72
    G. Yang, B.J. Nelson: Micromanipulation contact transition control by selective focusing and microforce control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3200–3206Google Scholar
  73. 27.73
    G. Morel, E. Malis, S. Boudet: Impedance based combination of visual and force control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 1743–1748Google Scholar
  74. 27.74
    F. Arai, D. Andou, T. Fukuda: Adhesion forces reduction for micro manipulation based on micro physics, Proc. 9th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1996) pp. 354–359Google Scholar
  75. 27.75
    Y. Zhou, B.J. Nelson: The effect of material properties and gripping force on micrograsping, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (2000) pp. 1115–1120Google Scholar
  76. 27.76
    K. Kurata: Mass production techniques for optical modules, Proc. 48th IEEE Electronic Components and Technology Conf. (1998) pp. 572–580Google Scholar
  77. 27.77
    V.T. Portman, B.-Z. Sandler, E. Zahavi: Rigid 6 ×6 parallel platform for precision 3-D micromanipulation: theory and design application, IEEE Trans. Robotics Autom. 16, 629–643 (2000)CrossRefGoogle Scholar
  78. 27.78
    R.M. Haralick, L.G. Shapiro: Computer and Robot Vision (Addison-Wesley, Reading 1993)Google Scholar
  79. 27.79
    A. Khotanzad, H. Banerjee, M.D. Srinath: A vision system for inspection of ball bonds and 2-D profile of bonding wires in integrated circuits, IEEE Trans. Semicond. Manuf. 7, 413–422 (1994)CrossRefGoogle Scholar
  80. 27.80
    J.T. Feddema, R.W. Simon: CAD-driven microassembly and visual servoing, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (1998), pp. 1212 -1219Google Scholar
  81. 27.81
    E. Trucco, A. Verri: Introductory Techniques for 3-D Computer Vision (Prentice Hall, Upper Saddle River 1998)Google Scholar
  82. 27.82
    S. Hutchinson, G.D. Hager, P.I. Corke: A tutorial on visual servo control, IEEE Trans. Robotics Autom. 12, 651–670 (1996)CrossRefGoogle Scholar
  83. 27.83
    B. Siciliano, L. Villani: Robot Force Control (Kluwer, Dordrecht 2000)MATHGoogle Scholar
  84. 27.84
    T. Yoshikawa: Force control of robot manipulators, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (2000) pp. 220–226Google Scholar
  85. 27.85
    J.A. Thompson, R.S. Fearing: Automating microassembly with ortho-tweezers and force sensing, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 1327–1334Google Scholar
  86. 27.86
    B.J. Nelson, P.K. Khosla: Force and vision resolvability for assimilating disparate sensory feedback, IEEE Trans. Robotics Autom. 12, 714–731 (1996)CrossRefGoogle Scholar
  87. 27.87
    Y. Haddab, N. Chaillet, A. Bourjault: A microgripper using smart piezoelectric actuators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 659–664Google Scholar
  88. 27.88
    D. Popa, B.H. Kang, J. Sin, J. Zou: Reconfigurable micro-assembly system for photonics applications, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (2002) pp. 1495–1500Google Scholar
  89. 27.89
    A.P. Lee, D.R. Ciarlo, P.A. Krulevitch, S. Lehew, J. Trevin, M.A. Northrup: A practical microgripper by fine alignment, eutectic bonding and SMA actuation, Proc. IEEE Int. conf. Solid-State Sens. Actuators (1995) pp. 368–371Google Scholar
  90. 27.90
    H. Seki: Modeling and impedance control of a piezoelectric bimorph microgripper, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1992) pp. 958–965CrossRefGoogle Scholar
  91. 27.91
    W. Nogimori, K. Irisa, M. Ando, Y. Naruse: A laser-powered micro-gripper, Proc. 10th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS) (1997) pp. 267–271Google Scholar
  92. 27.92
    S. Fatikow, U. Rembold: Microsystem Technology and Microrobotics (Springer, Berlin, Heidelberg 1997)MATHCrossRefGoogle Scholar
  93. 27.93
    T. Hayashi: Micro mechanism, J. Robotics Mechatr. 3, 2–7 (1991)CrossRefGoogle Scholar
  94. 27.94
    S. Johansson: Micromanipulation for micro- and nanomanufacturing, INRIA/IEEE Symp. Emerging Technologies and Factory Automation (ETFA'95), Paris (1995) pp. 3–8Google Scholar
  95. 27.95
    K.-T. Park, M. Esashi: A multilink active catheter with polyimide-based integrated CMOS interface circuits, J. Microelectromechanical Syst. 8, 349–357 (1999)CrossRefGoogle Scholar
  96. 27.96
    Y. Haga, Y. Tanahashi, M. Esashi: Small diameter active catheter using shape memory alloy, Proc. IEEE 11th Int. Workshop on Micro Electro Mechanical Systems, Heidelberg (1998) pp. 419–424Google Scholar
  97. 27.97
    E.W.H. Jager, O. Inganas, I. Lundstrom: Microrobots for micrometer-size objects in aqueous media: Potential tools for single cell manipulation, Science 288, 2335–2338 (2000)CrossRefGoogle Scholar
  98. 27.98
    E.W.H. Jager, E. Smela, O. Inganas: Microfabricating conjugated polymer actuators, Science 290, 1540–1545 (2000)CrossRefGoogle Scholar
  99. 27.99
    J.W. Suh, S.F. Glander, R.B. Darling, C.W. Storment, G.T.A. Kovacs: Organic thermal and electrostatic ciliary microactuator array for object manipulation, Sens. Actuators A 58, 51–60 (1997)CrossRefGoogle Scholar
  100. 27.100
    E. Smela, M. Kallenbach, J. Holdenried: Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates, J. Microelectromechanical Syst. 8, 373–383 (1999)CrossRefGoogle Scholar
  101. 27.101
    S. Konishi, H. Fujita: A conveyance system using air flow based on the concept of distributed micro motion systems, IEEE J. Microelectromechanical Syst. 3, 54–58 (1994)CrossRefGoogle Scholar
  102. 27.102
    M. Ataka, A. Omodaka, N. Takeshima, H. Fujita: Fabrication and operation of polyimide bimorph actuators for a ciliary motion system, J. Microelectromechanical Syst. 2, 146–150 (1993)CrossRefGoogle Scholar
  103. 27.103
    G.-X. Zhou: Swallowable or implantable body temperature telemeter-body temperature radio pill, Proc. IEEE 15th Annual Northeast Bioengineering Conf. (1989) pp. 165–166CrossRefGoogle Scholar
  104. 27.104
    A. Uchiyama: Endoradiosonde needs micro machine technology, Proc. IEEE 6th Int. Symp. Micro Mach. Hum. Sci. (MHS) (1995) pp. 31–37CrossRefGoogle Scholar
  105. 27.105
    Y. Carts-Powell: Tiny Camera in a Pill Extends Limits of Endoscopy, OE-Rep. Aug., Vol. 200 (SPIE, Bellingham 2000)Google Scholar
  106. 27.106
    R. Yeh, E.J.J. Kruglick, K.S.J. Pister: Surface-micromachined components for articulated microrobots, J. Microelectromechanical Syst. 5, 10–17 (1996)CrossRefGoogle Scholar
  107. 27.107
    P.E. Kladitis, V.M. Bright, K.F. Harsh, Y.C. Lee: Prototype Microrobots for micro positioning in a manufacturing process and micro unmanned vehicles, Proc. IEEE 12th Int. Conf. Micro Electro Mech. Syst. (MEMS), Orlando (1999) pp. 570–575Google Scholar
  108. 27.108
    D. Ruffieux, N.F. Rooij: A 3-DoF bimorph actuator array capable of locomotion, Proc. 13th Eur. Conf. Solid-State Transducers (Eurosensors), Hague (1999) pp. 725–728Google Scholar
  109. 27.109
    J.-M. Breguet, P. Renaud: A 4 degrees-of-freedoms microrobot with nanometer resolution, Robotics 14, 199–203 (1996)Google Scholar
  110. 27.110
    A. Flynn, L.S. Tavrow, S.F. Bart, R.A. Brooks, D.J. Ehrlich, K.R. Udayakumar, L.E. Cross: Piezoelectric micromotors for microrobots, J. Microelectromechanical Syst. 1, 44–51 (1992)CrossRefGoogle Scholar
  111. 27.111
    A. Teshigahara, M. Watanabe, N. Kawahara, Y. Ohtsuka, T. Hattori: Performance of a 7 mm microfabricated car, J. Microelectromechanical Syst. 4, 76–80 (1995)CrossRefGoogle Scholar
  112. 27.112
    T. Ebefors, J. Mattson, E. Kalvesten, G. Stemme: A walking silicon micro-robot, 10th Int. Conf. Solid-State Sens. Actuators (Transducers), Sendai (1999) pp. 1202–1205Google Scholar
  113. 27.113
    N. Miki, I. Shimoyama: Flight performance of micro-wings rotating in an alternating magnetic field, Proc. IEEE 12th Int. Conf. Micro Electro Mech. Syst. (MEMS), Orlando (1999) pp. 153–158Google Scholar
  114. 27.114
    Mainz: Micro-motors: The World's Tiniest Helicopter, http://phys.org/news/2004-08-world-lightest-micro-flying-robot-built.html
  115. 27.115
    K.I. Arai, W. Sugawara, T. Honda: Magnetic small flying machines, IEEE 8th Int. Conf. Solid-State Sens. Actuattors (1995) pp. 316–319Google Scholar
  116. 27.116
    T. Fukuda, A. Kawamoto, F. Arai, H. Matsuura: Mechanism and swimming experiment of micro mobile robot in water, Proc. IEEE 7th Int. Workshop Micro Electro Mech. Syst. (MEMS), Oiso (1994) pp. 273–278Google Scholar
  117. 27.117
    I. Shimoyama: Hybrid system of mechanical parts and living organisms for microrobots, Proc. IEEE 6th Int. Symp. Micro Mach. Hum. Sci. (MHS) (1995) p. 55CrossRefGoogle Scholar
  118. 27.118
    A. Ashkin: Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24, 156–159 (1970)CrossRefGoogle Scholar
  119. 27.119
    T.N. Bruican, M.J. Smyth, H.A. Crissman, G.C. Salzman, C.C. Stewart, J.C. Martin: Automated single-cell manipulation and sorting by light trapping, Appl. Opt. 26, 5311–5316 (1987)CrossRefGoogle Scholar
  120. 27.120
    J. Conia, B.S. Edwards, S. Voelkel: The micro-robotic laboratory: Optical trapping and scissing for the biologist, J. Clin. Lab. Anal. 11, 28–38 (1997)CrossRefGoogle Scholar
  121. 27.121
    W.H. Wright, G.J. Sonek, Y. Tadir, M.W. Berns: Laser trapping in cell biology, IEEE J. Quant. Electron. 26, 2148–2157 (1990)CrossRefGoogle Scholar
  122. 27.122
    F. Arai, K. Morishima, T. Kasugai, T. Fukuda: Bio-micromanipulation (new direction for operation improvement), Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (1997) pp. 1300–1305Google Scholar
  123. 27.123
    M. Nishioka, S. Katsura, K. Hirano, A. Mizuno: Evaluation of cell characteristics by step-wise orientational rotation using optoelectrostatic micromanipulation, IEEE Trans. Ind. Appl. 33, 1381–1388 (1997)CrossRefGoogle Scholar
  124. 27.124
    M. Washizu, Y. Kurahashi, H. Iochi, O. Kurosawa, S. Aizawa, S. Kudo, Y. Magariyama, H. Hotani: Dielectrophoretic measurement of bacterial motor characteristics, IEEE Trans. Ind. Appl. 29, 286–294 (1993)CrossRefGoogle Scholar
  125. 27.125
    Y. Kimura, R. Yanagimachi: Intracytoplasmic sperm injection in the mouse, Biol. Reprod. 52, 709–720 (1995)CrossRefGoogle Scholar
  126. 27.126
    M. Mischel, A. Voss, H.A. Pohl: Cellular spin resonance in rotating electric fields, J. Biol. Phys. 10, 223–226 (1982)CrossRefGoogle Scholar
  127. 27.127
    W.M. Arnold, U. Zimmermann: Electro-Rotation: Development of a technique for dielectric measurements on individual cells and particles, J. Electrost. 21, 151–191 (1988)CrossRefGoogle Scholar
  128. 27.128
    Y. Sun, B.J. Nelson: Autonomous injection of biological cells using visual servoing, Int. Symp. Experim. Robotics (ISER) (2000) pp. 175–184Google Scholar
  129. 27.129
    Y. Sun, B.J. Nelson, D.P. Potasek, E. Enikov: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives, J. Micromech. Microeng. 12, 832–840 (2002)CrossRefGoogle Scholar
  130. 27.130
    Y. Sun, K. Wan, K.P. Roberts, J.C. Bischof, B.J. Nelson: Mechanical property characterization of mouse zona pellucida, IEEE Trans. Nanobiosci. 2, 279–286 (2003)CrossRefGoogle Scholar
  131. 27.131
    E.M. Purcell: Life at low Reynolds-number, Am. J. Phy. 45, 3–11 (1977)CrossRefGoogle Scholar
  132. 27.132
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette: Microscopic artificial swimmers, Nature 437, 862–865 (2005)MATHCrossRefGoogle Scholar
  133. 27.133
    H.C. Berg, R.A. Anderson: Bacteria swim by rotating their flagellar filaments, Nature 245, 380–382 (1973)CrossRefGoogle Scholar
  134. 27.134
    L. Zhang, J.J. Abbott, L.X. Dong, B.E. Kratochvil, D.J. Bell, B.J. Nelson: Artificial bacterial flagella: Fabrication and magnetic control, Appl. Phys. Lett. 94, 064107 (2009)CrossRefGoogle Scholar
  135. 27.135
    L. Zhang, E. Deckhardt, A. Weber, C. Schonenberger, D. Grutzmacher: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts, Nanotechnology 16, 655–663 (2005)CrossRefGoogle Scholar
  136. 27.136
    V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova: Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays, Physica E Low-Dimen. Syst. Nanostructures 6, 828–831 (2000)CrossRefGoogle Scholar
  137. 27.137
    F.B. Hagedorn, E.M. Gyorgy: Magnetic-Shape Anisotropy in Polygonal Prisms, J. Appl. Phys. 39, 995–997 (1968)CrossRefGoogle Scholar
  138. 27.138
    H.C. Berg, D.A. Brown: Chemotaxis in escherichia-coli analyzed by 3-dimensional tracking, Nature 239, 500–504 (1972)CrossRefGoogle Scholar
  139. 27.139
    A. Ashkin, J.M. Dziedzic: Optical trapping and manipulation of viruses and bacteria, Science 235, 1517–1520 (1987)CrossRefGoogle Scholar
  140. 27.140
    F.H.C. Crick, A.F.W. Hughes: The physical properties of cytoplasm: A study by means of the magnetic particle method, Part I, Exp. Cell Res. 1, 37–80 (1950)CrossRefGoogle Scholar
  141. 27.141
    M.F. Yu, M.J. Dyer, G.D. Skidmore, H.W. Rohrs, X.K. Lu, K.D. Ausman, J.R.V. Ehr, R.S. Ruoff: Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope, Nanotechnology 10, 244–252 (1999)CrossRefGoogle Scholar
  142. 27.142
    L.X. Dong, F. Arai, T. Fukuda: 3D nanorobotic manipulation of nano-order objects inside SEM, Proc. Int. Symp. Micromechatron. Hum. Sci. (MHS) (2000) pp. 151–156Google Scholar
  143. 27.143
    D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526 (1990)CrossRefGoogle Scholar
  144. 27.144
    P. Avouris: Manipulation of matter at the atomic and molecular levels, Acc. Chem. Res. 28, 95–102 (1995)CrossRefGoogle Scholar
  145. 27.145
    M.F. Crommie, C.P. Lutz, D.M. Eigler: Confinement of electrons to quantum corrals on a metal surface, Science 262, 218–220 (1993)CrossRefGoogle Scholar
  146. 27.146
    L.J. Whitman, J.A. Stroscio, R.A. Dragoset, R.J. Cellota: Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope, Science 251, 1206–1210 (1991)CrossRefGoogle Scholar
  147. 27.147
    I.-W. Lyo, P. Avouris: Field-induced nanometer-scale to atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991)CrossRefGoogle Scholar
  148. 27.148
    G. Dujardin, R.E. Walkup, P. Avouris: Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope, Science 255, 1232–1235 (1992)CrossRefGoogle Scholar
  149. 27.149
    T.-C. Shen, C. Wang, G.C. Abeln, J.R. Tucker, J.W. Lyding, P. Avouris, R.E. Walkup: Atomic-scale desorption through electronic and vibrational-excitation mechanisms, Science 268, 1590–1592 (1995)CrossRefGoogle Scholar
  150. 27.150
    M.T. Cuberes, R.R. Schittler, J.K. Gimzewsk: Room-temperature repositioning of individual C60 molecules at Cu steps: operation of a molecular counting device, Appl. Phys. Lett. 69, 3016–3018 (1996)CrossRefGoogle Scholar
  151. 27.151
    H.J. Lee, W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science 286, 1719–1722 (1999)CrossRefGoogle Scholar
  152. 27.152
    T. Yamamoto, O. Kurosawa, H. Kabata, N. Shimamoto, M. Washizu: Molecular surgery of DNA based on electrostatic micromanipulation, IEEE Trans. Ind. Appl. 36, 1010–1017 (2000)CrossRefGoogle Scholar
  153. 27.153
    C. Haber, D. Wirtz: Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instrum. 71, 4561–4570 (2000)CrossRefGoogle Scholar
  154. 27.154
    D.M. Schaefer, R. Reifenberger, A. Patil, R.P. Andres: Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett. 66, 1012–1014 (1995)CrossRefGoogle Scholar
  155. 27.155
    T. Junno, K. Deppert, L. Montelius, L. Samuelson: Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett. 66, 3627–3629 (1995)CrossRefGoogle Scholar
  156. 27.156
    P.E. Sheehan, C.M. Lieber: Nanomachining, manipulation and fabrication by force microscopy, Nanotechnology 7, 236–240 (1996)CrossRefGoogle Scholar
  157. 27.157
    C. Baur, B.C. Gazen, B. Koel, T.R. Ramachandran, A.A.G. Requicha, L. Zini: Robotic nanomanipulation with a scanning probe microscope in a networked computing environment, J. Vac. Sci. Tech. B 15, 1577–1580 (1997)CrossRefGoogle Scholar
  158. 27.158
    A.A.G. Requicha: Nanorobots, NEMS, and nanoassembly, Proceedings IEEE 91, 1922–1933 (2003)CrossRefGoogle Scholar
  159. 27.159
    R. Resch, C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will: Building and manipulating 3-D and linked 2-D structures of nanoparticles using scanning force microscopy, Langmuir 14, 6613–6616 (1998)CrossRefGoogle Scholar
  160. 27.160
    J. Hu, Z.-H. Zhang, Z.-Q. Ouyang, S.-F. Chen, M.-Q. Li, F.-J. Yang: Stretch and align virus in nanometer scale on an atomically flat surface, J. Vac. Sci. Tech. B 16, 2841–2843 (1998)CrossRefGoogle Scholar
  161. 27.161
    M. Sitti, S. Horiguchi, H. Hashimoto: Controlled pushing of nanoparticles: modeling and experiments, IEEE/ASME Trans. Mechatron. 5, 199–211 (2000)CrossRefGoogle Scholar
  162. 27.162
    M. Guthold, M.R. Falvo, W.G. Matthews, S. Paulson, S. Washburn, D.A. Erie, R. Superfine, J.F.P. Brooks, I.R.M. Taylor: Controlled manipulation of molecular samples with the nanoManipulator, IEEE/ASME Trans. Mechatron. 5, 189–198 (2000)CrossRefGoogle Scholar
  163. 27.163
    G.Y. Li, N. Xi, M.M. Yu, W.K. Fung: Development of augmented reality system for AFM-based nanomanipulation, IEEE/ASME Trans. Mechatron. 9, 358–365 (2004)CrossRefGoogle Scholar
  164. 27.164
    F. Arai, D. Andou, T. Fukuda: Micro manipulation based on micro physics–strategy based on attractive force reduction and stress measurement, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (1995) pp. 236–241Google Scholar
  165. 27.165
    H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)CrossRefGoogle Scholar
  166. 27.166
    S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  167. 27.167
    S.J. Tans, A.R.M. Verchueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)CrossRefGoogle Scholar
  168. 27.168
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes-the route toward applications, Science 297, 787–792 (2002)CrossRefGoogle Scholar
  169. 27.169
    M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)CrossRefGoogle Scholar
  170. 27.170
    P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, 1513–1516 (1999)CrossRefGoogle Scholar
  171. 27.171
    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)CrossRefGoogle Scholar
  172. 27.172
    T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio: Electrical conductivity of individual carbon nanotubes, Nature 382, 54–56 (1996)CrossRefGoogle Scholar
  173. 27.173
    P. Kim, L. Shi, A. Majumdar, P.L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (2001)CrossRefGoogle Scholar
  174. 27.174
    W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry-Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)CrossRefGoogle Scholar
  175. 27.175
    X.B. Zhang, D. Bernaerts, G.V. Tendeloo, S. Amelincks, J.V. Landuyt, V. Ivanov, J.B. Nagy, P. Lambin, A.A. Lucas: The texture of catalytically grown coil-shaped carbon nanotubules, Europhys. Lett. 27, 141–146 (1994)CrossRefGoogle Scholar
  176. 27.176
    X.Y. Kong, Z.L. Wang: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett. 3, 1625–1631 (2003)CrossRefGoogle Scholar
  177. 27.177
    S.V. Golod, V.Y. Prinz, V.I. Mashanov, A.K. Gutakovsky: Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils, Semicond. Sci. Technol. 16, 181–185 (2001)CrossRefGoogle Scholar
  178. 27.178
    L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, D. Grützmacher: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts, Nanotechnology 16, 655–663 (2005)CrossRefGoogle Scholar
  179. 27.179
    L. Zhang, E. Ruh, D. Grützmacher, L.X. Dong, D.J. Bell, B.J. Nelson, C. Schönenberger: Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts, Nano Lett. 6, 1311–1317 (2006)CrossRefGoogle Scholar
  180. 27.180
    D.J. Bell, L.X. Dong, B.J. Nelson, M. Golling, L. Zhang, D. Grützmacher: Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings, Nano Lett. 6, 725–729 (2006)CrossRefGoogle Scholar
  181. 27.181
    D.J. Bell, Y. Sun, L. Zhang, L.X. Dong, B.J. Nelson, D. Grutzmacher: Three-dimensional nanosprings for electromechanical sensors, Sens. Actuators A Phys. 130, 54–61 (2006)CrossRefGoogle Scholar
  182. 27.182
    R. Martel, T. Schmidt, H.R. Shea, T. Herte, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998)CrossRefGoogle Scholar
  183. 27.183
    N.R. Franklin, Y.M. Li, R.J. Chen, A. Javey, H.J. Dai: Patterned growth of single-walled carbon nanotubes on full 4-inch wafers, Appl. Phys. Lett. 79, 4571–4573 (2001)CrossRefGoogle Scholar
  184. 27.184
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based non-volatile random access memory for molecular computing science, Science 289, 94–97 (2000)CrossRefGoogle Scholar
  185. 27.185
    A. Subramanian, B. Vikramaditya, L.X. Dong, D.J. Bell, B.J. Nelson: Micro and nanorobotic assembly using dielectrophoresis. In: Robotics Sci. Syst, ed. by S. Thrun, G.S. Sukhatme, S. Schaal, O. Brock (MIT Press, Cambridge 2005) pp. 327–334Google Scholar
  186. 27.186
    C.K.M. Fung, V.T.S. Wong, R.H.M. Chan, W.J. Li: Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors, IEEE Trans. Nanotechnol. 3, 395–403 (2004)CrossRefGoogle Scholar
  187. 27.187
    T. Fukuda, F. Arai, L.X. Dong: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, Proceedings IEEE 91, 1803–1818 (2003)CrossRefGoogle Scholar
  188. 27.188
    E.W. Wong, P.E. Sheehan, C.M. Lieber: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971–1975 (1997)CrossRefGoogle Scholar
  189. 27.189
    M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, R. Superfine: Bending and buckling of carbon nanotubes under large strain, Nature 389, 582–584 (1997)CrossRefGoogle Scholar
  190. 27.190
    H.W.C. Postma, A. Sellmeijer, C. Dekker: Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope, Adv. Mater. 12, 1299–1302 (2000)CrossRefGoogle Scholar
  191. 27.191
    T. Hertel, R. Martel, P. Avouris: Manipulation of individual carbon nanotubes and their interaction with surfaces, J. Phys. Chem. B 102, 910–915 (1998)CrossRefGoogle Scholar
  192. 27.192
    P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup: Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141, 201–209 (1999)CrossRefGoogle Scholar
  193. 27.193
    M. Ahlskog, R. Tarkiainen, L. Roschier, P. Hakonen: Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties, Appl. Phys. Lett. 77, 4037–4039 (2000)CrossRefGoogle Scholar
  194. 27.194
    M.R. Falvo, R.M.I. Taylor, A. Helser, V. Chi, F.P.J. Brooks, S. Washburn, R. Superfine: Nanometre-scale rolling and sliding of carbon nanotubes, Nature 397, 236–238 (1999)CrossRefGoogle Scholar
  195. 27.195
    B. Bhushan, V.N. Koinkar: Nanoindentation hardness measurements using atomic-force microscopy, Appl. Phys. Lett. 64, 1653–1655 (1994)CrossRefGoogle Scholar
  196. 27.196
    P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig: The millipede - Nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1, 39–55 (2002)CrossRefGoogle Scholar
  197. 27.197
    L.X. Dong: Nanorobotic manipulations of carbon nanotubes. Ph.D. Thesis Ser (Nagoya Univ., Nagoya 2003)Google Scholar
  198. 27.198
    J.H. Hafner, C.-L. Cheung, T.H. Oosterkamp, C.M. Lieber: High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B 105, 743–746 (2001)CrossRefGoogle Scholar
  199. 27.199
    L.X. Dong, F. Arai, T. Fukuda: Electron-beam-induced deposition with carbon nanotube emitters, Appl. Phys. Lett. 81, 1919–1921 (2002)CrossRefGoogle Scholar
  200. 27.200
    L.X. Dong, F. Arai, T. Fukuda: 3D nanorobotic manipulations of multi-walled carbon nanotubes, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 632–637Google Scholar
  201. 27.201
    L.X. Dong, F. Arai, T. Fukuda: Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation, IEEE/ASME Trans. Mechatron. 9, 350–357 (2004)CrossRefGoogle Scholar
  202. 27.202
    J. Cumings, P.G. Collins, A. Zettl: Peeling and sharpening multiwall nanotubes, Nature 406, 58 (2000)Google Scholar
  203. 27.203
    J. Cumings, A. Zettl: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289, 602–604 (2000)CrossRefGoogle Scholar
  204. 27.204
    A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl: Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes, Phys. Rev. Lett. 97, 025501 (2006)CrossRefGoogle Scholar
  205. 27.205
    L.X. Dong, F. Arai, T. Fukuda: Nanoassembly of carbon nanotubes through mechanochemical nanorobotic manipulations, Jpn. J. Appl. Phys. 42, 295–298 (2003)CrossRefGoogle Scholar
  206. 27.206
    L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen: Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996)CrossRefGoogle Scholar
  207. 27.207
    Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999)CrossRefGoogle Scholar
  208. 27.208
    H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Carbon nanotube single-electron transistors at room temperature, Science 293, 76–79 (2001)CrossRefGoogle Scholar
  209. 27.209
    M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen: Crossed nanotube junctions, Science 288, 494–497 (2000)CrossRefGoogle Scholar
  210. 27.210
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing science, Science 289, 94–97 (2000)CrossRefGoogle Scholar
  211. 27.211
    A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley: Unraveling nanotubes: field emission from an atomic wire, Science 269, 1550–1553 (1995)CrossRefGoogle Scholar
  212. 27.212
    S.C. Minne, G. Yaralioglu, S.R. Manalis, J.D. Adams, J. Zesch, A. Atalar, C.F. Quate: Automated parallel high-speed atomic force microscopy, Appl. Phys. Lett. 72, 2340–2342 (1998)CrossRefGoogle Scholar
  213. 27.213
    G.D. Skidmore, E. Parker, M. Ellis, N. Sarkar, R. Merkle: Exponential assembly, Nanotechnology 11, 316–321 (2001)CrossRefGoogle Scholar
  214. 27.214
    H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150 (1996)CrossRefGoogle Scholar
  215. 27.215
    J.H. Hafner, C.L. Cheung, C.M. Lieber: Growth of nanotubes for probe microscopy tips, Nature 398, 761–762 (1999)CrossRefGoogle Scholar
  216. 27.216
    L.X. Dong, B.J. Nelson, T. Fukuda, F. Arai: Towards Nanotube Linear Servomotors, IEEE Trans. Autom. Sci. Eng. 3, 228–235 (2006)CrossRefGoogle Scholar
  217. 27.217
    Y.H. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002)CrossRefGoogle Scholar
  218. 27.218
    L.X. Dong, X.Y. Tao, L. Zhang, B.J. Nelson, X.B. Zhang: Nanorobotic spot welding: Controlled metal deposition with attogram precision from Copper-filled carbon nanotubes, Nano Lett. 7, 58–63 (2007)CrossRefGoogle Scholar
  219. 27.219
    S.W. Lee, D.S. Lee, R.E. Morjan, S.H. Jhang, M. Sveningsson, O.A. Nerushev, Y.W. Park, E.E.B. Campbell: A three-terminal carbon nano-relay, Nano Lett. 4, 2027–2030 (2004)CrossRefGoogle Scholar
  220. 27.220
    A.M. Fennimore, T.D. Yuzvinsky, W.-Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature 424, 408–410 (2003)CrossRefGoogle Scholar
  221. 27.221
    A. Subramanian, L.X. Dong, J. Tharian, U. Sennhauser, B.J. Nelson: Batch fabrication of carbon nanotube bearings, Nanotechnology 18, 075703 (2007)CrossRefGoogle Scholar
  222. 27.222
    P. Kim, C.M. Lieber: Nanotube nanotweezers, Science 286, 2148–2150 (1999)CrossRefGoogle Scholar
  223. 27.223
    L.X. Dong, A. Subramanian, D. Hugentobler, B.J. Nelson, Y. Sun: Nano Encoders based on Vertical Arrays of Individual Carbon Nanotubes, Adv. Robotics 20, 1281–1301 (2006)CrossRefGoogle Scholar
  224. 27.224
    L.X. Dong, B.J. Nelson: Robotics in the small, Part II: Nanorobotics, IEEE Robotics Autom. Mag. 14, 111–121 (2007)CrossRefGoogle Scholar
  225. 27.225
    I. Asimov: Fantastic Voyage (Bantam Books, New York 1966)Google Scholar
  226. 27.226
    R.A. Freitas: Nanomedicine, Volume I: Basic Capabilities (Landes Bioscience, Austin 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Robotics and Intelligent SystemsETH ZurichZurichSwitzerland
  2. 2.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Department of Micro-Nano Systems EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations