Advertisement

Underwater Robots

  • Hyun-Taek Choi
  • Junku Yuh

Abstract

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROV s) and autonomous underwater vehicles (AUV s) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

Keywords

Acoustic Doppler Current Profiler Underwater Vehicle Autonomous Underwater Vehicle Carbon Fiber Reinforce Plastic Controller Area Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
2-D

two-dimensional

3-D

three-dimensional

ABS

acrylonitrile–butadiene–styrene

AC

alternating current

ADC

analog digital conveter

ADCP

acoustic Doppler current profiler

AFC

alkaline fuel cell

AHRS

attitude and heading reference system

AIP

air-independent power

ARM

Acorn RISC machine architecture

ASK

amplitude shift keying

ASL

autonomous systems laboratory

AUVAC

Autonomous Undersea Vehicles Application Center

AUV

autonomous underwater vehicle

AUVSI

Association for Unmanned Vehicle Systems International

BMS

battery management system

CAN

controller area network

CFRP

carbon fiber reinforced plastic

CORBA

common object request broker architecture

CPU

central processing unit

DAC

digital analog converter

DC

direct current

DMFC

direct methanol fuel cell

DOF

degree of freedom

DPSK

differential phase shift keying

DSP

digital signal processor

DVL

Doppler velocity log

DWDM

dense wave division multiplex

EPS

expandable polystyrene

ERSP

evolution robotics software platform

FEM

finite element method

FFI

Norwegian defense research establishment

FOG

fiber-optic gyro

FPGA

field-programmable gate array

FSK

frequency shift keying

GFRP

glass-fiber reinforced plastic

GIB

GPS intelligent buoys

GMSK

Gaussian minimum shift keying

GPS

global positioning system

HD-SDI

high-definition serial digital interface

HD

high definition

HFAC

high frequency alternating current

ICE

internet communications engine

ID

inside diameter

IFOG

interferometric fiber-optic gyro

IMU

inertial measurement unit

INS

inertia navigation system

inertial navigation system

IO

input output

IPC

interprocess communication

ISA

industrial standard architecture

ISE

international submarine engineering

IvP

interval programming

JAMSTEC

Japan Agency for Marine-Earth Science and Technology

KRISO

Korea Research Institute of Ships and Ocean Engineering

LBL

long-baseline system

LCAUV

long-range cruising AUV

LCM

light-weight communications and marshalling

MASE

Marine Autonomous Systems Engineering

MBARI

Monterey Bay Aquarium Research Institute

MCFC

molten carbonate fuel cell

MEMS

microelectromechanical system

MFSK

multiple FSK

MIRO

middleware for robot

MIT

Massachusetts Institute of Technology

MMC

metal matrix composite

MOOS

mission oriented operating suite

MPSK

Mary phase shift keying

MQAM

Mary quadrature amplitude modulation

MRDS

Microsoft robotics developers studio

MSK

minimum shift keying

NUWC

Naval Undersea Warfare Center Division Newport

ODE

open dynamics engine

OD

outer diameter

ONR

US Office of Naval Research

OPRoS

open platform for robotic service

ORCA

open robot control architecture

OROCOS

open robot control software

PAFC

phosphoric acid fuel cell

PCIe

peripheral component interconnect express

PCI

peripheral component interconnect

PC

polycarbonate

PEFC

polymer electrolyte fuel cell

PEMFC

proton exchange membrane fuel cell

POM

polyoxymethylene

PSK

phase shift keying

PVC

polyvinyl chloride

QAM

quadrature amplitude modulation

QPSK

quadrature phase shift keying

RISC

reduced instruction set computer

RLG

ring laser gyroscope

ROS

robot operating system

ROV

remotely operated vehicle

RT

real-time

robot technology

SAS

synthetic aperture sonar

SBL

short baseline

SOFC

solid oxide fuel cell

SOMA

stream-oriented messaging architecture

T-REX

teleo-reactive executive

TMS

tether management system

TOA

time of arrival

UDP

user datagram protocol

UHD

ultrahigh definition

UPnP

universal plug and play

USBL

ultrashort baseline

UUV

unmanned underwater vehicle

VME

Versa Module Europa

WHOI

Woods Hole Oceanographic Institution

References

  1. 25.1
    J. Yuh, G. Marani, D.R. Blidberg: Applications of marine robotic vehicles, Intell. Serv. Robotics 4(4), 221–231 (2011)CrossRefGoogle Scholar
  2. 25.2
    J. Yuh: Design and control of autonomous underwater robots: A survey, Auton. Robots 8(1), 7–24 (2000)CrossRefGoogle Scholar
  3. 25.3
    S.W. Moore, H. Bohm, V. Jensen: Underwater Robotics: Science, Design and Fabrication (Marine Advanced Technology Education MATE Center, Monterey 2010)Google Scholar
  4. 25.4
    R.D. Christ, R.L. Wernli: The ROV Manual: A User Guide for Observation Class Remotely Operated Vehicles (Elsevier, Amsterdam 2007)Google Scholar
  5. 25.5
    K. Hardy, S. Weston, J. Sanderson: Under pressure: Testing before deployment is integral to success at sea, Sea Technol. 50(2), 19–25 (2009)Google Scholar
  6. 25.6
    T. Hyakudome: Design of autonomous underwater vehicle, Int. J. Adv. Robotic Syst. 8(1), 131–139 (2011)Google Scholar
  7. 25.7
    W.H. Wang, R.C. Engelaar, X.Q. Chen, J.G. Chase: The state-of-art of underwater vehicles – Theories and applications. In: Mobile Robots – State of the Art in Land, Sea, Air, and Collaborative Missions, ed. by X.Q. Chen, Y.Q. Chen, J.G. Chase (InTech, Rijeka 2009)Google Scholar
  8. 25.8
    A.D. Bowen, D.R. Yoerger, C. Taylor, R. McCabe, J. Howland, D. Gomez-Ibanez, J.C. Kinsey, M. Heintz, G. McDonald, D.B. Peter, S.B. Fletcher, C. Young, J. Buescher, L.L. Whitcomb, S.C. Martin, S.E. Webster, M.V. Jakuba: The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11,000 m depth, Proc. MTS/IEEE Ocean (2007)Google Scholar
  9. 25.9
    T.J. Osse, T.J. Lee: Composite pressure hulls for autonomous underwater vehicles, Proc. MTS/IEEE Ocean (2007)Google Scholar
  10. 25.10
    K. Hardy: Anodizing aluminum for underwater applications, Ocean News Technol. 15(3), 54–56 (2009)Google Scholar
  11. 25.11
    S.M.A. Sharkh, G. Griffiths, A.T. Webb: Power sources for unmanned underwater vehicles. In: Technology and Applications of Autonomous Underwater Vehicles, ed. by G. Griffiths (Taylor Francis, New York 2002) pp. 19–35Google Scholar
  12. 25.12
    H. Yoshida: Fundamentals of underwater vehicle hardware and their applications. In: Underwater Vehicles, ed. by A.V. Inzartsev (InTech, Rijeka 2009) pp. 557–582Google Scholar
  13. 25.13
    L.L. Whitcomb: Underwater robotics: Out of the research laboratory and into the field, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 709–716Google Scholar
  14. 25.14
    Ø. Hasvold, N.J. Størkersen, S. Forseth, T. Lian: Power sources for autonomous underwater vehicles, J. Power Sourc. 162(2), 935–942 (2006)CrossRefGoogle Scholar
  15. 25.15
    A. Mendez, T.J. Leo, M.A. Herreros: Fuel cell power systems for autonomous underwater vehicles: State of the art, Proc. Int. Conf. Energy (2014)Google Scholar
  16. 25.16
    K.L. Davies, R.M. Moore: Unmanned underwater vehicle fuel cell energy/power system technology assessment, IEEE J. Ocean Eng. 32(2), 365–372 (2007)CrossRefGoogle Scholar
  17. 25.17
    H. Yoshida, T. Sawa, T. Hyakudome, S. Ishibashi, T. Tani, M. Iwata, T. Moriga: The high efficiency multi-less (HEML) fuel cell – A high energy source for underwater vehicles, buoys, and stations, Proc. MTS/IEEE Ocean (2011)Google Scholar
  18. 25.18
    Q. Cai, D.J. Browning, D.J. Brett, N.P. Brandon: Hybrid fuel cell/battery power systems for underwater vehicles, Proc. 3rd SEAS DTC (2007)Google Scholar
  19. 25.19
    K. E. Robinson: Li-poly pressure-tolerant batteries dive deep, Batter. Power Prod. Technol. 11(2), 999999 (2007) Google Scholar
  20. 25.20
    M.C. Wrinch, M.A. Tomim, J. Marti: An analysis of sub sea electric power transmission techniques from DC to AC 50/60 Hz and beyond, Proc. MTS/IEEE Ocean. (2007)Google Scholar
  21. 25.21
    N. Størkersen, Ø. Hasvold: Power sources for AUVs, Proc. Sci. Def. Conf. (2004)Google Scholar
  22. 25.22
    S. Cohan: Trends in ROV development, Mar. Technol. Soc. J. 42(1), 38–43 (2008)CrossRefGoogle Scholar
  23. 25.23
    E. Mellinger: Power system for new MBARI ROV, Proc. IEEE Oceans (1993) pp. 152–157Google Scholar
  24. 25.24
    M.R. Arshad: Recent advancement in sensor technology for underwater applications, Indian J. Mar. Sci. 38(3), 267–273 (2009)Google Scholar
  25. 25.25
    L. Lionel: Underwater robots part I: Current systems and problem pose. In: Mobile Robotics, ed. by A. Lazinica (InTech, Rijeka 2006) pp. 335–360Google Scholar
  26. 25.26
    S.M.A. Sharkh: Propulsion systems for AUVs. In: Technology and Applications of Autonomous Underwater Vehicles, ed. by G. Griffiths (Taylor Francis, New York 2002) pp. 109–1255CrossRefGoogle Scholar
  27. 25.27
    T. Schilling, W. Klassen, C. Barrett, J. Stanley: Power at depth: Efficient ROV power delivery and thrust generation for improved construction, repair, and maintenance support, Proc. Offshore Technol. Conf. (2005)Google Scholar
  28. 25.28
    P.D. Groves: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (Artech House, Boston 2013)MATHGoogle Scholar
  29. 25.29
    F. Viksten: On the Use of an Accelerometer for Identification of a Flexible Manipulator, Master Thesis (Linköping Univ., Linköping 2001)Google Scholar
  30. 25.30
    J. Romeo, G. Lester: Navigation is key to AUV missions, Sea Technol. 42(12), 24–30 (2001)Google Scholar
  31. 25.31
    J.C. Kinsey, R.M. Eustice, L.L. Whitcomb: A~survey of underwater vehicle navigation: Recent advances and new challenges, Proc. Int. Conf. Manoeuvering Control Mar. Craft, Lisbon (2006)Google Scholar
  32. 25.32
    C. Silpa-Anan, T. Brinsmead, S. Abdallah, A. Zelinsky: Preliminary experiments in visual servo control for autonomous underwater vehicle, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 1824–1829Google Scholar
  33. 25.33
    RTD Embedded Technologies, Inc., What is PC/104? http://www.rtd.com/PC104/Default.htm (2014)
  34. 25.34
    A. Kenny, G. Lopez: Advances in and extended application areas for Doppler sonar, Proc. MTS/IEEE Ocean. (2012)Google Scholar
  35. 25.35
    E. Thurman, J. Riordan, D. Toal: Multi-sonar integration and the advent of senor intelligence. In: Advances in Sonar Technology, ed. by S.R. Silva (InTech, Rijeka 2009) pp. 151–164Google Scholar
  36. 25.36
    Sound Metrics Corporation (Bellevue, WA): Didson Sonar, L http://www.soundmetrics.com/products/didson-sonars (2015)
  37. 25.37
    Y. Lee, T.G. Kim, H.-T. Choi: A~new approach of detection and recognition for artificial landmarks from noisy acoustic images, Adv. Intell. Syst. Comput. 274, 851–858 (2014)Google Scholar
  38. 25.38
    A. Alcocer, P. Oliveira, A. Pascoal: Underwater acoustic positioning systems based on buoys with GPS, Proc. 8th Europ. Conf. Underw. Acoust., Vol. 8 (2006) pp. 1–8Google Scholar
  39. 25.39
    L. Brun: ROV/AUV trends market and technology, Mar. Technol. Rep. 5(7), 48–51 (2012)Google Scholar
  40. 25.40
    G. Verma, M. Kalra, S.K. Jain, D.A. Roy, B.B. Biswas: Embedded PC based controller for use in VME bus based data acquisition system, Proc. 9th Int. Workshop Pers. Comput. Part. Accel. Controls (2012) pp. 65–76Google Scholar
  41. 25.41
    S.B. Williams, P. Newman, G. Dissanayake, J. Rosenblatt, H. Durrant-Whyte: A~decoupled, distributed auv control architecture, Int. Symp. Robotics 31, 246–251 (2000)Google Scholar
  42. 25.42
    H.-T. Choi, A. Hanai, S.K. Choi, J. Yuh: Development of an underwater robot, ODIN-III. Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2003) pp. 836–841Google Scholar
  43. 25.43
    D. Lee, G. Kim, D. Kim, H. Myung, H. Choi: Vision-based object detection and tracking for autonomous navigation of underwater robots, Ocean Eng. 48, 59–68 (2012)CrossRefGoogle Scholar
  44. 25.44
    Xilinx, Inc.: Zynq-7000 all programmable SoC, http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm (2014)
  45. 25.45
    B. Benson, Y. Li, R. Kastner, B. Faunce, K. Domond, D. Kimball, C. Schurgers: Design of a~low-cost, underwater acoustic modem for short-range sensor networks, Proc. MTS/IEEE Ocean. (2010)Google Scholar
  46. 25.46
    D.B. Kilfoyle, A.B. Baggeroer: The state of the art in underwater acoustic telemetry, IEEE J. Ocean. Eng. 25(1), 4–27 (2000)CrossRefGoogle Scholar
  47. 25.47
    Z. Jiang: Underwater acoustic networks–issues and solutions, Int. J. Intell. Control Syst. 13(3), 152–161 (2008)Google Scholar
  48. 25.48
    M.W. Doniec, A. Xu, D. Rus: Robust real-time high definition underwater video streaming with AquaOptical II, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Karlsruhe (2013)Google Scholar
  49. 25.49
    J.W. Nicholson, A.J. Healey: The present state of autonomous underwater vehicle (AUV) applications and technologies, Mar. Technol. Soc. J. 42(1), 44–51 (2008)CrossRefGoogle Scholar
  50. 25.50
    W.D. Smart: Is a~common middleware for robotics possible?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2007)Google Scholar
  51. 25.51
    K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, G.A. Demetriou: Control architectures for autonomous underwater vehicles, IEEE Control Syst. 17(6), 48–64 (1997)CrossRefGoogle Scholar
  52. 25.52
    P. Ridao, J. Yuh, J. Batlle, K. Sugihara: On AUV control architecture, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 855–860Google Scholar
  53. 25.53
    C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, R. McEwen: T-rex: A~model-based architecture for AUV control, Proc. 3rd Workshop Plan. Plan Exec. Real-World Syst. (2007)Google Scholar
  54. 25.54
    E.F. Perdomo, J.C. Gámez, A.C.D. Brito, D.H. Sosa: Mission specification in underwater robotics, J. Phys. Agents 4(1), 25–34 (2010)Google Scholar
  55. 25.55
    M.L. Seto (Ed.): Marine Robot Autonomy (Springer, New York 2013)Google Scholar
  56. 25.56
    D. Goldberg: Huxley: A~flexible robot control architecture for autonomous underwater vehicles, Proc. MTS/IEEE Ocean. (2011)Google Scholar
  57. 25.57
    B.S. Bingham, J.M. Walls, R.M. Eustice: Development of a~flexible command and control software architecture for marine robotic applications, Mar. Technol. Soc. J. 45(3), 25–36 (2011)CrossRefGoogle Scholar
  58. 25.58
  59. 25.59
    M.R. Benjamin, H. Schmidt, P.M. Newman, J.J. Leonard: Nested autonomy for unmanned marine vehicles with MOOS-IvP, J. Field Robotics 27(6), 834–875 (2010)CrossRefGoogle Scholar
  60. 25.60
    C. Lin, X. Feng, Y. Li, K. Liu: Toward a~generalized architecture for unmanned underwater vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 2368–2373Google Scholar
  61. 25.61
    N. Mohamed, J. Al-Jaroodi, I. Jawhar: Middleware for robotics: A~survey, Proc. IEEE Conf. Robotics, Autom. Mechatron. (2008) pp. 736–742Google Scholar
  62. 25.62
    M. Namoshe, N.S. Tlale, C.M. Kumile, G. Bright: Open middleware for robotics, Proc. 5th Int. Conf. Mechatron. Mach. Vis. Pract. (2008) pp. 189–194Google Scholar
  63. 25.63
    D. Brugali, G.S. Broten, A. Cisternino, D. Colombo, J. Fritsch, B. Gerkey, G. Kraetzschmar, R. Vaughan, H. Utz: Trends in robotic software frameworks. In: Software Engineering for Experimental Robotics, ed. by D. Brugali (Springer, Berlin, Heidelberg 2007) pp. 259–266CrossRefGoogle Scholar
  64. 25.64
    A. Elkady, T. Sobh: Robotics middleware: A~comprehensive literature survey and attribute-based bibliography, J. Robotics 2012, 959013 (2012)CrossRefGoogle Scholar
  65. 25.65
    S. Kim, H.-T. Choi, J.-W. Lee, Y.J. Lee: Design, implementation, and experiment of an underwater robot for effective inspection of underwater structures, Proc. 2nd Int. Conf. Robot Intell. Technol. Appl. (2013)Google Scholar
  66. 25.66
    T.W. Kim, J. Yuh, G. Marani: Underwater vehicle manipulators. In: Springer Handbook of Ocean Engineering, ed. by M. Dhanak, N. Xiros (Springer, Berlin, Heidelberg, 2016), in press.Google Scholar
  67. 25.67
    N. Kato, D.M. Lane: Coordinated control of multiple manipulators in underwater robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (1996) pp. 2505–2510CrossRefGoogle Scholar
  68. 25.68
    M.W. Dunnigan, D.M. Lane, A.C. Clegg, I. Edwards: Hybrid position/force control of a~hydraulic underwater manipulator, Proc. IEEE Control Theory Appl. 143, 145–151 (1996)CrossRefMATHGoogle Scholar
  69. 25.69
    B. Lévesque, M.J. Richard: Dynamic analysis of a manipulator in a~fluid environment, Int. J. Robotics Res. 13(3), 221–231 (1994)CrossRefGoogle Scholar
  70. 25.70
    H. Mahesh, J. Yuh, R. Lakshmi: A~coordinated control of an underwater vehicle and robotic manipulator, J. Robotics Syst. 8(3), 339–370 (1991)CrossRefMATHGoogle Scholar
  71. 25.71
    S. McMillan, D.E. Orin, R.B. McGhee: Efficient dynamic simulation of an underwater vehicle with a robotic manipulator, IEEE Trans. Syst. Man Cybern. 25(8), 1194–1206 (1995)CrossRefGoogle Scholar
  72. 25.72
    T.W. McLain, S.M. Rock, M.J. Lee: Experiments in the coordinated control of an underwater arm/vehicle system, Autom. Robotics 3, 213–232 (1996)Google Scholar
  73. 25.73
    T.J. Tarn, G.A. Shoults, S.P. Yang: A~dynamic model of an underwater vehicle with a~robotic manipulator using kanes method, Autom. Robot. 3, 269–283 (1996)Google Scholar
  74. 25.74
    K. Ioi, K. Itoh: Modelling and simulation of an underwater manipulator, Adv. Robot. 4(4), 303–317 (1989)CrossRefGoogle Scholar
  75. 25.75
    I. Schjølberg, T.I. Fossen: Modelling and control of underwater vehicle-manipulator systems, Proc. 3rd Conf. Mar. Craft Manoeuvering Control (1994)Google Scholar
  76. 25.76
    K.N. Leabourne, S.M. Rock: Model development of an underwater manipulator for coordinated arm-vehicle control, Proc. MTS/IEEE Ocean., Vol. 2 (1998) pp. 941–946Google Scholar
  77. 25.77
    M. Lee, H.-S. Choi: A~robust neural controller for underwater robot manipulators, IEEE Trans. Neural Netw. 11(6), 1465–1470 (2000)CrossRefGoogle Scholar
  78. 25.78
    J.-H. Ryu, D.-S. Kwon, P.-M. Lee: Control of underwater manipulators mounted on an ROV using base force information, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (2001) pp. 3238–3243Google Scholar
  79. 25.79
    M.H. Patel: Dynamics of Offshore Structures (Butterworths, London 1989)Google Scholar
  80. 25.80
    A.W. Troesch, S.K. Kim: Hydrodynamic forces acting on cylinders oscillating at small amplitudes, J. Fluids Struct. 5(1), 113–126 (1991)CrossRefGoogle Scholar
  81. 25.81
    M. Hildebrandt, L. Christensen, J. Kerdels, J. Albiez, F. Kirchner: Realtime motion compensation for ROV-based teleoperated underwater manipulators, Proc. MTS/IEEE Ocean. Eur. (2009) pp. 1–6Google Scholar
  82. 25.82
    O. Brock, R. Grupen: Final Report of NSF/NASA Workshop on Autonomous Mobile Manipulation (AMM) (Univ. of Massachusetts, Amherst 2005)Google Scholar
  83. 25.83
    G. Antonelli: Underwater Robots, Springer Tracts in Advanced Robotics, Vol. 96, 3rd edn. (Springer, Berlin, Heidelberg 2014)CrossRefGoogle Scholar
  84. 25.84
    M. Carreras, J. Yuh, J. Batlle, P. Ridao: A~behavior-based scheme using reinforcement learning for autonomous underwater vehicles, IEEE J. Ocean. Eng. 30(2), 416–427 (2005)CrossRefGoogle Scholar
  85. 25.85
    M. Carreras, J. Yuh, J. Batlle, P. Ridao: Application of SONQL for real-time learning of robot behaviors, Robots Auton. Syst. 55(8), 628–642 (2007)CrossRefGoogle Scholar
  86. 25.86
    S. Zhao, J. Yuh: Experimental study on advanced underwater robot control, IEEE Trans. Robotics 21(4), 695–703 (2005)CrossRefGoogle Scholar
  87. 25.87
    A. Hanai, H.-T. Choi, S.K. Choi, J. Yuh: Experimental study on fine motion control of underwater robots, Adv. Robotics 18(10), 963–978 (2004)CrossRefGoogle Scholar
  88. 25.88
    T.W. Kim, J. Yuh: Application of on-line neuro-fuzzy controller to AUVs, Inf. Sci. 145(1), 169–182 (2002)CrossRefMATHGoogle Scholar
  89. 25.89
    C.S.G. Lee, J.-S. Wang, J. Yuh: Self-adaptive neuro-fuzzy systems for autonomous underwater vehicle control, Adv. Robotics 15(5), 589–608 (2001)CrossRefGoogle Scholar
  90. 25.90
    J. Yuh, J. Nie: Application of non-regressor-based adaptive control to underwater robots: Experiment, Comput. Electr. Eng. 26(2), 169–179 (2000)CrossRefGoogle Scholar
  91. 25.91
    K.C. Yang, J. Yuh, S.K. Choi: Fault-tolerant system design of an autonomous underwater vehicle ODIN: An experimental study, Int. J. Syst. Sci. 30(9), 1011–1019 (1999)CrossRefMATHGoogle Scholar
  92. 25.92
    H.H. Wang, S.M. Rock, M.J. Lees: Experiments in automatic retrieval of underwater objects with an AUV, Proc. MTS/IEEE Ocean., Vol. 1 (1995) pp. 366–373Google Scholar
  93. 25.93
    J. Evans, P. Redmond, C. Plakas, K. Hamilton, D. Lane: Autonomous docking for intervention-AUVs using sonar and video-based real-time 3D pose estimation, Proc. MTS/IEEE Ocean., Vol. 4 (2003) pp. 2201–2210Google Scholar
  94. 25.94
    G. Marani, S.K. Choi, J. Yuh: Underwater autonomous manipulation for intervention missions AUVs, Ocean Eng. 36(1), 15–23 (2009)CrossRefGoogle Scholar
  95. 25.95
    G. Marani, J. Yuh, S.K. Choi: Autonomous manipulation for an intervention AUV. In: Advances in Unmanned Marine Vehicles, IEE Control Engineering Series, ed. by B. Sutton, G. Roberts (Institution of Engineering and Technology, London 2006) pp. 217–237CrossRefGoogle Scholar
  96. 25.96
    G. Marani, S.K. Choi, J. Yuh: Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention, Intell. Serv. Robotics 3(3), 175–182 (2010)CrossRefGoogle Scholar
  97. 25.97
    D. Beciri: SAUVIM robot completed its first fully autonomous mission, http://www.robaid.com/search/SAUVIM (2010)
  98. 25.98
    P. Sanz, R. Ridao, G. Oliver, P. Casalino, C. Insaurralde, C. Silvestre, C. Melchiorri, A. Turetta: TRIDENT: Recent improvements about autonomous underwater intervention missions, Proc. IFAC Workshop Navig. Guid. Control Underw. Veh. (NGCUV) (2012)Google Scholar
  99. 25.99
    D. Ribas, N. Palomeras, P. Ridao, M. Carreras, A. Mallios: Girona 500 AUV: From survey to intervention, IEEE/ASME Trans. Mechatron. 17(1), 46–53 (2012)CrossRefGoogle Scholar
  100. 25.100
    M. Prats, D. Ribas, N. Palomeras, J.C. Garcia, V. Nannen, S. Wirth, J.J. Fernañdez, J.P. Beltrañ, R. Campos, P. Ridao, P.J. Sanz, G. Oliver, M. Carreras, N. Gracias, R. Marín, A. Ortiz: Reconfigurable AUV for intervention missions: A~case study on underwater object recovery, Intell. Serv. Robotics 5(1), 19–31 (2012)CrossRefGoogle Scholar
  101. 25.101
    Trident: Marine Robots and Dexterous Manipulation for Enabling Autonomous Underwater Multipurpose Intervention Missions: Newsletter October 2012, http://www.irs.uji.es/trident/files/2nd-TRIDENT-SCHOOL-Newsletter-Oct2012.pdf (2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ocean System Engineering Research DivisionKorea Research Institute of Ships & Ocean Engineering (KRISO)DaejeonKorea
  2. 2.National Agenda Research DivisionKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations