Biomimetic Robots

Abstract

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

2-D

two-dimensional

3-D

three-dimensional

ACM

active cord mechanism

BFA

bending fluidic actuator

CF

carbon fiber

CFRP

carbon fiber reinforced prepreg

CPG

central pattern generation

DC

direct current

DOF

degree of freedom

FDM

fused deposition modeling

FRP

fiber-reinforced prepreg

IPMC

ionic polymer-metal composite

MAV

micro aerial vehicles

MEMS

microelectromechanical system

MFI

micromechanical flying insect

MLR

mesencephalic locomotor region

PDMS

polydimethylsiloxane

PneuNet

pneumatic network

RP

rapid prototyping

SCM

smart composite microstructure

SDM

shape deposition manufacturing

SLA

stereolithography

SLS

selective laser sintering

SMA

shape memory alloy

SSC

smart soft composite

References

  1. 23.1
    R.J. Full, K. Autumn, J. Chung, A. Ahn: Rapid negotiation of rough terrain by the death-head cockroach, Am. Zool. 38(5), 81A (1998)CrossRefGoogle Scholar
  2. 23.2
    R.J. Full, M.S. Tu: Mechanics of a rapid running insect: Two-, four- and six-legged locomotion, J. Exp. Biol. 156, 215–231 (1991)Google Scholar
  3. 23.3
    C.P. Ellington: The novel aerodynamics of insect flight: Applications to micro-air vehicles, J. Exp. Biol. 202, 3439–3448 (1999)Google Scholar
  4. 23.4
    U. Saranli, M. Buehler, D.E. Koditschek: RHex: A simple and highly mobile hexapod robot, Int. J. Robotics Res. 20, 616–631 (2001)CrossRefGoogle Scholar
  5. 23.5
    J.M. Morrey, B. Lambrecht, A.D. Horchler, R.E. Ritzmann, R.D. Quinn: Highly mobile and robust small quadruped robots, Proc IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 1 (2003) pp. 82–87Google Scholar
  6. 23.6
    J.E. Clark, J.G. Cham, S.A. Bailey, E.M. Froehlich, P.K. Nahata, R.J. Full, M.R. Cutkosky: Biomimetic design and fabrication of a hexapedal running robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (2001) pp. 3643–3649Google Scholar
  7. 23.7
    S. Kim, J.E. Clark, M.R. Cutkosky: iSprawl: design and tuning for high-speed autonomous open-loop running, Int. J. Robotics Res. 25, 903–912 (2006)CrossRefGoogle Scholar
  8. 23.8
    P. Birkmeyer, K. Peterson, R.S. Fearing: DASH: A dynamic 16g hexapedal robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 2683–2689Google Scholar
  9. 23.9
    A.M. Hoover, E. Steltz, R.S. Fearing: RoACH: An autonomous 2.4g crawling hexapod robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 26–33Google Scholar
  10. 23.10
    A.M. Hoover, S. Burden, X.-Y. Fu, S.S. Sastry, R.S. Fearing: Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot, Proc. IEEE/RAS Biomed. Robotics Biomech. (BioRob) (2010) pp. 869–876Google Scholar
  11. 23.11
    A.O. Pullin, N.J. Kohut, D. Zarrouk, R.S. Fearing: Dynamic turning of 13 cm robot comparing tail and differential drive, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 5086–5093Google Scholar
  12. 23.12
    A.T. Baisch, C. Heimlich, M. Karpelson, R.J. Wood: HAMR3: An autonomous 1.7g ambulatory robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 5073–5079Google Scholar
  13. 23.13
    K.L. Hoffman, R.J. Wood: Turning gaits and optimal undulatory gaits for a modular centipede-inspired millirobot, Proc. IEEE/RAS Biomed. Robotics Biomech. (BioRob) (2012) pp. 1052–1059Google Scholar
  14. 23.14
    R. Sahai, S. Avadhanula, R. Groff, E. Steltz, R. Wood, R.S. Fearing: Towards a 3g crawling robot through the integration of microrobot technologies, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 296–302Google Scholar
  15. 23.15
    J.T. Watson, R.E. Ritzmann, S.N. Zill, A.J. Pollack: Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics, J. Comp. Physiol. A 188, 39–53 (2002)CrossRefGoogle Scholar
  16. 23.16
    A.T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, R.J. Wood: High speed locomotion for a quadrupedal microrobot, Int. J. Robotics Res. 33, 1063–1082 (2014)CrossRefGoogle Scholar
  17. 23.17
    D.W. Haldane, K.C. Peterson, F.L. Garcia Bermudez, R.S. Fearing: Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 3279–3286Google Scholar
  18. 23.18
    A.S. Boxerbaum, H.J. Chiel, R.D. Quinn: A new theory and methods for creating peristaltic motion in a robotic platform, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1221–1227Google Scholar
  19. 23.19
    S. Seok, C.D. Onal, K.-J. Cho, R.J. Wood, D. Rus, S. Kim: Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators, IEEE/ASME Trans. Mechatron. 18, 1–13 (2012)Google Scholar
  20. 23.20
    A. Menciassi, D. Accoto, S. Gorini, P. Dario: Development of a biomimetic miniature robotic crawler, Auton. Robotics 21, 155–163 (2006)CrossRefGoogle Scholar
  21. 23.21
    K. Kotay, D. Rus: The inchworm robot: A multi-functional system, Auton. Robotics 8, 53–69 (2000)CrossRefGoogle Scholar
  22. 23.22
    N. Cheng, G. Ishigami, S. Hawthorne, H. Chen, M. Hansen, M. Telleria, R. Playter, K. Iagnemma: Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 5207–5212Google Scholar
  23. 23.23
    J.-S. Koh, K.-J. Cho: Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators, IEEE/ASME Trans. Mechatron. 18, 419–429 (2013)CrossRefGoogle Scholar
  24. 23.24
    T.L. Lam, Y. Xu: Climbing strategy for a flexible tree climbing robot – Treebot, IEEE Trans. Robotics 27, 1107–1117 (2011)CrossRefGoogle Scholar
  25. 23.25
    H.-T. Lin, G.G. Leisk, B. Trimmer: GoQBot: A caterpillar-inspired soft-bodied rolling robot, Bioinsp. Biomimet. 6, 026007 (2011)CrossRefGoogle Scholar
  26. 23.26
    S. Hirose, Y. Umetani: The development of soft gripper for the versatile robot hand, Mech. Mach. Theory 13, 351–359 (1978)CrossRefGoogle Scholar
  27. 23.27
    H. Ohno, S. Hirose: Design of slim slime robot and its gait of locomotion, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 707–715Google Scholar
  28. 23.28
    C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni, M. Gonzalez-Rivero, R. Hatton, H. Choset: Design of a modular snake robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2007) pp. 2609–2614Google Scholar
  29. 23.29
    H. Yamada, S. Chigisaki, M. Mori, K. Takita, K. Ogami, S. Hirose: Development of amphibious snake-like robot ACM-R5, Proc. ISR (2005)Google Scholar
  30. 23.30
    J. Gray: The mechanism of locomotion in snakes, J. Exp. Biol. 23, 101–120 (1946)Google Scholar
  31. 23.31
    G.S. Miller: The motion dynamics of snakes and worms, ACM Siggraph Comput. Graph. 22, 169–173 (1988)CrossRefGoogle Scholar
  32. 23.32
    Z. Bayraktaroglu: Snake-like locomotion: Experimentations with a biologically inspired wheel-less snake robot, Mech. Mach. Theory 44, 591–602 (2009)MATHCrossRefGoogle Scholar
  33. 23.33
    D.L. Hu, J. Nirody, T. Scott, M.J. Shelley: The mechanics of slithering locomotion, Proc. Natl. Acad. Sci. 106, 10081–10085 (2009)CrossRefGoogle Scholar
  34. 23.34
    Z. Wang, S. Ma, B. Li, Y. Wang: Experimental study of passive creeping for a snake-like robot, Proc. IEEE/ICME Int. Conf. Complex Med. Eng. (CME) (2011) pp. 382–387Google Scholar
  35. 23.35
    J.J. Socha, T. O'Dempsey, M. LaBarbera: A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi J. Exp. Biol. 208, 1817–1833 (2005)CrossRefGoogle Scholar
  36. 23.36
    R.L. Hatton, H. Choset: Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction, Auton. Robotics 28, 271–281 (2010)CrossRefGoogle Scholar
  37. 23.37
    K.J. Dowling: Limbless Locomotion: Learning to Crawl with a Snake Robot (NASA, Pittsburgh 1996)Google Scholar
  38. 23.38
    S. Hirose, M. Mori: Biologically inspired snake-like robots, IEEE Int. Conf. Robotics Biomimet. (ROBIO) (2004) pp. 1–7Google Scholar
  39. 23.39
    C. Wright, A. Buchan, B. Brown, J. Geist, M. Schwerin, D. Rollinson, M. Tesch, H. Choset: Design and architecture of the unified modular snake robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 4347–4354Google Scholar
  40. 23.40
    K.-H. Low: Industrial Robotics: Programming, Simulation and Applications (InTech, Rijeka 2007)Google Scholar
  41. 23.41
    A.J. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen: From swimming to walking with a salamander robot driven by a spinal cord model, Science 315, 1416–1420 (2007)CrossRefGoogle Scholar
  42. 23.42
    R. Crespi, K. Karakasiliotis, A. Guignard, A.J. Ijspeert: 1 Salamandra robotica II: An amphibious robot to study salamander-like swimming and walking gaits, IEEE Trans. Robotics 29, 308–320 (2013)CrossRefGoogle Scholar
  43. 23.43
    S. Hirose, H. Yamada: Snake-like robots [Tutorial], IEEE Robotics Autom. Mag. 16, 88–98 (2009)CrossRefGoogle Scholar
  44. 23.44
    N. Kamamichi, M. Yamakita, K. Asaka, Z.-W. Luo: A snake-like swimming robot using IPMC actuator/sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1812–1817Google Scholar
  45. 23.45
    P. Liljebäck, K.Y. Pettersen, O. Stavdahl, J.T. Gravdahl: Snake robot locomotion in environments with obstacles, IEEE/ASME Trans. Mechatron. 17, 1158–1169 (2012)MATHCrossRefGoogle Scholar
  46. 23.46
    P. Liljebäck, K.Y. Pettersen, Ø. Stavdahl, J.T. Gravdahl: A review on modelling, implementation, and control of snake robots, Robotics Auton. Syst. 60, 29–40 (2012)MATHCrossRefGoogle Scholar
  47. 23.47
    M.H. Dickinson: Wing rotation and the aerodynamic basis of insect flight, Science 284, 1954–1960 (1999)CrossRefGoogle Scholar
  48. 23.48
    M.H. Dickinson: How animals move: An integrative view, Science 288, 100–106 (2000)CrossRefGoogle Scholar
  49. 23.49
    G.C.H.E. de Croon, K.M.E. de Clercq, R. Ruijsink, B. Remes, C. de Wagter: Design, aerodynamics, and vision-based control of the DelFly, Int. J. Micro Air Veh. 1(2), 71–97 (2009)CrossRefGoogle Scholar
  50. 23.50
    R.J. Wood, S. Avadhanula, R. Sahai, E. Steltz, R.S. Fearing: Microrobot design using fiber reinforced composites, J. Mech. Des. 130, 052304 (2008)CrossRefGoogle Scholar
  51. 23.51
    M. Keennon, K. Klingebiel, H. Won, A. Andriukov: Development of the nano hummingbird: A tailless flapping wing micro air vehicle, AIAA Aerospace Sci. Meet. (2012)Google Scholar
  52. 23.52
    R.J. Wood: The first takeoff of a biologically inspired at-scale robotic insect, IEEE Trans. Robotics 24, 341–347 (2008)CrossRefGoogle Scholar
  53. 23.53
    K. Peterson, P. Birkmeyer, R. Dudley, R.S. Fearing: A wing-assisted running robot and implications for avian flight evolution, Bioinsp. Biomimet. 6, 046008 (2011)CrossRefGoogle Scholar
  54. 23.54
    S. Hirose, A. Nagakubo, R. Toyama: Machine that can walk and climb on floors, walls and ceilings, Adv. Robotics ICAR '05. Proc. (1991) pp. 753–758Google Scholar
  55. 23.55
    S. Kim, A.T. Asbeck, M.R. Cutkosky, W.R. Provancher: SpinybotII: Climbing hard walls with compliant microspines, Adv. Robotics ICAR '05. Proc. (2005) pp. 601–606Google Scholar
  56. 23.56
    M. Spenko, G.C. Haynes, J. Saunders, M.R. Cutkosky, A.A. Rizzi, R.J. Full, D.E. Koditschek: Biologically inspired climbing with a hexapedal robot, J. Field Robotics 25, 223–242 (2008)CrossRefGoogle Scholar
  57. 23.57
    K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky: Frictional adhesion: A new angle on gecko attachment, J. Exp. Biol. 209, 3569–3579 (2006)CrossRefGoogle Scholar
  58. 23.58
    S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, M.R. Cutkosky: Smooth vertical surface climbing with directional adhesion, IEEE Trans. Robotics 24, 65–74 (2008)CrossRefGoogle Scholar
  59. 23.59
    M. Minor, H. Dulimarta, G. Danghi, R. Mukherjee, R.L. Tummala, D. Aslam: Design, implementation, and evaluation of an under-actuated miniature biped climbing robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 1999–2005Google Scholar
  60. 23.60
    D. Longo, G. Muscato: The Alicia 3 climbing robot: A three-module robot for automatic wall inspection, IEEE Robotics Autom. Mag. 13, 42–50 (2006)CrossRefGoogle Scholar
  61. 23.61
    M. Armada, M. Prieto, T. Akinfiev, R. Fernández, P. González, E. García, H. Montes, S. Nabulsi, R. Ponticelli, J. Sarriá, J. Estremera, S. Ros, J. Grieco, G. Fernández: On the design and development of climbing and walking robots for the maritime industries, J. Marit. Res. 2, 9–32 (2005)Google Scholar
  62. 23.62
    G.C. Haynes, A. Khripin, G. Lynch, J. Amory, A. Saunders, A.A. Rizzi, D.E. Koditschek: Rapid pole climbing with a quadrupedal robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 2767–2772Google Scholar
  63. 23.63
    K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full: Adhesive force of a single gecko foot-hair, Nature 405, 681–685 (2000)CrossRefGoogle Scholar
  64. 23.64
    G.A. Lynch, J.E. Clark, P.-C. Lin, D.E. Koditschek: A bioinspired dynamical vertical climbing robot, Int. J. Robotics Res. 31, 974–996 (2012)CrossRefGoogle Scholar
  65. 23.65
    J. Clark, D. Goldman, P.-C. Lin, G. Lynch, T. Chen, H. Komsuoglu, R.J. Full, D. Koditschek: Design of a bio-inspired dynamical vertical climbing robot, Robotics Sci. Syst. (2007)Google Scholar
  66. 23.66
    P. Birkmeyer, A.G. Gillies, R.S. Fearing: Dynamic climbing of near-vertical smooth surfaces, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 286–292Google Scholar
  67. 23.67
    K.A. Daltorio, T.E. Wei, S.N. Gorb, R.E. Ritzmann, R.D. Quinn: Passive foot design and contact area analysis for climbing mini-whegs, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 1274–1279Google Scholar
  68. 23.68
    O. Unver, A. Uneri, A. Aydemir, M. Sitti: Geckobot: A gecko inspired climbing robot using elastomer adhesives, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 2329–2335Google Scholar
  69. 23.69
    S.A. Bailey, J.G. Cham, M.R. Cutkosky, R.J. Full: A biomimetic climbing robot based on the gecko, J. Bionic Eng. 3, 115–125 (2006)CrossRefGoogle Scholar
  70. 23.70
    M.P. Murphy, C. Kute, Y. Mengüç, M. Sitti: Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives, Int. J. Robotics Res. 30, 118–133 (2011)CrossRefGoogle Scholar
  71. 23.71
    D.S. Barrett: Propulsive Efficiency of a Flexible Hull Underwater Vehicle, Ph.D. Thesis (MIT, Cambridge 1996)Google Scholar
  72. 23.72
    J. Liu, H. Hu: Biological inspiration: From carangiform fish to multi-joint robotic fish, J. Bionic Eng. 7, 35–48 (2010)CrossRefGoogle Scholar
  73. 23.73
    G.-H. Yang, K.-S. Kim, S.-H. Lee, C. Cho, Y. Ryuh: Design and control of 3-DOF robotic fish `ICHTHUS V5, Lect. Not. Comp. Sci. 8103, 310–319 (2013)CrossRefGoogle Scholar
  74. 23.74
    K. Low: Modelling and parametric study of modular undulating fin rays for fish robots, Mech. Mach. Theory 44, 615–632 (2009)MATHCrossRefGoogle Scholar
  75. 23.75
    A.D. Marchese, C.D. Onal, D. Rus: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators, Soft Robotics 1, 75–87 (2014)CrossRefGoogle Scholar
  76. 23.76
    Z. Chen, T.I. Um, H. Bart-Smith: Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles, Int. J. Smart Nano Mater. 3, 296–308 (2012)CrossRefGoogle Scholar
  77. 23.77
    H.-J. Kim, S.-H. Song, S.-H. Ahn: A turtle-like swimming robot using a smart soft composite (SSC) structure, Smart Mater. Struct. 22, 014007 (2013)CrossRefGoogle Scholar
  78. 23.78
    C.J. Esposito, J.L. Tangorra, B.E. Flammang, G.V. Lauder: A robotic fish caudal fin: Effects of stiffness and motor program on locomotor performance, J. Exp. Biol. 215, 56–67 (2012)CrossRefGoogle Scholar
  79. 23.79
    H. Prahlad, R. Pelrine, S. Stanford, J. Marlow, R. Kornbluh: Electroadhesive robots—wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 3028–3033Google Scholar
  80. 23.80
    P. Birkmeyer, A.G. Gillies, R.S. Fearing: CLASH: Climbing vertical loose cloth, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 5087–5093Google Scholar
  81. 23.81
    K. Streitlien, G.S. Triantafyllou, M.S. Triantafyllou: Efficient foil propulsion through vortex control, AIAA J. 34, 2315–2319 (1996)MATHCrossRefGoogle Scholar
  82. 23.82
    H. Morikawa, S. Nakao, S.-I. Kobayashi: Experimental study on oscillating wing for propulsor with bending mechanism modeled on caudal muscle-skeletal structure of tuna, Jap. Soc. Mech. Eng. C 44, 1117–1124 (2001)Google Scholar
  83. 23.83
    R. Fan, J. Yu, L. Wang, G. Xie, Y. Fang, Y. Hu: Optimized design and implementation of biomimetic robotic dolphin, IEEE Int. Conf. Robotics Biomimet. (ROBIO) (2005) pp. 484–489Google Scholar
  84. 23.84
    T. Salumäe, M. Kruusmaa: A flexible fin with bio-inspired stiffness profile and geometry, J. Bionic Eng. 8, 418–428 (2011)CrossRefGoogle Scholar
  85. 23.85
    P.V. y Alvarado, K. Youcef-Toumi: Design of machines with compliant bodies for biomimetic locomotion in liquid environments, J. Dyn. Syst. Meas. Contr. 128, 3–13 (2006)CrossRefGoogle Scholar
  86. 23.86
    U. Scarfogliero, C. Stefanini, P. Dario: Design and development of the long-jumping, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 467–472Google Scholar
  87. 23.87
    M. Kovac, M. Fuchs, A. Guignard, J.-C. Zufferey, D. Floreano: A miniature 7g jumping robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 373–378Google Scholar
  88. 23.88
    Y.-J. Park, T.M. Huh, D. Park, K.-J. Cho: Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot, Bioinsp. Biomimet. 9, 036002 (2014)CrossRefGoogle Scholar
  89. 23.89
    W.-S. Chu, K.-T. Lee, S.-H. Song, M.-W. Han, J.-Y. Lee, H.-S. Kim, M.S. Kim, Y.J. Park, K.J. Cho, S.H. Anh: Review of biomimetic underwater robots using smart actuators, Int. J. Prec. Eng. Manuf. 13, 1281–1292 (2012)CrossRefGoogle Scholar
  90. 23.90
    Z. Wang, G. Hang, Y. Wang, J. Li, W. Du: Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion, Smart Mater. Struc. 17, 025039 (2008)CrossRefGoogle Scholar
  91. 23.91
    G.V. Lauder, J. Lim, R. Shelton, C. Witt, E. Anderson, J.L. Tangorra: Robotic models for studying undulatory locomotion in fishes, Mar. Technol. Soc. J. 45, 41–55 (2011)CrossRefGoogle Scholar
  92. 23.92
    F. Li, G. Bonsignori, U. Scarfogliero, D. Chen, C. Stefanini, W. Liu, P. Dario, F. Xin: Jumping mini-robot with bio-inspired legs, IEEE Int. Conf. Robotics Biomimet. (ROBIO) (2009) pp. 933–938Google Scholar
  93. 23.93
    B.G.A. Lambrecht, A.D. Horchler, R.D. Quinn: A small, insect-inspired robot that runs and jumps, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1240–1245Google Scholar
  94. 23.94
    J. Zhao, J. Xu, B. Gao, N. Xi, F.J. Cintrón, M.W. Mutka, X. Li: MSU Jumper: A single-motor-actuated miniature steerable jumping robot, IEEE Trans. Robotics 29, 602–614 (2013)CrossRefGoogle Scholar
  95. 23.95
    J. Zhao, W. Yan, N. Xi, M.W. Mutka, L. Xiao: A miniature 25 grams running and jumping robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2014)Google Scholar
  96. 23.96
    R. Armour, K. Paskins, A. Bowyer, J. Vincent, W. Megill: Jumping robots: A biomimetic solution to locomotion across rough terrain, Bioinsp. Biomimet. 2, S65–S82 (2007)CrossRefGoogle Scholar
  97. 23.97
    M. Noh, S.-W. Kim, S. An, J.-S. Koh, K.-J. Cho: Flea-inspired catapult mechanism for miniature jumping robots, IEEE Trans. Robotics 28, 1007–1018 (2012)CrossRefGoogle Scholar
  98. 23.98
    J.-S. Koh, S.-P. Jung, M. Noh, S.-W. Kim, K.-J. Cho: Flea inspired catapult mechanism with active energy storage and release for small scale jumping robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 26–31Google Scholar
  99. 23.99
    J.-S. Koh, S.-P. Jung, R.J. Wood, K.-J. Cho: A jumping robotic insect based on a torque reversal catapult mechanism, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 3796–3801Google Scholar
  100. 23.100
    A. Yamada, M. Watari, H. Mochiyama, H. Fujimoto: An asymmetric robotic catapult based on the closed elastica for jumping robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 232–237Google Scholar
  101. 23.101
    A.P. Gerratt, S. Bergbreiter: Incorporating compliant elastomers for jumping locomotion in microrobots, Smart Mater. Struct. 22, 014010 (2013)CrossRefGoogle Scholar
  102. 23.102
    R. Niiyama, A. Nagakubo, Y. Kuniyoshi: Mowgli: A bipedal jumping and landing robot with an artificial musculoskeletal system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2546–2551Google Scholar
  103. 23.103
    E.W. Hawkes, E.V. Eason, A.T. Asbeck, M.R. Cutkosky: The gecko's toe: Scaling directional adhesives for climbing applications, IEEE/ASME Trans. Mechatron. 18, 518–526 (2013)CrossRefGoogle Scholar
  104. 23.104
    E.W. Hawkes, D.L. Christensen, E.V. Eason, M.A. Estrada, M. Heverly, E. Hilgemann, J. Hao, M.T. Pope, A. Parness, M.R. Cutkosky: Dynamic surface grasping with directional adhesion, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 5487–5493Google Scholar
  105. 23.105
    A.L. Desbiens, A.T. Asbeck, M.R. Cutkosky: Landing, perching and taking off from vertical surfaces, Int. J. Robotics Res. 30, 355–370 (2011)CrossRefGoogle Scholar
  106. 23.106
    A. Parness, M. Frost, N. Thatte, J.P. King, K. Witkoe, M. Nevarez, M. Garrett, H. Aghazarian, B. Kennedy: Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers, J. Field Robotics 30, 897–915 (2013)CrossRefGoogle Scholar
  107. 23.107
    B.A. Trimmer, A.E. Takesian, B.M. Sweet, C.B. Rogers, D.C. Hake, D.J. Rogers: Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots, 7th Int. Symp. Technol. Mine Problem (2006) pp. 1–10Google Scholar
  108. 23.108
    G.-P. Jung, J.-S. Koh, K.-J. Cho: Underactuated adaptive gripper using flexural buckling, IEEE Trans. Robotics 29(6), 1396 (2013)CrossRefGoogle Scholar
  109. 23.109
    M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, P. Dario: An octopus-bioinspired solution to movement and manipulation for soft robots, Bioinsp. Biomimet. 6, 036002 (2011)CrossRefGoogle Scholar
  110. 23.110
    S.-W. Kim, J.-S. Koh, J.-G. Lee, J. Ryu, M. Cho, K.-J. Cho: Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface, Bioinsp. Biomimet. 9, 036004 (2014)CrossRefGoogle Scholar
  111. 23.111
    C.E. Doyle, J.J. Bird, T.A. Isom, J.C. Kallman, D.F. Bareiss, D.J. Dunlop, R.J. King, J.J. Abbott, M.A. Minor: An avian-inspired passive mechanism for quadrotor perching, IEEE/ASME Trans. Mechatron. 18, 506–517 (2013)CrossRefGoogle Scholar
  112. 23.112
    M. Kovač, J. Germann, C. Hürzeler, R.Y. Siegwart, D. Floreano: A perching mechanism for micro aerial vehicles, J. Micro-Nano Mechatron. 5, 77–91 (2009)CrossRefGoogle Scholar
  113. 23.113
    R. Merz, F. Prinz, K. Ramaswami, M. Terk, L. Weiss: Shape deposition manufacturing, Proc. Solid Freeform Fabric. Symp., University of Texas at Austin (1994) pp. 1–8Google Scholar
  114. 23.114
    S.A. Bailey, J.G. Cham, M.R. Cutkosky, R.J. Full: Biomimetic robotic mechanisms via shape deposition manufacturing, Robotics Res. Int. Symp. (2000) pp. 403–410CrossRefGoogle Scholar
  115. 23.115
    X. Li, A. Golnas, F.B. Prinz: Shape deposition manufacturing of smart metallic structures with embedded sensors, SPIE Proc. 7th Annu. Int. Symp. Smart Struct. Mater. (International Society for Optics and Photonics, Bellingham 2000) pp. 160–171Google Scholar
  116. 23.116
    K.G. Marra, J.W. Szem, P.N. Kumta, P.A. DiMilla, L.E. Weiss: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, J. Biomed. Mater. Res. 47, 324–335 (1999)CrossRefGoogle Scholar
  117. 23.117
    J.G. Cham, S.A. Bailey, J.E. Clark, R.J. Full, M.R. Cutkosky: Fast and robust: Hexapedal robots via shape deposition manufacturing, Int. J. Robotics Res. 21, 869–882 (2002)CrossRefGoogle Scholar
  118. 23.118
    A.M. Dollar, R.D. Howe: A robust compliant grasper via shape deposition manufacturing, IEEE/ASME Trans. Mechatron. 11, 154–161 (2006)CrossRefGoogle Scholar
  119. 23.119
    M. Binnard, M.R. Cutkosky: Design by composition for layered manufacturing, J. Mech. Des. 122, 91–101 (2000)CrossRefGoogle Scholar
  120. 23.120
    Y.-L. Park, K. Chau, R.J. Black, M.R. Cutkosky: Force sensing robot fingers using embedded fiber Bragg grating sensors and shape deposition manufacturing, IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 1510–1516Google Scholar
  121. 23.121
    D. Shin, I. Sardellitti, Y.-L. Park, O. Khatib, M. Cutkosky: Design and control of a bio-inspired human-friendly robot, Int. J. Robotics Res. 29, 571–584 (2010)CrossRefGoogle Scholar
  122. 23.122
    R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M. Sitti, J. Yan: Wing transmission for a micromechanical flying insect, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2000) pp. 1509–1516Google Scholar
  123. 23.123
    J. Yan, R.J. Wood, S. Avadhanula, M. Sitti, R.S. Fearing: Towards flapping wing control for a micromechanical flying insect, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 3901–3908Google Scholar
  124. 23.124
    R.J. Wood, S. Avadhanula, M. Menon, R.S. Fearing: Microrobotics using composite materials: The micromechanical flying insect thorax, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2003) pp. 1842–1849Google Scholar
  125. 23.125
    K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood: Controlled flight of a biologically inspired, insect-scale robot, Science 340, 603–607 (2013)CrossRefGoogle Scholar
  126. 23.126
    J. Whitney, P. Sreetharan, K. Ma, R. Wood: Pop-up book MEMS, J. Micromech. Microeng. 21, 115021 (2011)CrossRefGoogle Scholar
  127. 23.127
    P.S. Sreetharan, J.P. Whitney, M.D. Strauss, R.J. Wood: Monolithic fabrication of millimeter-scale machines, J. Micromech. Microeng. 22, 055027 (2012)CrossRefGoogle Scholar
  128. 23.128
    C. Majidi: Soft robotics: A perspective – Current trends and prospects for the future, Soft Robotics 1, 5–11 (2013)CrossRefGoogle Scholar
  129. 23.129
    Y. Xia, G.M. Whitesides: Soft lithography, Annu. Rev. Mater. Sci. 28, 153–184 (1998)CrossRefGoogle Scholar
  130. 23.130
    F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides: Soft robotics for chemists, Angew. Chem. 123, 1930–1935 (2011)CrossRefGoogle Scholar
  131. 23.131
    R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides: Multigait soft robot, Proc. Natl. Acad. Sci. 108, 20400–20403 (2011)CrossRefGoogle Scholar
  132. 23.132
    B.C.-M. Chang, J. Berring, M. Venkataram, C. Menon, M. Parameswaran: Bending fluidic actuator for smart structures, Smart Mater. Struct. 20, 035012 (2011)CrossRefGoogle Scholar
  133. 23.133
    B. Chang, A. Chew, N. Naghshineh, C. Menon: A spatial bending fluidic actuator: Fabrication and quasi-static characteristics, Smart Mater. Struct. 21, 045008 (2012)CrossRefGoogle Scholar
  134. 23.134
    B. Finio, R. Shepherd, H. Lipson: Air-Powered Soft Robots for K-12 Classrooms, IEEE Proc. Integr. STEM Edu. Conf. (ISEC) (2013) pp. 1–6Google Scholar
  135. 23.135
    S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski, G.M. Whitesides: Camouflage and display for soft machines, Science 337, 828–832 (2012)CrossRefGoogle Scholar
  136. 23.136
    R.V. Martinez, J.L. Branch, C.R. Fish, L. Jin, R.F. Shepherd, R. Nunes, Z. Suo, G.M. Whitesides: Robotic tentacles with three-dimensional mobility based on flexible elastomers, Adv. Mater. 25, 205–212 (2013)CrossRefGoogle Scholar
  137. 23.137
    R.V. Martinez, C.R. Fish, X. Chen, G.M. Whitesides: Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators, Adv. Funct. Mater. 22, 1376–1384 (2012)CrossRefGoogle Scholar
  138. 23.138
    S.W. Kwok, S.A. Morin, B. Mosadegh, J.H. So, R.F. Shepherd, R.V. Martinez, B. Smith, F.C. Simeone, A.A. Stokes, G.M. Whitesides: Magnetic assembly of soft robots with hard components, Adv. Funct. Mater. 24, 2180–2187 (2013)CrossRefGoogle Scholar
  139. 23.139
    B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, G.M. Whitesides: Pneumatic networks for soft robotics that actuate rapidly, Adv. Funct. Mater. 24, 2163–2170 (2013)CrossRefGoogle Scholar
  140. 23.140
    M. Cianchetti, A. Arienti, M. Follador, B. Mazzolai, P. Dario, C. Laschi: Design concept and validation of a robotic arm inspired by the octopus, Mater. Sci. Eng. C 31, 1230–1239 (2011)CrossRefGoogle Scholar
  141. 23.141
    T. Umedachi, V. Vikas, B.A. Trimmer: Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 4590–4595Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Biorobotics LaboratorySeoul National UniversitySeoulKorea
  2. 2.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations