Snake-Like and Continuum Robots

  • Ian D. Walker
  • Howie Choset
  • Gregory S. Chirikjian

Abstract

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary of modeling of locomotion for snake-like and continuum mechanisms.

ACM

active chord mechanism

CMU

Carnegie Mellon University

DNA

deoxyribonucleic acid

DOF

degree of freedom

OCR

OC robotics

References

  1. 20.1
    B.Y.S. Hirose, H. Yamada: Snake-like robots, IEEE Robot. Autom. Mag. 16(1), 88–98 (2009)CrossRefGoogle Scholar
  2. 20.2
    S. Hirose: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators (Oxford Univ. Press, New York 1993)Google Scholar
  3. 20.3
    Y. Tanaka, M. Arai, S. Hirose, T. Shingo: Development of Souryu-V with mono-tread-crawlers and elastic-rods joint, IEEE Int. Workshop Saf. Secur. Rescue Robot. (2006)Google Scholar
  4. 20.4
  5. 20.5
    H. Ohno, S. Hirose: Design of slim slime robot and its gait of locomotion, Proc. IEEE/RSJ Int. Conf. Intel Robot. Syst. (2001) pp. 707–715Google Scholar
  6. 20.6
    H. Yamada, M. Mori, K. Takita, S. Ogami, S. Hirose: Development of amphibious snake-like robot ACM-R5, 36th Int. Symp. Robot. (2005)Google Scholar
  7. 20.7
    G.S. Chirikjian, J.W. Burdick: Design and experiments with a 30 DOF robot, Proc. IEEE ICRA (1992) pp. 113–119Google Scholar
  8. 20.8
    J.W. Burdick: Robots that crawl, walk, and slither, Eng. Sci. 55(4), 2–13 (1992)Google Scholar
  9. 20.9
    G.S. Chirikjian: Inverse kinematics of binary manipulators using a continuum model, J. Intel. Robot. Syst. 19, 5–22 (1997)CrossRefGoogle Scholar
  10. 20.10
  11. 20.11
    University of Pennsylvania: Modlab, http://modlabupenn.org/multimedia/
  12. 20.12
    M. Yim: New locomotion gaits, Proc. IEEE ICRA (1994) pp. 2508–2514Google Scholar
  13. 20.13
    M. Yim, D. Duff: Modular robots, IEEE Spectr. 39(2), 30–34 (2002)CrossRefGoogle Scholar
  14. 20.14
    M. Park, M. Yim: Distributed control and communication fault tolerance for the CKBot, IEEE Int. Conf. Reconfig. Mech. Robot. (2009) pp. 682–688Google Scholar
  15. 20.15
    M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan, C.J. Taylor: Towards robotic self-reassembly after explosion, Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (2007) pp. 2767–2772Google Scholar
  16. 20.16
    S. Revzen, M. Bhoite, A. Macasieb, M. Yim: Structure synthesis on-the-fly in a modular robot, Int. Conf. Intel. Robot. Syst. (2011) pp. 4797–4802Google Scholar
  17. 20.17
    C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni, M. Gonzalez-Rivero, R.L. Hatton, H. Choset: Design of a modular snake robot, Int. Conf. Intel. Robot. Syst. (2007) pp. 2609–2614Google Scholar
  18. 20.18
    A. Johnson, C. Wright, M. Tesch, K. Lipkin, H. Choset: A Novel Architecture for Modular Snake Robots, Tech. Report CMU-RI-TR-11-29 (Carnegie Mellon Univ., Pittsburgh 2011)Google Scholar
  19. 20.19
    K. Lipkin, I. Brown, A. Peck, H. Choset, J. Rembisz, P. Gianfortoni, A. Naaktgeboren: Differentiable and piecewise differentiable gaits for snake robots, Int. Conf. Intel. Robot. Syst. (2007) pp. 1864–1869Google Scholar
  20. 20.20
    Biorobotics Laboratory, Carnegie Mellon University http://biorobotics.org (for videos of Choset's robots)
  21. 20.21
    P. Liljeback, O. Stavdahl, A. Beitnes: SnakeFighter – Development of a water hydraulic fire fighting snake robot, 9th Int. Conf. Control Autom. Robot. Vision (2006) pp. 1–6Google Scholar
  22. 20.22
    P. Liljeback, K.Y. Pettersen, O. Stavdahl, J.T. Gravdahl: Experimental investigation of obstacle-aided locomotion with a snake robot, IEEE Trans. Robot. 99, 1–8 (2011)Google Scholar
  23. 20.23
    P. Liljeback, S. Fjerdingen, K.Y. Pettersen, Ø. Stavdahl: A snake robot joint mechanism with a contact force measurement system, Proc. IEEE ICRA (2009) pp. 3815–3820Google Scholar
  24. 20.24
    J. Borenstein, M. Hansen, A. Borrell: The OmniTread OT-4 serpentine robot—design and performance, J. Field Robot. 24(7), 601–621 (2007)CrossRefGoogle Scholar
  25. 20.25
    J.C. McKenna, D.J. Anhalt, F.M. Bronson, H.B. Brown, M. Schwerin, E. Shammas, H. Choset: Toroidal skin drive for snake robot locomotion, Proc. IEEE ICRA (2008) pp. 1150–1155Google Scholar
  26. 20.26
    H. Date, Y. Takita: An electricity-free snake-like propulsion mechanism driven and controlled by fluids, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2009) pp. 3637–3642Google Scholar
  27. 20.27
    T. Sato, T. Kano, A. Ishiguro: A decentralized control scheme for an effective coordination of phasic and tonic control in a snake-like robot, Bioinspir. Biomim. 7(1), 016005 (2012)CrossRefGoogle Scholar
  28. 20.28
    T. Kamegawa, T. Yarnasaki, H. Igarashi, F. Matsuno: Development of the snake-like rescue robot kohga, Proc. IEEE Int. Conf. Robot. Autom. (2004) pp. 5081–5086Google Scholar
  29. 20.29
    M. Hara, S. Satomura, H. Fukushima, T. Kamegawa, H. Igarashi, F. Matsuno: Control of a snake-like robot using the screw drive mechanism, Proc. IEEE Int. Conf. Robot. Autom. (2007) pp. 3883–3888Google Scholar
  30. 20.30
    G. Robinson, J.B.C. Davies: Continuum robots – A state of the art, Proc. IEEE Int. Conf. Robot. Autom., Detroit (1999) pp. 2849–2854Google Scholar
  31. 20.31
    G.S. Chirikjian: Theory and applications of hyper-redundant robotic mechanisms (Department of Applied Mechanics, California Institute of Technology, Pasadena 1992)Google Scholar
  32. 20.32
    V.C. Anderson, R.C. Horn: Tensor arm manipulator design, Mech. Eng. 89(8), 54–65 (1967)Google Scholar
  33. 20.33
    B. Roth, J. Rastegar, V. Scheinman: On the design of computer controlled manipulators, 1st CISM-IFTMM Symp. Theory Pract. Robot. Manip. (1973) pp. 93–113Google Scholar
  34. 20.34
    W.M. Kier, K.K. Smith: Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats, Zool. J. Linneaan Soc. 83, 307–324 (1985)CrossRefGoogle Scholar
  35. 20.35
    F. Martin, C. Niemitz: How do African elephants (Loxodonta Africana) optimize goal-directed trunk movements?, Jahresvers. Dt. Zool. Ges. Dt. Ges. Parasitol. 96, 159 (2003)Google Scholar
  36. 20.36
    Y. Yekutieli, R. Sagiv-Zohar, B. Hochner, T. Flash: Dynamics model of the octopus arm. II. Control of reaching movements, J. Neurophysiol. 94, 1459–1468 (2005)CrossRefGoogle Scholar
  37. 20.37
    R. Cieslak, A. Morecki: Elephant trunk type elastic manipulator – A tool for bulk and liquid type materials transportation, Robotica 17, 11–16 (1999)CrossRefGoogle Scholar
  38. 20.38
    M.W. Hannan, I.D. Walker: Analysis and experiments with an elephant's trunk robot, Adv. Robot. 15(8), 847–858 (2001)CrossRefGoogle Scholar
  39. 20.39
    H. Tsukagoshi, A. Kitagawa, M. Segawa: Active hose: An artificial elephant's nose with maneuverability for rescue operation, Proc. IEEE Int. Conf. Robot. Autom., Seoul (2001) pp. 2454–2459Google Scholar
  40. 20.40
    E. Guglielmino, N. Tsagarakis, D.G. Caldwell: An octopus-anatomy inspired robotics arm, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei (2010) pp. 3091–3096Google Scholar
  41. 20.41
    W. McMahan, B.A. Jones, I.D. Walker, V. Chitrakaran, A. Seshadri, D. Dawson: Robotic manipulators inspired by cephalopod limbs, Proc. CDEN Des. Conf., Montreal (2004) pp. 1–10Google Scholar
  42. 20.42
    I.D. Walker, D. Dawson, T. Flash, F. Grasso, R. Hanlon, B. Hochner, W.M. Kier, C. Pagano, C.D. Rahn, Q. Zhang: Continuum robot arms inspired by cephalopods, Proc. 7th SPIE Conf. Unmanned Ground Veh. Technol., Orlando (2005) pp. 303–314Google Scholar
  43. 20.43
    D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker: Soft robotics: Biological inspiration, state of the art, and future research, Appl. Bionics Biomech. 5(2), 99–117 (2008)CrossRefGoogle Scholar
  44. 20.44
    R.J. Webster III, B.A. Jones: Design and kinematic modeling of constant curvature continuum robots: A review, Int. J. Robot. Res. 29(13), 1661–1683 (2010)CrossRefGoogle Scholar
  45. 20.45
    D.B. Camarillo, C.F. Milne, C.R. Carlson, M.R. Zinn, J.K. Salisbury: Mechanics modeling of tendon-driven continuum manipulators, IEEE Trans. Robot. 24(6), 1262–1273 (2008)CrossRefGoogle Scholar
  46. 20.46
    L. Cowan: Analysis and experiments for tendril-type robots, M.S. Thesis (Clemson University, Clemson 2008)Google Scholar
  47. 20.47
    M.W. Hannan, I.D. Walker: Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots, J. Robot. Syst. 20(2), 45–63 (2003)MATHCrossRefGoogle Scholar
  48. 20.48
    G. Immega: Tentacle-like manipulators with adjustable tension lines, U.S. Patent 5317952A (1992)Google Scholar
  49. 20.49
    J.S. Mehling, M.A. Diftler, M. Chu, M. Valvo: A minimally invasive tendril robot for in-space inspection, Proc. Conf. BioRobotics (2006) pp. 690–695Google Scholar
  50. 20.50
    A. Grzesiak, R. Becker, A. Verl: The bionic handling assistant – A success story of additive manufacturing, Assem. Autom. 31(4), 329–333 (2011)CrossRefGoogle Scholar
  51. 20.51
    D.M. Lane, J.B.C. Davies, G. Robinson, D.J. O'Brien, J. Sneddon, E. Seaton, A. Elfstrom: The AMADEUS dextrous subsea hand: Design, modeling, and sensor processing, IEEE J. Ocean. Eng. 24(1), 96–111 (1999)CrossRefGoogle Scholar
  52. 20.52
    M.B. Pritts, C.D. Rahn: Design of an artificial muscle continuum robot, Proc. IEEE Int. Conf. Robot. Autom., New Orleans (2004) pp. 4742–4746Google Scholar
  53. 20.53
    K. Suzumori, S. Iikura, H. Tanaka: Development of flexible microactuator and its applications to robotic mechanisms, Proc. IEEE Int. Conf. Robot. Autom., Sacramento (1991) pp. 1622–1627Google Scholar
  54. 20.54
    D.B. Camarillo, C.R. Carlson, J.K. Salisbury: Task-space control of continuum manipulators with coupled tendon drive, 11th Int. Symp. Exp. Robot. (2009) pp. 271–280CrossRefGoogle Scholar
  55. 20.55
    G. Immega, K. Antonelli: The KSI tentacle manipulator, Proc. IEEE Int. Conf. Robot. Autom., Nagoya (1995) pp. 3149–3154Google Scholar
  56. 20.56
    I. Gravagne, C. Rahn, I.D. Walker: Large deflection dynamics and control for planar continuum robots, IEEE/ASME Trans. Mechatron. 8(2), 299–307 (2003)CrossRefGoogle Scholar
  57. 20.57
    B.A. Jones, W. McMahan, I.D. Walker: Design and analysis of a novel pneumatic manipulator, Proc. 3rd IFAC Symp. Mechatron. Syst., Sydney (2004) pp. 745–750Google Scholar
  58. 20.58
    W. McMahan, B.A. Jones, I.D. Walker: Design and implementation of a multi-section continuum robot: Air-Octor, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Edmonton (2005) pp. 3345–3352Google Scholar
  59. 20.59
    J. Lock, G. Laing, M. Mahvash, P.E. Dupont: Quasistatic modeling of concentric tube robots with external loads, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei (2010) pp. 2325–2332Google Scholar
  60. 20.60
    L.G. Torres, R. Alterovitz: Motion planning for concentric tube robots using mechanics-based models, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 5153–5159Google Scholar
  61. 20.61
    R.J. Webster III, J.M. Romano, N.J. Cowan: Kinematics and calibration of active cannulas, Proc. IEEE Int. Conf. Robot. Autom., Pasadena (2008) pp. 3888–3895Google Scholar
  62. 20.62
    R.S. Penning, J. Jung, J.A. Borgstadt, N.J. Ferrier, M.R. Zinn: Towards closed loop control of a continuum robotic manipulator for medical applications, Proc. IEEE Int. Conf. Robot. Autom., Shanghai (2011) pp. 4822–4827Google Scholar
  63. 20.63
    B. Bardou, P. Zanne, F. Nageotte, M. de Mathelin: Control of multiple sections flexible endoscopic system, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei (2010) pp. 2345–2350Google Scholar
  64. 20.64
    G. Chen, P.M. Tu, T.R. Herve, C. Prelle: Design and modeling of a micro-robotic manipulator for colonoscopy, 5th Int. Workshop Res. Educ. Mechatron., Annecy (2005) pp. 109–114Google Scholar
  65. 20.65
    K. Xu, J. Zhao, J. Geiger, A.J. Shih, M. Zheng: Design of an endoscopic stitching device for surgical obesity treatment using a N.O.T.E.S. approach, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 961–966Google Scholar
  66. 20.66
    H.-S. Yoon, S.M. Oh, J.H. Jeong, S.H. Lee, K. Tae, K.-C. Koh, B.J. Yi: Active bending robot endoscope system for navigation through sinus area, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 967–972Google Scholar
  67. 20.67
    L.A. Lyons, R.J. Webster III, R. Alterovitz: Planning active cannula configurations through tubular anatomy, Proc. IEEE Int. Conf. Robot. Autom., Anchorage (2010) pp. 2082–2087Google Scholar
  68. 20.68
    S. Wakimoto, K. Suzumori: Fabrication and basic experiments of pneumatic multi-chamber rubber tube actuator for assisting colonoscope insertion, Proc. IEEE Int. Conf. Robot. Autom., Anchorage (2010) pp. 3260–3265Google Scholar
  69. 20.69
    N. Simaan, R. Taylor, P. Flint: A dexterous system for laryngeal surgery, Proc. IEEE Int. Conf. Robot. Autom., New Orleans (2004) pp. 351–357Google Scholar
  70. 20.70
    H. Watanabe, K. Kanou, Y. Kobayashi, M.G. Fujie: Development of a `Steerable Drill' for ACL reconstruction to create the arbitrary trajectory of a bone tunnel, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 955–960Google Scholar
  71. 20.71
    K. Xu, R.E. Goldman, J. Ding, P.K. Allen, D.L. Fowler, N. Simaan: System design of an insertable robotic effector platform for single port access (SPA) surgery, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., St. Louis (2009) pp. 5546–5552Google Scholar
  72. 20.72
    J. Ding, K. Xu, R. Goldman, P. Allen, D. Fowler, N. Simaan: Design, simulation and evaluation of kinematic alternatives for insertable robotic effectors platforms in single port access surgery, Proc. IEEE Int. Conf. Robot. Autom., Anchorage (2010) pp. 1053–1058Google Scholar
  73. 20.73
    P. Sears, P.E. Dupont: Inverse kinematics of concentric tube steerable needles, Proc. IEEE Int. Conf. Robot. Autom. (2007) pp. 1887–1892Google Scholar
  74. 20.74
    P. Sears, P.E. Dupont: A steerable needle technology using curved concentric tubes, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2006) pp. 2850–2856Google Scholar
  75. 20.75
    R. Buckingham: Snake arm robots, Ind. Robot An Int. J. 29(3), 242–245 (2002)CrossRefGoogle Scholar
  76. 20.76
    M. Mahvash, P.E. Dupont: Stiffness control of a continuum manipulator in contact with a soft environment, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei (2010) pp. 863–870Google Scholar
  77. 20.77
    J. Jung, R.S. Penning, N.J. Ferrier, M.R. Zinn: A modeling approach for continuum robotic manipulators: Effects of nonlinear internal device friction, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 5139–5146Google Scholar
  78. 20.78
    D.C. Rucker, B.A. Jones, R.J. Webster III: A model for concentric tube continuum robots under applied wrenches, Proc. IEEE Int. Conf. Robot. Autom., Anchorage (2010) pp. 1047–1052Google Scholar
  79. 20.79
    T. Aoki, A. Ochiai, S. Hirose: Study on slime robot: Development of the mobile robot prototype model using bridle bellows, Proc. IEEE Int. Conf. Robot. Autom., New Orleans (2004) pp. 2808–2813Google Scholar
  80. 20.80
    H. Ohno, S. Hirose: Design of slim slime robot and its gait of locomotion, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Maui (2001) pp. 707–715Google Scholar
  81. 20.81
    B.A. Jones, M. Csencsits, W. McMahan, V. Chitrakaran, M. Grissom, M. Pritts, C.D. Rahn, I.D. Walker: Grasping, manipulation, and exploration tasks with the OctArm continuum manipulator, Proc. Int. Conf. Robot. Autom., Orlando (2006)Google Scholar
  82. 20.82
    W. McMahan, M. Pritts, V. Chitrakaran, D. Dienno, M. Grissom, B. Jones, M. Csencsits, C.D. Rahn, D. Dawson, I.D. Walker: Field trials and testing of OCTARM continuum robots, Proc. IEEE Int. Conf. Robot. Autom. (2006) pp. 2336–2341Google Scholar
  83. 20.83
    J.K. Salisbury: Whole arm manipulation, 4th Symp. Robot. Res. (1987)Google Scholar
  84. 20.84
    I.D. Walker: Continuum robot appendages for traversal of uneven terrain in in-situ exploration, IEEE Aerosp. Conf. (2011) pp. 1–8Google Scholar
  85. 20.85
    R. Kang, A. Kazakidi, E. Guglielmino, D.T. Branson, D.P. Tsakiris, J.A. Ekaterinaris, D.G. Caldwell: Dynamic model of a hyper-redundant, octopus-like manipulator for underwater applications, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 4054–4059Google Scholar
  86. 20.86
    I.S. Godage, D.T. Branson, E. Guglielmino, G.A. Medrano-Cerda, D.G. Caldwell: Shape function-based kinematics and dynamics for variable-length continuum robotic arms, Proc. IEEE Int. Conf. Robot. Autom., Shanghai (2011) pp. 452–457Google Scholar
  87. 20.87
    R. Alterovitz, A. Lim, K. Goldberg, G.S. Chirikjian, A.M. Okamura: Steering flexible needles under Markov motion uncertainty, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2005) pp. 120–125Google Scholar
  88. 20.88
    N.J. Cowan, K. Goldberg, G.S. Chirikjian, G. Fichtinger, R. Alterovitz, K.B. Reed, V. Kallem, W. Park, S. Misra, A.M. Okamura: Robotic needle steering: Design, modeling, planning, and image guidance. In: Surgical Robotics – Systems, Applications, and Visions, ed. by J, Rosen, B. Hannaford, R. Satava (Springer New York pp, 557–582 (2011)Google Scholar
  89. 20.89
    W. Park, Y. Wang, G.S. Chirikjian: The path-of-probability algorithm for steering and feedback control of flexible needles, Int. J. Robot. Res. 29(7), 813–830 (2010)CrossRefGoogle Scholar
  90. 20.90
    W. Park, J.S. Kim, Y. Zhou, N.J. Cowan, A.M. Okamura, G.S. Chirikjian: Diffusion-based motion planning for a nonholonomic flexible needle model, Proc. IEEE Int. Conf. Robot. Autom., Barcelona (2005)Google Scholar
  91. 20.91
    R.J. Webster III, J.-S. Kim, N.J. Cowan, G.S. Chirikjian, A.M. Okamura: Nonholonomic modeling of needle steering, Int. J. Robot. Res. 25(5–6), 509–525 (2006)CrossRefGoogle Scholar
  92. 20.92
    C. Rucker, R.J. Webster III, G.S. Chirikjian, N.J. Cowan: Equilibrium conformations of concentric-tube continuum robots, Int. J. Robot. Res. 29(10), 1263–1280 (2010)CrossRefGoogle Scholar
  93. 20.93
    P.E. Dupont, J. Lock, B. Itkowitz, E. Butler: Design and control of concentric-tube robots, IEEE Trans. Robot. 26(2), 209–225 (2010)CrossRefGoogle Scholar
  94. 20.94
    J. Lock, G. Laing, M. Mahvash, P.E. Dupont: Quasistatic modeling of concentric tube robots with external loads, 2010 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2010) pp. 2325–2332CrossRefGoogle Scholar
  95. 20.95
    P.E. Dupont, J. Lock, E. Butler: Torsional kinematic model for concentric tube robots, Proc. IEEE Int. Conf. Robot. Autom. (2009) pp. 3851–3858Google Scholar
  96. 20.96
    C. Bedell, J. Lock, A. Gosline, P.E. Dupont: Design optimization of concentric tube robots based on task and anatomical constraints, Proc. IEEE Int. Conf. Robot. Autom. (2011) pp. 398–403Google Scholar
  97. 20.97
    M. Mahvash, P.E. Dupont: Stiffness control of surgical continuum manipulators, IEEE Trans. Robot. 27(2), 334–345 (2011)CrossRefGoogle Scholar
  98. 20.98
    A. Degani, H. Choset, A. Wolf, M.A. Zenati: Highly articulated robotic probe for minimally invasive surgery, Proc. IEEE Int. Conf. Robot. Autom. (2006) pp. 4167–4172Google Scholar
  99. 20.99
    A. Degani, H. Choset, A. Wolf, T. Ota, M.A. Zenati: Percutaneous intrapericardial interventions using a highly articulated robotic probe, In The First IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomech. (2006) pp. 7–12Google Scholar
  100. 20.100
    R.J. Murphy, M.S. Moses, M.D. Kutzer, G.S. Chirikjian, M. Armand: Constrained workspace generation for snake-like manipulators with applications to minimally invasive surgery, Proc. IEEE Int. Conf. Robot. Autom. (2013) pp. 5341–5347Google Scholar
  101. 20.101
    M.S. Moses, M.D. Kutzer, H. Ma, M. Armand: A continuum manipulator made of interlocking fibers, Proc. IEEE Int. Conf. Robot. Autom. (2013) pp. 4008–4015Google Scholar
  102. 20.102
    S.M. Segreti, M.D.M. Kutzer, R.J. Murphy, M. Armand: Cable length estimation for a compliant surgical manipulator, Proc. IEEE Int. Conf. Robot. Autom. (2012) pp. 701–708Google Scholar
  103. 20.103
    R.J. Murphy, M.D. Kutzer, S.M. Segreti, B.C. Lucas, M. Armand: Design and kinematic characterization of a surgical manipulator with a focus on treating osteolysis, Robotica 32(6), 835–850 (2014)CrossRefGoogle Scholar
  104. 20.104
    D. Trivedi, A. Lotfi, C.D. Rahn: Geometrically exact dynamics for soft robotics manipulators, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Diego (2007) pp. 1497–1502Google Scholar
  105. 20.105
    G.S. Chirikjian, J.W. Burdick: A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom. 10(3), 343–354 (1994)CrossRefGoogle Scholar
  106. 20.106
    I.A. Gravagne, I.D. Walker: Manipulability, force, and compliance analysis for planar continuum manipulators, IEEE Trans. Robot. Autom. 18(3), 263–273 (2002)CrossRefGoogle Scholar
  107. 20.107
    B.A. Jones, I.D. Walker: Kinematics for multisection continuum robots, IEEE Trans. Robot. 22(1), 43–55 (2006)CrossRefGoogle Scholar
  108. 20.108
    H. Mochiyama, T. Suzuki: Dynamic modeling of a hyper-flexible manipulator, Proc. 41st SICE Annu. Conf., Osaka (2002) pp. 1505–1510Google Scholar
  109. 20.109
    H. Mochiyama, T. Suzuki: Kinematics and dynamics of a cable-like hyper-flexible manipulator, Proc. IEEE Intl. Conf. Robot. Autom., Taipei (2003) pp. 3672–3677Google Scholar
  110. 20.110
    G.S. Chirikjian: Variational analysis of snakelike robots. In: Redundancy in Robot Manipulators and Multi-Robot Systems, Lecture Notes in Electrical Engineering, Vol. 57, ed. by D. Milutinovic, J. Rosen (Springer, New York 2013) pp. 77–91CrossRefGoogle Scholar
  111. 20.111
    G.S. Chirikjian: Hyper-redundant manipulator dynamics: A continuum approximation, Adv. Robot. 9(3), 217–243 (1995)CrossRefGoogle Scholar
  112. 20.112
    I.S. Godage, E. Guglielmino, D.T. Branson, G.A. Medrano-Cerda, D.G. Caldwell: Novel modal approach for kinematics of multisection continuum arms, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 1093–1098Google Scholar
  113. 20.113
    G.S. Chirikjian, J.W. Burdick: Kinematics of hyper-redundant locomotion with applications to grasping, Proc. IEEE Int. Conf. Robot. Autom. (1991) pp. 720–725Google Scholar
  114. 20.114
    M. Csencsits, B.A. Jones, W. McMahan: User interfaces for continuum robot arms, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Edmonton (2005) pp. 3011–3018Google Scholar
  115. 20.115
    E. Tatlicioglu, I.D. Walker, D.M. Dawson: Dynamic modeling for planar extensible continuum robot manipulators, Proc. IEEE Int. Conf. Robot. Autom., Rome (2007) pp. 1357–1362Google Scholar
  116. 20.116
    W. Khalil, G. Gallot, O. Ibrahim, F. Boyer: Dynamic modeling of a 3-D serial eel-like robot, Proc. IEEE Int. Conf. Robot. Autom., Barcelona (2005) pp. 1282–1287Google Scholar
  117. 20.117
    N. Giri, I.D. Walker: Three module lumped element model of a continuum arm section, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 4060–4065Google Scholar
  118. 20.118
    J. Li, J. Xiao: Determining `grasping' configurations for a spatial continuum manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 4207–4214Google Scholar
  119. 20.119
    J. Xiao, R. Vatcha: Real-time adaptive motion planning for a continuum manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei (2010) pp. 5919–5926Google Scholar
  120. 20.120
    M. Ivanescu, N. Bizdoaca, D. Pana: Dynamic control for a tentacle manipulator with SMA actuators, Proc. IEEE Int. Conf. Robot. Autom., Taipei (2003) pp. 2079–2084Google Scholar
  121. 20.121
    M. Ivanescu, V. Stoian: A variable structure controller for a tentacle manipulator, Proc. IEEE Int. Conf. Robot. Autom., Nagoya (1995) pp. 3155–3160Google Scholar
  122. 20.122
    A. Bajo, N. Simaan: Finding lost wrenches: Using continuum robots for contact detection and estimation of contact location, Proc. IEEE Int. Conf. Robot. Autom., Anchorage (2010) pp. 3666–3672Google Scholar
  123. 20.123
    H. Mochiyama: Whole-arm impedance of a serial-chain manipulator, Proc. IEEE Int. Conf. Robot. Autom., Seoul (2001) pp. 2223–2228Google Scholar
  124. 20.124
    D.C. Rucker, R.J. Webster III: Deflection-based force sensing for continuum robots: A probabilistic approach, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 3764–3769Google Scholar
  125. 20.125
    D. Braganza, D.M. Dawson, I.D. Walker, N. Nath: Neural network grasping controller for continuum robots, Proc. 45th IEEE Conf. Decis. Control, San Diego (2006)Google Scholar
  126. 20.126
    A. Kapadia, I.D. Walker: Task space control of extensible continuum manipulators, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco (2011) pp. 1087–1092Google Scholar
  127. 20.127
    S. Ma: Analysis of creeping locomotion of a snake-like robot, Adv. Robot. 15(2), 205–224 (2001)CrossRefGoogle Scholar
  128. 20.128
    K.Y. Pettersen, O. Stavdahl, J.T. Gravdahl: Snake Robots: Modelling, Mechatronics, and Control (Springer, London 2012)MATHGoogle Scholar
  129. 20.129
    A.A. Transeth, K.Y. Pettersen, P. Liljeback: A survey on snake robot modeling and locomotion, Robot. 27(7), 999–1015 (2009)CrossRefGoogle Scholar
  130. 20.130
    R. Vaidyanathan, H.J. Chiel, R.D. Quinn: A hydrostatic robot for marine applications, Robot. Auton. Syst. 30(1), 103–113 (2000)CrossRefGoogle Scholar
  131. 20.131
    C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni, M. Gonzalez-Rivero, R. Hatton, H. Choset: Design of a modular snake robot, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2007) pp. 2609–2614Google Scholar
  132. 20.132
    M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz, H. Choset: Parameterized and scripted gaits for modular snake robots, Adv. Robot. 23(9), 1131–1158 (2009)CrossRefGoogle Scholar
  133. 20.133
    R.L. Hatton, H. Choset: Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction, Auton. Robot. 28(3), 271–281 (2010)CrossRefGoogle Scholar
  134. 20.134
    J.C. McKenna, D.J. Anhalt, F.M. Bronson, H.B. Brown, M. Schwerin, E. Shammas, H. Choset: Toroidal skin drive for snake robot locomotion, Proc. IEEE Int. Conf. Robot. Autom. (2008) pp. 1150–1155Google Scholar
  135. 20.135
    A. Wolf, H.B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, H. Choset: A mobile hyper redundant mechanism for search and rescue tasks, Proc. 3rd IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003) pp. 2889–2895Google Scholar
  136. 20.136
    C. Wright, A. Buchan, B. Brown, J. Geist, M. Schwerin, D. Rollinson, H. Choset: Design and architecture of the unified modular snake robot, Proc. IEEE Int. Conf. Robot. Autom. (2012) pp. 4347–4354Google Scholar
  137. 20.137
    J.M. Snyder, J.F. Wilson: Dynamics of the elastica with end mass and follower loading, J. Appl. Mech. 57, 203 (1990)CrossRefGoogle Scholar
  138. 20.138
    J.F. Wilson, D. Li, Z. Chen, R.T. George Jr.: Flexible robot manipulators and grippers: Relatives of elephant trunks and squid tentacles. In: Robots and Biological Systems: Towards a New Bionics?, (Springer, Berlin, Heidelberg 1993) pp. 475–494CrossRefGoogle Scholar
  139. 20.139
    F. Naccarato, P.C. Hughes: Inverse kinematics of variable-geometry truss manipulators, J. Robot. Syst. 8(2), 249–266 (1991)MATHCrossRefGoogle Scholar
  140. 20.140
    P.C. Hughes, W.G. Sincarsin, K.A. Carroll: Trussarm – A variable-geometry-truss manipulator, J. Intell. Mater. Syst. Struct. 2(2), 148–160 (1991)CrossRefGoogle Scholar
  141. 20.141
    R.J. Salerno, C.F. Reinholtz, S.G. Dhande, R. Hall: Kinematics of long-chain variable geometry truss manipulators: An overview of solution techniques, Proc. 2nd Int. Workshop Adv. Robot Kinemat. (1990)Google Scholar
  142. 20.142
    A.S. Boxerbaum, K.M. Shaw, H.J. Chiel, R.D. Quinn: Continuous wave peristaltic motion in a robot, Int. J. Robot. Res. 31(3), 302–318 (2012)CrossRefGoogle Scholar
  143. 20.143
    G.S. Chirikjian: Framed curves and knotted DNA, Biochem. Soc. Trans. 41, 635–638 (2013)CrossRefGoogle Scholar
  144. 20.144
    I. Ebert-Uphoff, G.S. Chirikjian: Discretely actuated manipulator workspace generation by closed-form convolution, ASME J. Mech. Des. 120(2), 245–251 (1998)CrossRefGoogle Scholar
  145. 20.145
    I. Ebert-Uphoff, G.S. Chirikjian: Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities, Proc. IEEE Int. Conf. Robot. Autom. (1996) pp. 139–145CrossRefGoogle Scholar
  146. 20.146
    I. Ebert-Uphoff: On the development of discretely-actuated hybrid-serial-parallel manipulators (Department of Mechanical Engineering, Johns Hopkins University, Baltimore 1997)Google Scholar
  147. 20.147
    Y. Wang, G.S. Chirikjian: Workspace generation of hyper-redundant manipulators as a diffusion process on SE(N), IEEE Trans. Robot. Autom. 20(3), 399–408 (2004)CrossRefGoogle Scholar
  148. 20.148
    Y. Zhou, G.S. Chirikjian: Conformational statistics of semi-flexible macromolecular chains with internal joints, Macromolecules 39(5), 1950–1960 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ian D. Walker
    • 1
  • Howie Choset
    • 2
  • Gregory S. Chirikjian
    • 3
  1. 1.Department of Electrical and Computer EngineeringClemson UniversityClemsonUSA
  2. 2.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Mechanical EngineeringJohn Hopkins UniversityBaltimoreUSA

Personalised recommendations