Robot Hands

Abstract

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

3-D

three-dimensional

DIST

Dipartmento di Informatica Sistemica e Telematica

DLR

Deutsches Zentrum für Luft- und Raumfahrt

ETL

Electro-Technical Laboratory

IT

intrinsic tactile

JPL

Jet Propulsion Laboratory

MEL

Mechanical Engineering Laboratory

MIT

Massachusetts Institute of Technology

NASA

National Aeronautics and Space Agency

TDT

tension-differential type

UB

University of Bologna

References

  1. 19.1
    T. Okada: Object-handling system for manual industry, IEEE Trans. Syst. Man Cybern. 2, 79–86 (1979)CrossRefGoogle Scholar
  2. 19.2
    K.S. Salisbury, B. Roth: Kinematics and force analysis of articulated mechanical hands, J. Mech. Transm. Actuation Des. 105, 35–41 (1983)CrossRefGoogle Scholar
  3. 19.3
    S.C. Jacobsen, E.K. lversen, D.F. Knutti, R.T. lohnsan, K.B. Biggers: Design of the Utah/MIT dexterous hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986)Google Scholar
  4. 19.4
    J. Butterfass, G. Hirzinger, S. Knoch, H. Liu: DLR's Multisensory articulated Hand Part I: Hard- and software architecture, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999)Google Scholar
  5. 19.5
    A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, G. Hirzinger: The DLR hand arm system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)Google Scholar
  6. 19.6
    C. Melchiorri, G. Vassura: Mechanical and control features of the University of Bologna hand version 2, Proc. IEEE/RSJ Int. Conf. Int. Robots Syst. (IROS), Rayleigh (1992) pp. 187–193CrossRefGoogle Scholar
  7. 19.7
    W.T. Townsend: MCB – Industrial robot feature article- Barrett Hand grasper, Ind. Robot 27(3), 181–188 (2000)CrossRefGoogle Scholar
  8. 19.8
    H. Kawasaki, T. Komatsu, K. Uchiyama: Dexterous anthropomophic robot hand with distributed tactile sensor: Gifu hand II, IEEE/ASME Trans. Mechatronics 7(3), 296–303 (2002)CrossRefGoogle Scholar
  9. 19.9
    T.J. Doll, H.J. Scneebeli: The Karlsruhe Hand, Prepr. IFAC Symp. Robot Control (SYROCO) (1988), pp. 37.1–37.6Google Scholar
  10. 19.10
    M.G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, A. Bicchi: Adaptive synergies for the design and control of the Pisa/IIT SoftHand, Int. J. Robotics Res. 33, 768–782 (2014)CrossRefGoogle Scholar
  11. 19.11
    N. Fukaya, S. Toyama, T. Asfour, R. Dillmann: Design of the TUAT/Karlsruhe humanoid hand, Robot. Syst. 3, 1754–1759 (2000)Google Scholar
  12. 19.12
    A. Bicchi, A. Marigo: Dexterous grippers: Putting nonholonomy to work for fine manipulation, Int. J. Robotics Res. 21(5/6), 427–442 (2002)CrossRefGoogle Scholar
  13. 19.13
    M.C. Carrozza, C. Suppo, F. Sebastiani, B. Massa, F. Vecchi, R. Lazzarini, M.R. Cutkosky, P. Dario: The SPRING hand: Development of a self-adaptive prosthesis for restoring natural grasping, Auton. Robots 16(2), 125–141 (2004)CrossRefGoogle Scholar
  14. 19.14
    J.L. Pons, E. Rocon, R. Ceres, D. Reynaerts, B. Saro, S. Levin, W. Van Moorleghem: The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects, Auton. Robots 16(2), 143–163 (2004)CrossRefGoogle Scholar
  15. 19.15
    Bebionic Prosthetic Hand: RSLSteeper, Leeds, UK (2015) http://www.bebionic.com/
  16. 19.16
    G. Berselli, M. Piccinini, G. Palli, G. Vassura: Engineering design of fluid-filled soft covers for robotic contact interfaces: Guidelines, nonlinear modeling, and experimental validation, IEEE Trans. Robotics 27(3), 436–449 (2011)CrossRefGoogle Scholar
  17. 19.17
    T. Iberall, C.L. MacKenzie: Opposition space and human prehension. In: Dexterous Robot Hands, (Springer, New York 1990)Google Scholar
  18. 19.18
    A. Bicchi: Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity, IEEE Trans. Robotics Autom. 16(6), 652–662 (2000)CrossRefGoogle Scholar
  19. 19.19
    M.R. Cutkosky: On grasp choice, grasp models, and the design of hands for manufacturing tasks, IEEE Trans. Robotics Autom. 5(3), 269–279 (1989)CrossRefGoogle Scholar
  20. 19.20
    G. Berselli, M. Piccinini, G. Vassura: Comparative evaluation of the selective compliance in elastic joints for robotic structures, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 4626–4631Google Scholar
  21. 19.21
    L.U. Odhner, A.M. Dollar: Dexterous manipulation with underactuated elastic hands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)Google Scholar
  22. 19.22
    J. Butterfass, M. Grebenstein, H. Liu, G. Hirzinger: DLR-Hand II: Next generation of a dextrous robot hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Seoul (2001)Google Scholar
  23. 19.23
    C. Melchiorri, G. Vassura: Mechanical and control features of the UB hand version II, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1992)Google Scholar
  24. 19.24
    R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F. Rehnmark: Robonaut: NASA's space humanoid, IEEE Intell. Syst. (2000)Google Scholar
  25. 19.25
    L. Birglen, C.M. Gosselin: Kinetostatic analysis of underactuated fingers, IEEE Trans. Robotics Autom. 20(2), 211–221 (2004)CrossRefGoogle Scholar
  26. 19.26
    I. Yamano, T. Maeno: Five-fingered robot hand using ultrasonic motors and elastic elements, Proc. IEEE Int. Conf. Robotics Autom. (2005) pp. 2684–2689Google Scholar
  27. 19.27
    Shadow Dexterous Hand: Shadow Robot Co. LTD., London (2015), http://www.shadowrobot.com/
  28. 19.28
    M. Kaneko, M. Higashimori, R. Takenaka, A. Namiki, M. Ishikawa: The 100G capturing robot – too fast to see, Proc. 8th Int. Symp. Artif. Life Robotics (2003) pp. 291–296Google Scholar
  29. 19.29
    G. Palli, C. Natale, C. May, C. Melchiorri, T. Würtz: Modeling and control of the twisted string actuation system, IEEE/ASME Trans. Mechatronics 18(2), 664–673 (2013)CrossRefGoogle Scholar
  30. 19.30
    G. Palli, C. Melchiorri, G. Vassura, G. Berselli, S. Pirozzi, C. Natale, G. De Maria, C. May: Innovative technologies for the next generation of robotic hands, Springer Tracts Adv. Robotics 80, 173–218 (2012)CrossRefGoogle Scholar
  31. 19.31
    G. Palli, S. Pirozzi: Force sensor based on discrete optoelectronic components and compliant frames, Sensors Actuators A 165, 239–249 (2011)CrossRefGoogle Scholar
  32. 19.32
    G. Palli, S. Pirozzi: A miniaturized optical force sensor for tendon-driven mechatronic systems: Design and experimental evaluation, Mechatronics 22(8), 1097–1111 (2012)CrossRefGoogle Scholar
  33. 19.33
    W. Paetsch, M. Kaneko: A three fingered multijointed gripper for experimental use, Proc. IEEE Int. Workshop Intell. Robots Syst. (IROS) (1990) pp. 853–858Google Scholar
  34. 19.34
    H. Maekawa, K. Yokoi, K. Tanie, M. Kaneko, N. Kimura, N. Imamura: Development of a three-fingerd robot hand with stiffness control capability, Mechatronics 2(5), 483–494 (1992)CrossRefGoogle Scholar
  35. 19.35
    A. Bicchi: A criterion for optimal design of multiaxis force sensors, J. Robotics Auton. Syst. 10(4), 269–286 (1992)CrossRefGoogle Scholar
  36. 19.36
    A. Pugh: Robot Sensors: Tactile and Non-Vision, Vol. 2 (Springer, Berlin, Heidelberg 1986)Google Scholar
  37. 19.37
    H.R. Nicholls, M.H. Lee: A survey of robot tactile sensing technology, Int. J. Robotics Res. 3(3), 3–30 (1989)CrossRefGoogle Scholar
  38. 19.38
    W.T. Townsend, J.K. Salisbury: Mechanical bandwidth as a guideline to high-performance manipulator design, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989)Google Scholar
  39. 19.39
    S.D. Eppinger, W.P. Seering: Three dynamic problems in robot force control, IEEE Trans. Robotics Autom. 8(6), 751–758 (1992)CrossRefGoogle Scholar
  40. 19.40
    W.T. Townsend, J.K. Salisbury: The effect of Coulomb friction and stiction on force control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987)Google Scholar
  41. 19.41
    G. Palli, G. Borghesan, C. Melchiorri: Modeling, identification and control of tendon-based actuation systems, IEEE Trans. Robotics 28(2), 277–290 (2012)CrossRefGoogle Scholar
  42. 19.42
    M. Kaneko, T. Yamashita, K. Tanie: Basic considerations on transmission characteristics for tendon driven robots, Proc. 5th Int. Conf. Adv. Robotics (1991) pp. 827–883Google Scholar
  43. 19.43
    R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1994)MATHGoogle Scholar
  44. 19.44
    J. Mason, J.K. Salisbury: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)Google Scholar
  45. 19.45
    R.M. Cutkosky: Robotic Grasping and Fine Manipulation (Springer, New York 1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Automation and RoboticsUniversity of BolognaBolognaItaly
  2. 2.Department of Mechanical EngineeringOsaka UniversitySuitaJapan

Personalised recommendations