Parallel Mechanisms

  • Jean-Pierre Merlet
  • Clément Gosselin
  • Tian Huang

Abstract

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

3-D

three-dimensional

CCT

conservative congruence transformation

DOF

degree of freedom

References

  1. 18.1
    J.E. Gwinnett: Amusement device, US Patent 1789680 (1931)Google Scholar
  2. 18.2
    V.E. Gough: Contribution to discussion of papers on research in automobile stability, control and tyre performance, 1956--1957. Proc. Auto Div. Inst. Mech. Eng. (1956)Google Scholar
  3. 18.3
    D. Stewart: A platform with 6 degrees of freedom, Proc. Inst. Mech. Eng. Part 1 15 (1965) pp. 371–386Google Scholar
  4. 18.4
    I.A. Bonev: The true origins of parallel robots, http://www.parallemic.org/Reviews/Review007.html (2003)
  5. 18.5
    S. Briot, I.A. Bonev: Are parallel robots more accurate than serial robots?, CSME Transactions 31(4), 445–456 (2007)MATHGoogle Scholar
  6. 18.6
    G. Aridon, D. Rémond, F. Morestin, L. Blanchard, R. Dufour: Self-deployment of a tape-spring hexapod: experimental and numerical investigation, ASME J. Mech. Des. 131(2), 0210031–0210037 (2009)CrossRefGoogle Scholar
  7. 18.7
    M. Hafez, M.D. Lichter, S. Dubowsky: Optimized binary modular reconfigurable robotic devices, IEEE Trans. Mechatron. 8(1), 152–162 (2003)CrossRefGoogle Scholar
  8. 18.8
    J. Albus, R. Bostelman, N. Dagalakis: The NIST robocrane, J. Robotic Syst. 10(5), 709–724 (1993)CrossRefGoogle Scholar
  9. 18.9
    R. Clavel: DELTA, a fast robot with parallel geometry, 18th Int. Symp. Ind. Robots (ISIR), Lausanne (1988) pp. 91–100Google Scholar
  10. 18.10
    K.H. Hunt: Structural kinematics of in parallel actuated robot arms, J. Mech. Transm. Autom. Des. 105(4), 705–712 (1983)CrossRefGoogle Scholar
  11. 18.11
    K.E. Neumann: Robot: Neos Product HB Norrtalje Suède. US Patent 4732525, (1988)Google Scholar
  12. 18.12
    Q. Li, J.M. Hervè: Parallel mechanisms with bifurcation of Schoenflies motion, IEEE Trans. Robotics 25(1), 158–164 (2009)CrossRefGoogle Scholar
  13. 18.13
    J.M. Hervé: Group mathematics and parallel link mechanisms, 9th IFToMM World Congr. Theory Mach. Mech., Milan (1995) pp. 2079–2082Google Scholar
  14. 18.14
    C.-C. Lee, J.M. Hervè: Type synthesis of primitive Schönflies-motion generators, Mech. Mach. Theory 44(10), 1980–1997 (2009)MATHCrossRefGoogle Scholar
  15. 18.15
    J. Meng, G.F. Liu, Z. Li: A geometric theory for analysis and synthesis of sub-6 DOF parallel manipulators, IEEE Trans. Robotics 23(4), 625–649 (2007)CrossRefGoogle Scholar
  16. 18.16
    X. Kong, C.M. Gosselin: Type Synthesis of Parallel Mechanisms, Springer Tracts in Advanced Robotics, Vol. 33 (Springer, Berlin, Heidelberg 2007)MATHGoogle Scholar
  17. 18.17
  18. 18.18
    F. Pierrot, V. Nabat, O. Company, S. Krut, P. Poignet: Optimal design of a 4-DOF parallel manipulator: From academia to industry, IEEE Trans. Robotics 25(2), 213–224 (2009)CrossRefGoogle Scholar
  19. 18.19
    C. Gosselin, T. Lalibertè, A. Veillette: Singularity-free kinematically redundant planar parallel mechanisms with unlimited rotational capability, IEEE Trans. Robotics 31(2), 457–467 (2015)CrossRefGoogle Scholar
  20. 18.20
    G. Gogu: Structural Synthesis of Parallel Robots (Kluwer, Dordrecht 2007)MATHGoogle Scholar
  21. 18.21
    P. Dietmaier: The Stewart Gough platform of general geometry can have 40 real postures. In: Advances in Robot Kinematics: Analysis Control, ed. by J. Lenarčič, M.L. Husty (Kluwer, Dordrecht 1998) pp. 7–16CrossRefGoogle Scholar
  22. 18.22
    M.L. Husty: An algorithm for solving the direct kinematic of Stewart Gough-type platforms, Mech. Mach. Theory 31(4), 365–380 (1996)CrossRefGoogle Scholar
  23. 18.23
    M. Raghavan: The Stewart platform of general geometry has 40 configurations, ASME J. Mech. Des. 115(2), 277–282 (1993)CrossRefGoogle Scholar
  24. 18.24
    J.C. Faugère, D. Lazard: The combinatorial classes of parallel manipulators, Mech. Mach. Theory 30(6), 765–776 (1995)CrossRefGoogle Scholar
  25. 18.25
    T.-Y. Lee, J.-K. Shim: Improved dyalitic elimination algorithm for the forward kinematics of the general Stewart Gough platform, Mech. Mach. Theory 38(6), 563–577 (2003)MATHCrossRefGoogle Scholar
  26. 18.26
    F. Rouillier: Real roots counting for some robotics problems. In: Computational Kinematics, ed. by J.-P. Merlet, B. Ravani (Kluwer, Dordrecht 1995) pp. 73–82CrossRefGoogle Scholar
  27. 18.27
    J.-P. Merlet: Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis, Int. J. Robotics Res. 23(3), 221–236 (2004)CrossRefGoogle Scholar
  28. 18.28
    D. Manocha: Algebraic and Numeric Techniques for Modeling and Robotics, Ph.D. Thesis (University of California, Berkeley 1992)Google Scholar
  29. 18.29
    A.J. Sommese, C.W. Wampler: The Numerical Solution of Systems of Polynomials: Arising in Engineering And Science (World Scientific, Singapore 2005)MATHCrossRefGoogle Scholar
  30. 18.30
    C. Gosselin, J. Sefrioui, M.J. Richard: Solution polynomiale au problème de la cinématique directe des manipulateurs parallèles plans à 3 degrés de liberté, Mech. Mach. Theory 27(2), 107–119 (1992)CrossRefGoogle Scholar
  31. 18.31
    P. Wenger, D. Chablat, M. Zein: Degeneracy study of the forward kinematics of planar $3-R\underline{P}R$ parallel manipulators, ASME J. Mech. Des. 129(12), 1265–1268 (2007)CrossRefGoogle Scholar
  32. 18.32
    L. Baron, J. Angeles: The direct kinematics of parallel manipulators under joint-sensor redundancy, IEEE Trans. Robotics Autom. 16(1), 12–19 (2000)MATHCrossRefGoogle Scholar
  33. 18.33
    J.-P. Merlet: Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data, IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 200–204Google Scholar
  34. 18.34
    R. Vertechy, V. Parenti-Castelli: Robust, fast and accurate solution of the direct position analysis of parallel manipulators by using extra-sensors. In: Parallel Manipulators: Towards New Applications, ed. by H. Wu (InTech, Rijeka 2008) pp. 133–154Google Scholar
  35. 18.35
    R. Stoughton, T. Arai: Kinematic optimization of a chopsticks-type micro-manipulator, Jpn. Symp. Flex. Autom., San Fransisco (1993) pp. 151–157Google Scholar
  36. 18.36
    J.-P. Merlet, D. Daney: Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace, IEEE Int. Conf. Robotics Autom. (ICRA), Barcelona (2005)Google Scholar
  37. 18.37
    J.-P. Merlet: Jacobian, manipulability, condition number, and accuracy of parallel robots, ASME J. Mech. Des. 128(1), 199–206 (2006)CrossRefGoogle Scholar
  38. 18.38
    F.-T. Niaritsiry, N. Fazenda, R. Clavel: Study of the source of inaccuracy of a 3 DOF flexure hinge-based parallel manipulator, IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 4091–4096Google Scholar
  39. 18.39
    G. Pritschow, C. Eppler, T. Garber: Influence of the dynamic stiffness on the accuracy of PKM, 3rd Chemnitzer Parallelkinematik Semin. Chemnitz (2002) pp. 313–333Google Scholar
  40. 18.40
    V. Parenti-Castelli, S. Venanzi: On the joint clearance effects in serial and parallel manipulators, Workshop Fundam. Issues Future Res. Dir. Parallel Mech. Manip. Québec (2002) pp. 215–223Google Scholar
  41. 18.41
    A. Pott, M. Hiller: A new approach to error analysis in parallel kinematic structures, Adv. Robot Kinemat., Sestri-Levante (2004)Google Scholar
  42. 18.42
    K. Wohlhart: Degrees of shakiness, Mech. Mach. Theory 34(7), 1103–1126 (1999)MATHCrossRefGoogle Scholar
  43. 18.43
    K. Tönshoff, B. Denkena, G. Günther, H.C. Möhring: Modelling of error effects on the new hybrid kinematic DUMBO structure, 3rd Chemnitzer Parallelkinematik Semin. Chemnitz (2002) pp. 639–653Google Scholar
  44. 18.44
    U. Sellgren: Modeling of mechanical interfaces in a systems context, Int. ANSYS Conf., Pittsburgh (2002)Google Scholar
  45. 18.45
    S. Eastwood, P. Webbb: Compensation of thermal deformation of a hybrid parallel kinematic machine, Robotics Comput. Manuf. 25(1), 81–90 (2009)CrossRefGoogle Scholar
  46. 18.46
    W. Khalil, S. Besnard: Identificable parameters for the geometric calibration of parallel robots, Arch. Control Sci. 11(3/4), 263–277 (2001)MathSciNetMATHGoogle Scholar
  47. 18.47
    C.W. Wampler, J.M. Hollerbach, T. Arai: An implicit loop method for kinematic calibration and its application to closed-chain mechanisms, IEEE Trans. Robotics Autom. 11(5), 710–724 (1995)CrossRefGoogle Scholar
  48. 18.48
    D. Daney, Y. Papegay, A. Neumaier: Interval methods for certification of the kinematic calibration of parallel robots, IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 1913–1918Google Scholar
  49. 18.49
    D. Daney, N. Andreff, G. Chabert, Y. Papegay: Interval method for calibration of parallel robots: a vision-based experimentation, Mech. Mach. Theory 41(8), 929–944 (2006)MATHCrossRefGoogle Scholar
  50. 18.50
    A. Nahvi, J.M. Hollerbach: The noise amplification index for optimal pose selection in robot calibration, IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (1996) pp. 647–654CrossRefGoogle Scholar
  51. 18.51
    G. Meng, L. Tiemin, Y. Wensheng: Calibration method and experiment of Stewart platform using a laser tracker, Int. Conf Syst. Man Cybern., Hague (2003) pp. 2797–2802Google Scholar
  52. 18.52
    D. Daney: Optimal measurement configurations for Gough platform calibration, IEEE Int. Conf. Robotics Autom. (ICRA), Washington (2002) pp. 147–152Google Scholar
  53. 18.53
    P. Renaud, N. Andreff, P. Martinet, G. Gogu: Kinematic calibration of parallel mechanisms: A novel approach using legs observation, IEEE Trans. Robotics 21(4), 529–538 (2005)CrossRefGoogle Scholar
  54. 18.54
    C. Gosselin, J. Angeles: Singularity analysis of closed-loop kinematic chains, IEEE Trans. Robotics Autom. 6(3), 281–290 (1990)CrossRefGoogle Scholar
  55. 18.55
    D. Zlatanov, R.G. Fenton, B. Benhabib: A unifying framework for classification and interpretation of mechanism singularities, ASME J. Mech. Des. 117(4), 566–572 (1995)CrossRefGoogle Scholar
  56. 18.56
    D. Zlatanov, I.A. Bonev, C.M. Gosselin: Constraint singularities of parallel mechanisms, IEEE Int. Conf. Robotics Autom. (ICRA), Washington (2002) pp. 496–502Google Scholar
  57. 18.57
    M. Conconi, M. Carricato: A new assessment of singularities of parallel kinematic chains, IEEE Trans. Robotics 25(4), 757–770 (2009)CrossRefGoogle Scholar
  58. 18.58
    G. Liu, Y. Lou, Z. Li: Singularities of parallel manipulators: A geometric treatment, IEEE Trans. Robotics Autom. 19(4), 579–594 (2003)CrossRefGoogle Scholar
  59. 18.59
    I.A. Bonev, D. Zlatanov: The mystery of the singular SNUtranslational parallel robot, http://www.parallemic.org/Reviews/Review004.html (2001)
  60. 18.60
    H. Li, C.M. Gosselin, M.J. Richard, B. Mayer St-Onge: Analytic form of the six-dimensional singularity locus of the general Gough-Stewart platform, ASME J. Mech. Des. 128(1), 279–287 (2006)CrossRefGoogle Scholar
  61. 18.61
    B. Mayer St-Onge, C.M. Gosselin: Singularity analysis and representation of the general Gough-Stewart platform, Int. J. Robotics Res. 19(3), 271–288 (2000)CrossRefGoogle Scholar
  62. 18.62
    J.-P. Merlet: Singular configurations of parallel manipulators and Grassmann geometry, Int. J. Robotics Res. 8(5), 45–56 (1989)CrossRefGoogle Scholar
  63. 18.63
    R. Ben-Horin, M. Shoham: Application of Grassmann Cayley algebra to geometrical interpretation of parallel robot singularities, Int. J. Robotics Res. 28(1), 127–141 (2009)CrossRefGoogle Scholar
  64. 18.64
    H. Pottmann, M. Peternell, B. Ravani: Approximation in line space. Applications in robot kinematics, Adv. Robot Kinemat., Strobl (1998) pp. 403–412Google Scholar
  65. 18.65
    P.A. Voglewede, I. Ebert-Uphoff: Measuring closeness to singularities for parallel manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 4539–4544Google Scholar
  66. 18.66
    G. Nawratil: New performance indices for 6-DOF UPS and 3-DOF RPR parallel manipulators, Mech. Mach. Theory 44(1), 208–221 (2009)MATHCrossRefGoogle Scholar
  67. 18.67
    J. Hubert, J.-P. Merlet: Static of parallel manipulators and closeness to singularity, J. Mech. Robotics 1(1), 1–6 (2009)CrossRefGoogle Scholar
  68. 18.68
    P. Cardou, S. Bouchard, C. Gosselin: Kinematic-sensitivity indices for dimensionally nonhomogeneous jacobian matrices, IEEE Trans. Robotics 26(1), 166–173 (2010)CrossRefGoogle Scholar
  69. 18.69
    J.-P. Merlet, D. Daney: A formal-numerical approach to determine the presence of singularity within the workspace of a parallel robot. In: Computational Kinematics, ed. by F.C. Park, C.C. Iurascu (EJCK, Seoul 2001) pp. 167–176Google Scholar
  70. 18.70
    S. Bhattacharya, H. Hatwal, A. Ghosh: Comparison of an exact and an approximate method of singularity avoidance in platform type parallel manipulators, Mech. Mach. Theory 33(7), 965–974 (1998)MATHCrossRefGoogle Scholar
  71. 18.71
    D.N. Nenchev, M. Uchiyama: Singularity-consistent path planning and control of parallel robot motion through instantaneous-self-motion type, IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (1996) pp. 1864–1870CrossRefGoogle Scholar
  72. 18.72
    C. Innocenti, V. Parenti-Castelli: Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators, 22nd Bienn. Mech. Conf., Scottsdale (1992) pp. 553–560Google Scholar
  73. 18.73
    M. Husty: Non-singular assembly mode change in 3-RPR parallel manipulators. In: Computational Kinematics, ed. by A. Kecskeméthy, A. Müller (Springer, Berlin, Heidelberg 2009) pp. 51–60CrossRefGoogle Scholar
  74. 18.74
    S. Caro, P. Wenger, D. Chablat: Non-singular assembly mode changing trajectories of a 6-DOF parallel robot, ASME Int. Des. Eng. Techn. Conf. Comput. Inform. Eng. Conf., Chicago (2012)Google Scholar
  75. 18.75
    R. Ranganath, P.S. Nair, T.S. Mruthyunjaya, A. Ghosal: A force-torque sensor based on a Stewart platform in a near-singular configuration, Mech. Mach. Theory 39(9), 971–998 (2004)MATHCrossRefGoogle Scholar
  76. 18.76
    M.L. Husty, A. Karger: Architecture singular parallel manipulators and their self-motions. In: Adv. Robot Kinematics: Analysis Control, ed. by J. Lenarčič, M.L. Husty (Springer, Dordrecht 2000) pp. 355–364CrossRefGoogle Scholar
  77. 18.77
    A. Karger: Architecture singular planar parallel manipulators, Mech. Mach. Theory 38(11), 1149–1164 (2003)MATHCrossRefGoogle Scholar
  78. 18.78
    K. Wohlhart: Mobile 6-SPS parallel manipulators, J. Robotic Syst. 20(8), 509–516 (2003)MATHCrossRefGoogle Scholar
  79. 18.79
    C. Innocenti, V. Parenti-Castelli: Direct kinematics of the 6-4 fully parallel manipulator with position and orientation uncoupled, Eur. Robotics Intell. Syst. Conf., Corfou (1991)Google Scholar
  80. 18.80
    G. Gogu: Mobility of mechanisms: A critical review, Mech. Mach. Theory 40(10), 1068–1097 (2005)MathSciNetMATHCrossRefGoogle Scholar
  81. 18.81
    I. Zabalza, J. Ros, J.J. Gil, J.M. Pintor, J.M. Jimenez: Tri-Scott a new kinematic structure for a 6-DOF decoupled parallel manipulator, Workshop Fundam. Issues Future Res. Dir. Parallel Mech. Manip., Québec (2002) pp. 12–15Google Scholar
  82. 18.82
    C. Gosselin: Determination of the workspace of 6-DOF parallel manipulators, ASME J. Mech. Des. 11(3), 331–336 (1990)CrossRefGoogle Scholar
  83. 18.83
    J.-P. Merlet: Geometrical determination of the workspace of a constrained parallel manipulator, Adv. Robot Kinemat., Ferrare (1992) pp. 326–329Google Scholar
  84. 18.84
    F.A. Adkins, E.J. Haug: Operational envelope of a spatial Stewart platform, ASME J. Mech. Des. 119(2), 330–332 (1997)CrossRefGoogle Scholar
  85. 18.85
    E.J. Haugh, F.A. Adkins, C.M. Luh: Operational envelopes for working bodies of mechanisms and manipulators, ASME J. Mech. Des. 120(1), 84–91 (1998)CrossRefGoogle Scholar
  86. 18.86
    O. Bohigas, L. Ros, M. Manubens: A complete method for workspace boundary determination, Adv. Robot Kinemat., Piran (2010) pp. 329–338Google Scholar
  87. 18.87
    J.-P. Merlet: Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries, Int. J. Robotics Res. 18(9), 902–916 (1999)CrossRefGoogle Scholar
  88. 18.88
    P. Wenger, D. Chablat: Workspace and assembly modes in fully parallel manipulators: A descriptive study. In: Advances in Robot Kinematics: Analysis Control, ed. by J. Lenarčič, M.L. Husty (Springer, Dordrecht 1998) pp. 117–126CrossRefGoogle Scholar
  89. 18.89
    G. Moroz, F. Rouiller, D. Chablat, P. Wenger: On the determination of cusp points of 3-$R\underline{P}R$ parallel manipulators, Mech. Mach. Theory 45(11), 1555–1567 (2010)MATHCrossRefGoogle Scholar
  90. 18.90
    S. Briot, V. Arakelian: Optimal force generation in parallel manipulators for passing through the singular positions, Int. J. Robotics Res. 27(2), 967–983 (2008)CrossRefGoogle Scholar
  91. 18.91
    J. Hesselbach, C. Bier, C. Budde, P. Last, J. Maaß, M. Bruhn: Parallel robot specific control fonctionalities, 2nd Int. Colloquium, Collab. Res. Centre, Braunschweig (2005) pp. 93–108Google Scholar
  92. 18.92
    J.-P. Merlet: An efficient trajectory verifier for motion planning of parallel machine, Parallel Kinemat. Mach. Int. Conf., Ann Arbor (2000)Google Scholar
  93. 18.93
    R. Ur-Rehman, S. Caro, D. Chablat, P. Wenger: Multi-objective path placement of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: Application to the Orthoglide, Mech. Mach. Theory 45(8), 1125–1141 (2010)MATHCrossRefGoogle Scholar
  94. 18.94
    J. Cortés, T. Siméon: Probabilistic motion planning for parallel mechanisms, IEEE Int. Conf. Robotics Autom. (ICRA), Taipei (2003) pp. 4354–4359Google Scholar
  95. 18.95
    J.H. Yakey, S.M. LaValle, L.E. Kavraki: Randomized path planning for linkages with closed kinematic chains, IEEE Trans. Robotics Autom. 17(6), 951–958 (2001)CrossRefGoogle Scholar
  96. 18.96
    J.-P. Merlet, M.-W. Perng, D. Daney: Optimal trajectory planning of a 5-axis machine tool based on a 6-axis parallel manipulator. In: Advances in Robot Kinematics, ed. by J. Lenarčič, M.L. Husty (Kluwer, Dordrecht 2000) pp. 315–322CrossRefGoogle Scholar
  97. 18.97
    D. Shaw, Y.-S. Chen: Cutting path generation of the Stewart platform-based milling machine using an end-mill, Int. J. Prod. Res. 39(7), 1367–1383 (2001)CrossRefGoogle Scholar
  98. 18.98
    Z. Wang, Z. Wang, W. Liu, Y. Lei: A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools, Mech. Mach. Theory 36(6), 605–622 (2001)MATHCrossRefGoogle Scholar
  99. 18.99
    D.R. Kerr: Analysis, properties, and design of a Stewart-platform transducer, J. Mech. Transm. Autom. Des. 111(1), 25–28 (1989)CrossRefGoogle Scholar
  100. 18.100
    C.C. Nguyen, S.S. Antrazi, Z.L. Zhou, C.E. Campbell: Analysis and experimentation of a Stewart platform-based force/torque sensor, Int. J. Robotics Autom. 7(3), 133–141 (1992)Google Scholar
  101. 18.101
    C. Reboulet, A. Robert: Hybrid control of a manipulator with an active compliant wrist, 3rd Int. Symp. Robotics Res., Gouvieux (1985) pp. 76–80Google Scholar
  102. 18.102
    J. Duffy: Statics and Kinematics with Applications to Robotics (Cambridge Univ. Press, New York 1996)CrossRefGoogle Scholar
  103. 18.103
    C. Huang, W.-H. Hung, I. Kao: New conservative stiffness mapping for the Stewart Gough platform, IEEE Int. Conf. Robotics Autom. (ICRA), Washington (2002) pp. 823–828Google Scholar
  104. 18.104
    J.L. Herder: Energy-free systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms, Ph.D. Thesis (Delft University of Technology, Delft 2001)Google Scholar
  105. 18.105
    G.R. Dunlop, T.P. Jones: Gravity counter balancing of a parallel robot for antenna aiming, 6th Int. Symp. Robotics Manuf., Montpellier (1996) pp. 153–158Google Scholar
  106. 18.106
    M. Jean, C. Gosselin: Static balancing of planar parallel manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (1996) pp. 3732–3737CrossRefGoogle Scholar
  107. 18.107
    I. Ebert-Uphoff, C.M. Gosselin, T. Laliberté: Static balancing of spatial parallel platform-revisited, ASME J. Mech. Des. 122(1), 43–51 (2000)CrossRefGoogle Scholar
  108. 18.108
    C.M. Gosselin, J. Wang: Static balancing of spatial six-degree-of-freedom parallel mechanisms with revolute actuators, J. Robotic Syst. 17(3), 159–170 (2000)MATHCrossRefGoogle Scholar
  109. 18.109
    M. Leblond, C.M. Gosselin: Static balancing of spatial and planar parallel manipulators with prismatic actuators, ASME Des. Eng. Tech. Conf., Atlanta (1998) pp. 5187–5193Google Scholar
  110. 18.110
    B. Monsarrat, C.M. Gosselin: Workspace analysis and optimal design of a 3-leg 6-DOF parallel platform mechanism, IEEE Trans. Robotics Autom. 19(6), 954–966 (2003)CrossRefGoogle Scholar
  111. 18.111
    J. Wang, C.M. Gosselin: Static balancing of spatial three-degree-of-freedom parallel mechanisms, Mech. Mach. Theory 34(3), 437–452 (1999)MathSciNetMATHCrossRefGoogle Scholar
  112. 18.112
    Y. Wu, C.M. Gosselin: Synthesis of reactionless spatial 3-DOF and 6-DOF mechanisms without separate counter-rotations, Int. J. Robotics Res. 23(6), 625–642 (2004)CrossRefGoogle Scholar
  113. 18.113
    M. Ait-Ahmed: Contribution à la Modélisation Géométrique et Dynamique des Robots Parallèles, Ph.D. Thesis (Univ. Paul Sabatier, Toulouse 1993)Google Scholar
  114. 18.114
    G.F. Liu, X.Z. Wu, Z.X. Li: Inertial equivalence principle and adaptive control of redundant parallel manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Washington (2002) pp. 835–840Google Scholar
  115. 18.115
    R. Clavel: Conception d'un robot parallèle rapide à 4 degrés de liberté, Ph.D. Thesis (EPFL, Lausanne, 1991), No. 925.Google Scholar
  116. 18.116
    J. Gallardo, J.M. Rico, A. Frisoli, D. Checcacci, M. Bergamasco: Dynamics of parallel manipulators by means of screw theory, Mech. Mach. Theory 38(11), 1113–1131 (2003)MathSciNetMATHCrossRefGoogle Scholar
  117. 18.117
    L.-W. Tsai: Solving the inverse dynamics of a Stewart Gough manipulator by the principle of virtual work, ASME J. Mech. Des. 122(1), 3–9 (2000)CrossRefGoogle Scholar
  118. 18.118
    J. Wang, C.M. Gosselin: A new approach for the dynamic analysis of parallel manipulators, Multibody Syst. Dyn. 2(3), 317–334 (1998)MathSciNetMATHCrossRefGoogle Scholar
  119. 18.119
    Z. Geng, L.S. Haynes: On the dynamic model and kinematic analysis of a class of Stewart platforms, Robotics Auton. Syst. 9(4), 237–254 (1992)CrossRefGoogle Scholar
  120. 18.120
    K. Liu, F. Lewis, G. Lebret, D. Taylor: The singularities and dynamics of a Stewart platform manipulator, J. Intell. Robotic Syst. 8(3), 287–308 (1993)CrossRefGoogle Scholar
  121. 18.121
    K. Miller, R. Clavel: The Lagrange-based model of Delta-4 robot dynamics, Robotersysteme 8(1), 49–54 (1992)Google Scholar
  122. 18.122
    H. Abdellatif, B. Heimann: Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism, Mech. Mach. Theory 44(1), 192–207 (2009)MATHCrossRefGoogle Scholar
  123. 18.123
    K. Miller: Optimal design and modeling of spatial parallel manipulators, Int. J. Robotics Res. 23(2), 127–140 (2004)CrossRefGoogle Scholar
  124. 18.124
    A. Codourey, E. Burdet: A body oriented method for finding a linear form of the dynamic equations of fully parallel robot, IEEE Int. Conf. Robotics Autom. (ICRA), Albuquerque (1997) pp. 1612–1618Google Scholar
  125. 18.125
    B. Dasgupta, P. Choudhury: A general strategy based on the Newton Euler approach for the dynamic formulation of parallel manipulators, Mech. Mach. Theory 34(6), 801–824 (1999)MathSciNetMATHCrossRefGoogle Scholar
  126. 18.126
    P. Guglielmetti: Model-Based Control of Fast Parallel Robots: a Global Approach in Operational Space, Ph.D. Thesis (EPFL, Lausanne, 1994)Google Scholar
  127. 18.127
    K. Harib, K. Srinivasan: Kinematic and dynamic analysis of Stewart platform-based machine tool structures, Robotica 21(5), 541–554 (2003)CrossRefGoogle Scholar
  128. 18.128
    W. Khalil, O. Ibrahim: General solution for the dynamic modeling of parallel robots, IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 3665–3670Google Scholar
  129. 18.129
    C. Reboulet, T. Berthomieu: Dynamic model of a six degree of freedom parallel manipulator, Int. Conf. Adv. Robotics, Pise (1991) pp. 1153–1157Google Scholar
  130. 18.130
    H. Abdellatif, B. Heimann: Experimental identification of the dynamics model for 6-DOF parallel manipulators, Robotica 28(3), 359–368 (2010)CrossRefGoogle Scholar
  131. 18.131
    H. Abdellatif, B. Heimann: Model based control for industrial robots: Uniform approaches for serial and parallel structures. In: Industrial Robotics: Theory, Modelling and Control, ed. by S. Cubero (pro literatur Verlag, Augsburg 2007) pp. 523–556Google Scholar
  132. 18.132
    S. Tadokoro: Control of parallel mechanisms, Adv. Robotics 8(6), 559–571 (1994)CrossRefGoogle Scholar
  133. 18.133
    M. Honegger, A. Codourey, E. Burdet: Adaptive control of the Hexaglide, a 6 DOF parallel manipulator, IEEE Int. Conf. Robotics Autom. (ICRA), Albuquerque (1997) pp. 543–548Google Scholar
  134. 18.134
    S. Bhattacharya, H. Hatwal, A. Ghosh: An on-line estimation scheme for generalized Stewart platform type parallel manipulators, Mech. Mach. Theory 32(1), 79–89 (1997)MATHCrossRefGoogle Scholar
  135. 18.135
    P. Guglielmetti, R. Longchamp: A closed-form inverse dynamics model of the Delta parallel robot, 4th IFAC Symp. Robot Control, Syroco, Capri (1994) pp. 51–56Google Scholar
  136. 18.136
    K. Miller: Modeling of dynamics and model-based control of DELTA direct-drive parallel robot, J. Robotics Mechatron. 17(4), 344–352 (1995)CrossRefGoogle Scholar
  137. 18.137
    E. Burdet, M. Honegger, A. Codourey: Controllers with desired dynamic compensation and their implementation on a 6 DOF parallel manipulator, IEEE Int. Conf. Intell. Robots Syst. (IROS), Takamatsu (2000)Google Scholar
  138. 18.138
    K. Yamane, Y. Nakamura, M. Okada, N. Komine, K.I. Yoshimoto: Parallel dynamics computation and $h_{{\infty}}$ acceleration control of parallel manipulators for acceleration display, ASME J. Dyn. Syst. Meas. Control 127(2), 185–191 (2005)CrossRefGoogle Scholar
  139. 18.139
    J.E. McInroy: Modeling and design of flexure jointed Stewart platforms for control purposes, IEEE/ASME Trans. Mechatron. 7(1), 95–99 (2002)CrossRefGoogle Scholar
  140. 18.140
    F. Paccot, N. Andreff, P. Martinet: A review on the dynamic control of parallel kinematic machines: theory and experiments, Int. J. Robotics Res. 28(3), 395–416 (2009)CrossRefGoogle Scholar
  141. 18.141
    D. Corbel, M. Gouttefarde, O. Company, F. Pierrot: Towards 100G with PKM is actuation redundancy a good solution for pick-and-place?, IEEE Int. Conf. Robotics Autom. (ICRA), Anchorage (2010) pp. 4675–4682Google Scholar
  142. 18.142
    F. Xi: Dynamic balancing of hexapods for high-speed applications, Robotica 17(3), 335–342 (1999)CrossRefGoogle Scholar
  143. 18.143
    J. Angeles: The robust design of parallel manipulators, 1st Int. Colloquium, Collab. Res. Centre, Braunschweig (2002) pp. 9–30Google Scholar
  144. 18.144
    S. Bhattacharya, H. Hatwal, A. Ghosh: On the optimum design of a Stewart platform type parallel manipulators, Robotica 13(2), 133–140 (1995)CrossRefGoogle Scholar
  145. 18.145
    K.E. Zanganeh, J. Angeles: Kinematic isotropy and the optimum design of parallel manipulators, Int. J. Robotics Res. 16(2), 185–197 (1997)CrossRefGoogle Scholar
  146. 18.146
    H. Fang, J.-P. Merlet: Multi-criteria optimal design of parallel manipulators based on interval analysis, Mech. Mach. Theory 40(2), 151–171 (2005)Google Scholar
  147. 18.147
    S. Kamamura, W. Choe, S. Tanaka, S.R. Pandian: Development of an Ultrahigh Speed Robot FALCON using Wire Drive System, IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 215–220Google Scholar
  148. 18.148
    L.L. Cone: Skycam: An Aerial Robotic Camera System, Byte 10(10), 122–132 (1985)Google Scholar
  149. 18.149
    J. Pusey, A. Farrah, S.K. Agrawal, E. Messina: Design and workspace analysis of a 6-6 cable-suspended parallel robot, Mech. Mach. Theory 39, 761–778 (2004)MATHCrossRefGoogle Scholar
  150. 18.150
    C. Gosselin, S. Bouchard: A gravity-powered mechanism for extending the workspace of a cable-driven parallel mechanism: Application to the appearance modelling of objects, Int. J. Autom. Technol. 4(4), 372–379 (2010)CrossRefGoogle Scholar
  151. 18.151
    J. Lamaury, M. Gouttefarde: A tension distribution method with improved computational efficiency. In: Cable-Driven Parallel Robots, ed. by T. Bruckmann, A. Pott (Springer, Berlin, Heidelberg 2012) pp. 71–85Google Scholar
  152. 18.152
    A.T. Riechel, I. Ebert-Uphoff: Force-feasible workspace analysis for underconstrained,point-mass cable robots, IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 4956–4962Google Scholar
  153. 18.153
    D. Cunningham, H. Asada: The Winch-Bot: A cable-suspended, under-actuated robot utilizing parametric self-excitation, IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 1844–1850Google Scholar
  154. 18.154
    S. Lefrançois, C. Gosselin: Point-to-point motion control of a pendulum-like 3-DOF underactuated cable-driven robot, IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 5187–5193Google Scholar
  155. 18.155
    D. Zanotto, G. Rosati, S.K. Agrawal: Modeling and control of a 3-DOF pendulum-like manipulator, IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 3964–3969Google Scholar
  156. 18.156
    C. Gosselin, P. Ren, S. Foucault: Dynamic trajectory planning of a two-DOF cable-suspended parallel robot, IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1476–1481Google Scholar
  157. 18.157
    G. Barrette, C. Gosselin: Determination of the dynamic workspace of cable-driven planar parallel mechanisms, ASME J. Mech. Des. 127(2), 242–248 (2005)CrossRefGoogle Scholar
  158. 18.158
    M. Carricato, J.-P. Merlet: Direct geometrico-static problem of under-constrained cable-driven parallel robots with three cables, IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 3011–3017Google Scholar
  159. 18.159
    J.-F. Collard, P. Cardou: Computing the lowest equilibrium pose of a cable-suspended rigid body, Optim. Eng. 14, 457–476 (2013)MathSciNetMATHCrossRefGoogle Scholar
  160. 18.160
    S. Behzadipour, A. Khajepour: Trajectory planning in cable-based high-speed parallel robots, IEEE Trans. Robotics 22(3), 559–563 (2006)CrossRefGoogle Scholar
  161. 18.161
    M. Gouttefarde, C. Gosselin: Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms, IEEE Trans. Robotics 22(3), 434–445 (2006)CrossRefGoogle Scholar
  162. 18.162
    E. Stump, V. Kumar: Workspace delienation of cable-actuated parallel manipulators, ASME Int. Des. Eng. Tech. Conf. (2004)Google Scholar
  163. 18.163
    M. Gouttefarde, D. Daney, J.-P. Merlet: Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots, IEEE Trans. Robotics 27(1), 1–13 (2011)MATHCrossRefGoogle Scholar
  164. 18.164
    K. Azizian, P. Cardou: The dimensional synthesis of planar parallel cable-driven mechanisms through convex relaxations, ASME J. Mech. Des. 4(3), 0310111–03101113 (2012)Google Scholar
  165. 18.165
    S. Perreault, P. Cardou, C. Gosselin, M.J.D. Otis: Geometric determination of the interference-free constant-orientation workspace of parallel cable-driven mechanisms, ASME J. Mech. Robotics 2(3), 031016 (2010)CrossRefGoogle Scholar
  166. 18.166
    J.-P. Merlet: MARIONET, a family of modular wire-driven parallel robots, Adv. Robot Kinemat.: Motion Man Mach. (2010) pp. 53–61CrossRefGoogle Scholar
  167. 18.167
    The National Advanced Driving Simulator, The University of Iowa: http://www.nads-sc.uiowa.edu
  168. 18.168
    M. Girone, G. Burdea, M. Bouzit, V. Popescu, J.E. Deutsch: A Stewart platform-based system for ankle telerehabilitation, Auton. Robots 10(2), 203–212 (2001)MATHCrossRefGoogle Scholar
  169. 18.169
    T. Nakano, M. Sugita, T. Ueta, Y. Tamaki, M. Mitsuishi: A parallel robot to assist vitreoretinal surgery, Int. J. Comput. Assist. Radiol. Surg. 4(6), 517–526 (2009)CrossRefGoogle Scholar
  170. 18.170
    M. Wu, T.G. Hornby, J.M. Landry, H. Roth, B.D. Schmit: A cable-driven locomotor training system for restoration of gait in human SCI, Gait Posture 33(2), 256–260 (2011)CrossRefGoogle Scholar
  171. 18.171
    J. Fink, N. Michael, S. Kim, V. Kumar: Planning and control for cooperative manipulation and transportation with aerial robots, Proc. Intl. Sym. Robot. Res., Luzern (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jean-Pierre Merlet
    • 1
  • Clément Gosselin
    • 2
  • Tian Huang
    • 3
  1. 1.INRIA Sophia-AntipolisSophia-AntipolisFrance
  2. 2.Department of Mechanical EngineeringLaval UniversityQuebecCanada
  3. 3.Department of Mechanical EngineeringTianjin UniversityTianjinChina

Personalised recommendations