Limbed Systems

Abstract

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations, we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

2-D

two-dimensional

3-D

three-dimensional

ASV

adaptive suspension vehicle

CAN

controller area network

CB

computional brain

CMP

centroid moment pivot

COM

center of mass

DLR

German Aerospace Center

DOF

degree of freedom

FRP

fiber-reinforced plastics

GSN

gait sensitivity norm

HRP

humanoid robotics project

IMU

inertial measurement unit

LIP

linear inverted pendulum

NiMH

nickel metal hydride battery

PANTOMEC

pantograph mechanism driven

PD

proportional–derivative

PID

proportional–integral–derivative

SEA

series elastic actuator

SLIP

spring loaded inverted pendulum

STriDER

self-excited tripodal dynamic experimental robot

TUM

Technical University of Munich

ZMP

zero moment point

References

  1. 17.1
    M.H. Raibert: Legged Robots That Balance (MIT Press, Cambridge 1986)MATHGoogle Scholar
  2. 17.2
    S.-M. Song, K.J. Waldron: Machines That Walk: The Adaptive Suspension Vehicle (MIT Press, Cambridge 1989)Google Scholar
  3. 17.3
    S. Lohmeier: Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion (Technische Universität München, München 2010)Google Scholar
  4. 17.4
    R.D. Quinn, R.E. Ritzmann: Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology, Connect. Sci. 10(3), 239–254 (1998)CrossRefGoogle Scholar
  5. 17.5
    H. Hirukawa, F. Kanehiro, K. Kaneko, S. Kajita, M. Morisawa: Dinosaur robotics for entertainment applications, IEEE Robotics Autom. Mag. 14(3), 43–51 (2007)CrossRefGoogle Scholar
  6. 17.6
    D.E. Koditschek, R.J. Full, M. Buehler: Mechanical aspects of legged locomotion control, Arthropod Struct. Dev. 33, 251–272 (2004)CrossRefGoogle Scholar
  7. 17.7
    R. Tajima, K. Suga: Motion having a flight phase: Experiments involving a one-legged robot, Proc. Int. Conf. Intell. Robots Syst. (IROS), Beijing (2006) pp. 1727–1731Google Scholar
  8. 17.8
    K. Kaneko, S. Kajita, F. Kanehiro, K. Yokoi, K. Fujiwara, H. Hirukawa, T. Kawasaki, M. Hirata, T. Isozumi: Design of advanced leg module for humanoid robotics project of METI, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 38–45Google Scholar
  9. 17.9
    Y. Suhagara, H. Lim, T. Hosobata, Y. Mikuriya, H. Sunazuka, A. Takanishi: Realization of dynamic human-carrying walking by a biped locomotor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 3055–3060Google Scholar
  10. 17.10
    S. Hirose, T. Masui, H. Kikuchi, Y. Fukuda, Y. Umetani: TITAN III: A quadruped walking vehicle – Its structure and basic characteristics, Proc. Int. Symp. Robotics Res., Kyoto (1984) pp. 325–331Google Scholar
  11. 17.11
    M. Buehler, R. Playter, M. Raibert: Robots step outside, Proc. Int. Symp. Adapt. Motion Anim. Mach. (AMAM), Ilmenau (2005)Google Scholar
  12. 17.12
    K.J. Waldron, R.B. McGhee: The adaptive suspension vehicle, IEEE Control Syst. Mag. 6, 7–12 (1986)CrossRefGoogle Scholar
  13. 17.13
    R.A. Brooks: A robot that walks; Emergent behavior from a carefully evolved network, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 292–296Google Scholar
  14. 17.14
    M. Hirose, Y. Haikawa, T. Takenaka, K. Hirai: Development of humanoid robot ASIMO, Proc. Int. Conf. Intell. Robots Syst. (IROS) – Workshop 2 (2001)Google Scholar
  15. 17.15
    K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, S. Kajita: Cybernetic Human HRP-4C, IEEE-RAS Int. Conf. Humanoid Robots, Paris (2009) pp. 7–14Google Scholar
  16. 17.16
    K. Kaneko, F. Kanehiro, M. Morisawa, T. Tsuji, K. Mira, S. Nakaoka, S. Kajita, K. Yokoi: Hardware improvement of cybernetic human HRP-4C towards entertainent use, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), San Fransisco (2011) pp. 4392–4399Google Scholar
  17. 17.17
    K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi: Humanoid Robot HRP-2, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 1083–1090Google Scholar
  18. 17.18
    K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, K. Akachi: Humanoid Robot HRP-3, Proc. Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 2471–2478Google Scholar
  19. 17.19
    M. Kouchi, M. Mochimaru, H. Iwasawa, S. Mitani: Anthropometric database for Japanese population 1997-98, Japanese Industrial Standards Center, AIST, MITI http://riodb.ibase.aist.go.jp/dhbodydb/ (Tokyo 2000)
  20. 17.20
    K. Kaneko, K. Harada, F. Kanehiro: Development of multi-fingered hand for life-size humanoid robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 913–920Google Scholar
  21. 17.21
    Q. Lu, C. Ortega, O. Ma: Passive gravity compensation mechanisms: Technologies and applications, Recent Pat. Eng. 5(1), 32–44 (2011)CrossRefGoogle Scholar
  22. 17.22
    K.A. Wyrobek, E.H. Berger, H.F.M. Van der Loos, J.K. Salisbury: Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008)Google Scholar
  23. 17.23
    Willow Garage Inc., 68 Willow Road, Menlo Park, CA 94025, USA: http://www.willowgarage.com/pages/pr2/
  24. 17.24
    T. McGeer: Passive dynamic walking, Int. J. Robotics Res. 9(2), 62–82 (1990)CrossRefGoogle Scholar
  25. 17.25
    M. Garcia, A. Chatterjee, A. Ruina, M. Coleman: The simplest walking model: Stability, complexity, and scaling, ASME J. Biomech. Eng. 120, 281–288 (1998)CrossRefGoogle Scholar
  26. 17.26
    A. Goswami, B. Thuilot, B. Espiau: A study of the passive gait of a compass-like biped robot: Symmetry and chaos, Int. J. Robotics Res. 17, 1282–1301 (1998)CrossRefGoogle Scholar
  27. 17.27
    S.H. Collins, M. Wisse, A. Ruina: A three-dimensional passive-dynamic walking robot with two legs and knees, Int. J. Robotics Res. 20(2), 607–615 (2001)CrossRefGoogle Scholar
  28. 17.28
    S.H. Collins, A. Ruina, R. Tedrake, M. Wisse: Efficient bipedal robots based on passive dynamic walkers, Sci. Mag. 307, 1082–1085 (2005)Google Scholar
  29. 17.29
    P.A. Bhounsule, J. Cortell, A. Ruina: Design and control of Ranger: an energy-efficient, dynamic walking robot, 15th Int. Conf. Climb. Walk. Robots (CLAWAR), Baltimore (2012) pp. 441–448Google Scholar
  30. 17.30
    S.H. Collins, M. Wisse, A. Ruina: Three-dimensional passive-dynamic walking robot with two legs and knees, Int. J. Robotics Res. 20(2), 607–615 (2001)CrossRefGoogle Scholar
  31. 17.31
    M. Wisse, L. Schwab, F.L.T. Van der Helm: Passive walking dynamic model with upper body, Robotica 22(6), 681–688 (2004)CrossRefGoogle Scholar
  32. 17.32
    E.R. Westervelt, J.W. Grizzle, D.E. Koditschek: Hybrid zero dynamics of planar biped walkers, IEEE Trans. Autom. Control 48(1), 42–56 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 17.33
    E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, B. Morris: Feedback Control of Dynamic Bipedal Robot Locomotion (CRC, Boca Raton 2007)CrossRefGoogle Scholar
  34. 17.34
    C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt, C. Canudas-de-Wit, J.W. Grizzle: RABBIT: A testbed for advanced control theory, IEEE Control Syst. Mag. 23(5), 57–79 (2003)CrossRefGoogle Scholar
  35. 17.35
    J.W. Grizzle, J. Hurst, B. Morris, H.W. Park, K. Sreenath: MABEL, A new robotic bipedal walker and runner, Proc. IEEE Am. Control Conf. (2009)Google Scholar
  36. 17.36
    D. Hobbelen, T. de Boer, M. Wisse: System overview of bipedal robots Flame and TUlip: Tailor-made for Limit Cycle Walking, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nice (2008) pp. 2486–2491Google Scholar
  37. 17.37
    R.J. Full, D.E. Koditschek: Templates and anchors: neuromechanical hypotheses of legged locomotion on land, J. Exp. Biol. 202, 3325–3332 (1999)Google Scholar
  38. 17.38
    S. Kajita, K. Tani: Study of dynamic biped locomotion on rugged terrain – Derivation and application of the linear inverted pendulum mode, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1991) pp. 1405–1411Google Scholar
  39. 17.39
    M.B. Popovic, A. Goswami, H. Herr: Angular momentum regulation during human walking: Biomechanics and control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 2405–2411Google Scholar
  40. 17.40
    M.B. Popovic, A. Goswami, H. Herr: Ground reference points in legged locomotion: Definitions, biological trajectories and control implications, Int. J. Robotics Res. 24(12), 1013–1032 (2005)CrossRefGoogle Scholar
  41. 17.41
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa: Biped walking pattern generation by using preview control of zero-moment point, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 1620–1626Google Scholar
  42. 17.42
    Y. Choi, D. Kim, Y. Oh, B.J. You: Posture/walking control for humanoid robot based on kinematic resolution of com Jacobian with embedded motion, IEEE Trans. Robotics 23(6), 1285–1293 (2007)CrossRefGoogle Scholar
  43. 17.43
    J. Englsberger, C. Ott, M. Roa, A. Albu-Schaeffer, G. Hirzinger: Bipedal walking control based on capture point dynamics, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 4420–4427Google Scholar
  44. 17.44
    S. Lohmeier, T. Bushmann, H. Ulbrich: Humanoid Robot LOLA, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Kobe (2009) pp. 775–780Google Scholar
  45. 17.45
    I.W. Park, J.-Y. Kim, J. Lee, J.H. Oh: Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO), Proc. IEEE-RAS Int. Conf. Humanoid Robots (2005) pp. 321–326Google Scholar
  46. 17.46
    B. Stephens: Humanoid push recovery, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2007)Google Scholar
  47. 17.47
    T. Takenaka, T. Matsumoto, T. Yoshiike: Real time motion generation and control for biped robot – 1st Report: Walking gait pattern generation, Proc. IEEE /RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 1084–1091Google Scholar
  48. 17.48
    R. Blickhan: The spring mass model for running and hopping, J. Biomech. 22(11-12), 1217–1227 (1989)CrossRefGoogle Scholar
  49. 17.49
    H. Geyer, A. Seyfarth, R. Blickhan: Compliant leg behaviour explains basic dynamics of walking and running, Proc. Biol. Sci. 273(1603), 2861–2867 (2006)CrossRefGoogle Scholar
  50. 17.50
    J. Pratt, G. Pratt: Exploiting natural dynamics in the control of a planar bipedal walking robot, Proc. 36th Ann. Allerton Conf. Commun. (1998)Google Scholar
  51. 17.51
    J. Pratt, B. Krupp: Design of a bipedal walking robot, SPIE Def. Sec. Symp., Bellingham (2008)Google Scholar
  52. 17.52
    G. Hirzinger, N. Sporer, A. Albu-Schaeffer, M. Haehnle, R. Krenn, A. Pascucci, M. Schedl: DLR's torque-controlled light weight robot III – are we reaching the technological limits now?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002) pp. 1710–1716Google Scholar
  53. 17.53
    C. Ott, O. Eiberger, W. Friedl, B. Baeuml, U. Hillenbrand, C. Borst, A. Albu-Schaeffer, B. Brunner, H. Hirschmueller, S. Kielhoefer, R. Konietschke, M. Suppa, T. Wimboeck, F. Zacharias, G. Hirzinger: A humanoid two-arm system for dexterous manipulation, Proc. IEEE-RAS Int. Conf. Humanoid Robots, Genova (2006) pp. 276–283Google Scholar
  54. 17.54
    C. Ott, C. Baumgaertner, J. Mayr, M. Fuchs, R. Burger, D. Lee, O. Eiberger, A. Albu-Schaeffer, M. Grebenstein, G. Hirzinger: Development of a biped robot with torque controlled joints, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2010) pp. 167–173Google Scholar
  55. 17.55
    G.A. Pratt, M.M. Williamson: Series elastic actuators, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1995) pp. 399–406Google Scholar
  56. 17.56
    R. Brooks, C. Breazeal, M. Marjanovic, B. Scassellati, M. Williamson: The Cog project: Building a humanoid robot, Lect. Notes Comput. Sci. 1562, 52–87 (1999)CrossRefGoogle Scholar
  57. 17.57
    H. Iwata, S. Sugano: Development of human symbiotic robot: WENDY, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999)Google Scholar
  58. 17.58
    M.W. Spong: Modeling and control of elastic joint robots, Trans. ASME: J. Dyn. Syst. Meas. Control 109, 310–318 (1987)MATHGoogle Scholar
  59. 17.59
    G. Wyeth: Control issues for velocity sourced series elastic actuators, Proc. Australasian Conf. Robotics Autom. (2006)Google Scholar
  60. 17.60
    H. Vallery, R. Ekkelenkamp, H. van der Kooij, M. Buss: Passive and accurate torque control of series elastic actuators, IEEE/RSJ Proc. Int. Conf. Intell. Robots Syst. (IROS) (2007)Google Scholar
  61. 17.61
    C. Ott, A. Albu-Schaeffer, G. Hirzinger: Decoupling based cartesian impedance control of flexible joint robots, IEEE Int. Conf. Robotics Autom. (ICRA) (2003)Google Scholar
  62. 17.62
    C. Ott, A. Albu-Schaeffer, A. Kugi, G. Hirzinger: On the passivity based impedance control of flexible joint robots, IEEE Trans. Robotics 24(2), 416–429 (2008)CrossRefGoogle Scholar
  63. 17.63
    J. Heaston, D. Hong, I. Morazzani, P. Ren, G. Goldman: STriDER: Self-excited tripedal dynamic experimental robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Roma (2007) pp. 2776–2777Google Scholar
  64. 17.64
    A. Rachmat, A. Besari, R. Zamri, A. Satria Prabuwono, S. Kuswadi: The study on optimal gait for five-legged robot with reinforcement learning, Int. Conf. Intell. Robots Appl. (2009) pp. 1170–1175Google Scholar
  65. 17.65
    O. Matsumoto, S. Kajita, M. Saigo, K. Tani: Dynamic trajectory control of passing over stairs by a biped type leg-wheeled robot with nominal reference of static gait, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1998) pp. 406–412Google Scholar
  66. 17.66
    S. Hirose, H. Takeuchi: Study on roller-walk (basic characteristics and its control), Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 3265–3270CrossRefGoogle Scholar
  67. 17.67
    U. Saranli, M. Buehler, D.E. Koditschek: RHex: A Simple and Highly Mobile Hexapod Robot, Int. J. Robotics Res. 20(7), 616–631 (2001)CrossRefGoogle Scholar
  68. 17.68
    T.J. Allen, R.D. Quinn, R.J. Bachmann, R.E. Ritzmann: Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles, Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS), Las Vegas (2003) pp. 1370–1375Google Scholar
  69. 17.69
    G. Endo, S. Hirose: Study on roller-walker: System integration and basic experiments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Detroit (1999) pp. 2032–2037Google Scholar
  70. 17.70
    N. Neville, M. Buehler, I. Sharf: A bipedal running robot with one actuator per leg, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006) pp. 848–853Google Scholar
  71. 17.71
    J. Bares, D. Wettergreen: Dante II: Technical description, results and lessons learned, Int. J. Robotics Res. 18(7), 621–649 (1999)CrossRefGoogle Scholar
  72. 17.72
    N. Koyachi, H. Adachi, M. Izumi, T. Hirose, N. Senjo, R. Murata, T. Arai: Multimodal control of hexapod mobile manipulator MELMANTIS-1, Proc. 5th Int. Conf. Climb. Walk. Robots (2002) pp. 471–478Google Scholar
  73. 17.73
    Y. Ota, T. Tamaki, K. Yoneda, S. Hirose: Development of walking manipulator with versatile locomotion, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 477–483Google Scholar
  74. 17.74
    S. Hirose, K. Yoneda, H. Tsukagoshi: TITAN VII: Quadruped walking and manipulating robot on a steep slope, IEEE Int. Conf. Robotics Autom. (ICRA), Albuquerque (1997) pp. 494–500Google Scholar
  75. 17.75
    S. Hirose, A. Nagakubo, R. Toyama: Machine that can walk and climb on floors, walls and ceilings, Proc. 5th Int. Conf. Adv. Robotics (ICAR), Pisa (1991) pp. 753–758Google Scholar
  76. 17.76
    T. Yano, S. Numao, Y. Kitamura: Development of a self-contained wall climbing robot with scanning type suction cups, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 1 (1998) pp. 249–254Google Scholar
  77. 17.77
    S. Kim, A. Asbeck, W. Provancher, M.R. Cutkosky: SpinybotII: Climbing hard walls with compliant microspines, Proc. Int. Conf. Adv. Robotics (ICAR), Seattle (2005) pp. 18–20Google Scholar
  78. 17.78
    A.T. Asbeck, S. Kim, A. McClung, A. Parness, M.R. Cutkosky: Climbing walls with microspines (Video), Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006)Google Scholar
  79. 17.79
    R.B. McGhee, A.A. Frank: On the stability properties of quadruped creeping gaits, Math. Biosci. 3, 331–351 (1968)CrossRefMATHGoogle Scholar
  80. 17.80
    R.B. McGhee: Vehicular legged locomotion. In: Advances in Automation and Robotics, ed. by G.N. Saridis (JAI, Greenwich 1985) pp. 259–284Google Scholar
  81. 17.81
    M. Vukobratović, J. Stepanenko: On the stability of anthropomorphic systems, Math. Biosci. 15, 1–37 (1972)CrossRefMATHGoogle Scholar
  82. 17.82
    Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie: Planning walking patterns for a biped robot, IEEE Trans. Robotics Autom. 17(3), 280–289 (2001)CrossRefGoogle Scholar
  83. 17.83
    D.A. Messuri, C.A. Klein: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion, IEEE J. Robotics Autom. RA-1(3), 132–141 (1985)CrossRefGoogle Scholar
  84. 17.84
    E. Garcia, P. de Gonzalez Santos: An improved energy stability margin for walking machines subject to dynamic effects, Robotica 23(1), 13–20 (2005)CrossRefGoogle Scholar
  85. 17.85
    D.G.E. Hobbelen, M. Wisse: A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm, IEEE Trans. Robotics 23(6), 1213–1224 (2007)CrossRefGoogle Scholar
  86. 17.86
    P. Gregorio, M. Ahmadi, M. Buehler: Design, control, and energetics of an electrically actuated legged robot, IEEE Trans. Syst. Man Cybern. B27(4), 626–634 (1997)CrossRefGoogle Scholar
  87. 17.87
    R. McNeill Alexander: The gait of bipedal and quadrupedal animals, Int. J. Robotics Res. 3(2), 49–59 (1984)CrossRefGoogle Scholar
  88. 17.88
    R. McNeill Alexander: Exploring Biomechanics – Animals in Motion (Freeman, Boston 1992)Google Scholar
  89. 17.89
    G. Gabrielli, T. von Karman: What price speed – Specific power required for propulsion of vehicles, Mechan. Eng. 72(10), 775–781 (1950)Google Scholar
  90. 17.90
    Y. Umetani, S. Hirose: Biomechanical study on serpentine locomotion – Mechanical analysis and zoological experiment for the stationary straightforward movement, Trans. Soc. Instrum. Control Eng. 6, 724–731 (1973), in JapaneseGoogle Scholar
  91. 17.91
    S. Collins, A. Ruina, R. Tedrake, M. Wisse: Efficient Bipedal Robots Based on Passive-Dynamic Walkers, Science 307, 1082–1085 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Intelligent Systems Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)WesslingGermany

Personalised recommendations