Advertisement

Robots with Flexible Elements

  • Alessandro De Luca
  • Wayne J. Book

Abstract

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly into two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

COM

center of mass

DC

direct current

DLR

German Aerospace Center

EOA

end of arm

FFT

fast Fourier transform

LQR

linear quadratic regulator

LWR

light-weight robot

MEMS

microelectromechanical system

MIMO

multiple-input–multiple-output

MMSAE

multiple model switching adaptive estimator

OAT

optimal arbitrary time-delay

PDE

partial differential equation

PD

proportional–derivative

PID

proportional–integral–derivative

RALF

robotic arm large and flexible

robotic arm long and flexible

SEA

series elastic actuator

TMM

transfer matrix method

VSA

variable stiffness actuator

References

  1. 11.1
    L.M. Sweet, M.C. Good: Redefinition of the robot motion control problem, IEEE Control Syst. Mag. 5(3), 18–24 (1985)CrossRefGoogle Scholar
  2. 11.2
    M.C. Good, L.M. Sweet, K.L. Strobel: Dynamic models for control system design of integrated robot and drive systems, ASME J. Dyn. Syst. Meas. Control 107, 53–59 (1985)CrossRefGoogle Scholar
  3. 11.3
    E. Rivin: Mechanical Design of Robots (McGraw-Hill, New York 1988)Google Scholar
  4. 11.4
    S. Nicosia, F. Nicolò, D. Lentini: Dynamical control of industrial robots with elastic and dissipative joints, 8th IFAC World Congr., Kyoto (1981) pp. 1933–1939Google Scholar
  5. 11.5
    P. Tomei: An observer for flexible joint robots, IEEE Trans. Autom. Control 35(6), 739–743 (1990)MathSciNetMATHCrossRefGoogle Scholar
  6. 11.6
    R. Höpler, M. Thümmel: Symbolic computation of the inverse dynamics of elastic joint robots, IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 4314–4319Google Scholar
  7. 11.7
    M.W. Spong: Modeling and control of elastic joint robots, ASME J. Dyn. Syst. Meas. Control 109, 310–319 (1987)MATHCrossRefGoogle Scholar
  8. 11.8
    S.H. Murphy, J.T. Wen, G.N. Saridis: Simulation and analysis of flexibly jointed manipulators, 29th IEEE Conf. Decis. Control, Honolulu (1990) pp. 545–550Google Scholar
  9. 11.9
    R. Marino, S. Nicosia: On the Feedback Control of Industrial Robots with Elastic Joints: A Singular Perturbation Approach (Dipartimento di Ingegneria Elettronica, Univ. Rome Tor Vergata, Rome 1984), Rep. R-84.01 Google Scholar
  10. 11.10
    G. Cesareo, F. Nicolò, S. Nicosia: DYMIR: A code for generating dynamic model of robots, IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1984) pp. 115–120Google Scholar
  11. 11.11
    A. De Luca: Feedforward/feedback laws for the control of flexible robots, IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000) pp. 233–240Google Scholar
  12. 11.12
    G. Buondonno, A. De Luca: A recursive Newton–Euler algorithm for robots with elastic joints and its application to control, IEEE/RSJ Int. Conf. Intell. Robots Syst., Hamburg (2015) pp. 5526–5532Google Scholar
  13. 11.13
    H.B. Kuntze, A.H.K. Jacubasch: Control algorithms for stiffening an elastic industrial robot, IEEE J. Robotics Autom. 1(2), 71–78 (1985)CrossRefGoogle Scholar
  14. 11.14
    S.H. Lin, S. Tosunoglu, D. Tesar: Control of a six-degree-of-freedom flexible industrial manipulator, IEEE Control Syst. Mag. 11(2), 24–30 (1991)CrossRefGoogle Scholar
  15. 11.15
    P. Tomei: A simple PD controller for robots with elastic joints, IEEE Trans. Autom. Control 36(10), 1208–1213 (1991)MathSciNetCrossRefGoogle Scholar
  16. 11.16
    A. De Luca, B. Siciliano: Regulation of flexible arms under gravity, IEEE Trans. Robotics Autom. 9(4), 463–467 (1993)CrossRefGoogle Scholar
  17. 11.17
    A. De Luca, B. Siciliano, L. Zollo: PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments, Automatica 41(10), 1809–1819 (2005)MathSciNetMATHCrossRefGoogle Scholar
  18. 11.18
    C. Ott, A. Albu-Schäffer, A. Kugi, S. Stramigioli, G. Hirzinger: A passivity based Cartesian impedance controller for flexible joint robots – Part I: Torque feedback and gravity compensation, IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 2659–2665Google Scholar
  19. 11.19
    L. Zollo, B. Siciliano, A. De Luca, E. Guglielmelli, P. Dario: Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments, ASME J. Dyn. Syst. Meas. Control 127(3), 321–328 (2005)CrossRefGoogle Scholar
  20. 11.20
    A. Albu-Schäffer, C. Ott, G. Hirzinger: A passivity based Cartesian impedance controller for flexible joint robots – Part II: Full state feedback, impedance design and experiments, IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 2666–2672Google Scholar
  21. 11.21
    C. Ott, A. Albu-Schäffer, A. Kugi, G. Hirzinger: On the passivity-based impedance control of flexible joint robots, IEEE Trans. Robotics 24(2), 416–429 (2008)CrossRefGoogle Scholar
  22. 11.22
    A. De Luca, F. Flacco: A PD-type regulator with exact gravity cancellation for robots with flexible joints, IEEE Int. Conf. Robotics Autom. (ICRA), Shanghai (2011) pp. 317–323Google Scholar
  23. 11.23
    R. Kelly, V. Santibanez: Global regulation of elastic joint robots based on energy shaping, IEEE Trans. Autom. Control 43(10), 1451–1456 (1998)MathSciNetMATHCrossRefGoogle Scholar
  24. 11.24
    J. Alvarez-Ramirez, I. Cervantes: PID regulation of robot manipulators with elastic joints, Asian J. Control 5(1), 32–38 (2003)CrossRefGoogle Scholar
  25. 11.25
    A. De Luca, S. Panzieri: Learning gravity compensation in robots: Rigid arms, elastic joints, flexible links, Int. J. Adapt. Control Signal Process. 7(5), 417–433 (1993)MATHCrossRefGoogle Scholar
  26. 11.26
    A. Albu-Schäffer, G. Hirzinger: A globally stable state feedback controller for flexible joint robots, Adv. Robotics 15(8), 799–814 (2001)CrossRefGoogle Scholar
  27. 11.27
    L.E. Pfeffer, O. Khatib, J. Hake: Joint torque sensory feedback in the control of a PUMA manipulator, IEEE Trans. Robotics Autom. 5(4), 418–425 (1989)CrossRefGoogle Scholar
  28. 11.28
    M. Hashimoto, Y. Kiyosawa, R.P. Paul: A torque sensing technique for robots with harmonic drives, IEEE Trans. Robotics Autom. 9(1), 108–116 (1993)CrossRefGoogle Scholar
  29. 11.29
    T. Lin, A.A. Goldenberg: Robust adaptive control of flexible joint robots with joint torque feedback, IEEE Int. Conf. Robotics Autom. (ICRA), Nagoya (1995) pp. 1229–1234Google Scholar
  30. 11.30
    M.G. Forrest-Barlach, S.M. Babcock: Inverse dynamics position control of a compliant manipulator, IEEE J. Robotics Autom. 3(1), 75–83 (1987)CrossRefGoogle Scholar
  31. 11.31
    K.P. Jankowski, H. Van Brussel: An approach to discrete inverse dynamics control of flexible-joint robots, IEEE Trans. Robotics Autom. 8(5), 651–658 (1992)MATHCrossRefGoogle Scholar
  32. 11.32
    W.M. Grimm: Robustness analysis of nonlinear decoupling for elastic-joint robots, IEEE Trans. Robotics Autom. 6(3), 373–377 (1990)CrossRefGoogle Scholar
  33. 11.33
    A. De Luca, R. Farina, P. Lucibello: On the control of robots with visco-elastic joints, IEEE Int. Conf. Robotics Autom. (ICRA), Barcelona (2005) pp. 4297–4302Google Scholar
  34. 11.34
    A. De Luca: Decoupling and feedback linearization of robots with mixed rigid/elastic joints, Int. J. Robust Nonlin. Control 8(11), 965–977 (1998)MathSciNetMATHCrossRefGoogle Scholar
  35. 11.35
    A. De Luca, B. Siciliano: Inversion-based nonlinear control of robot arms with flexible links, AIAA J. Guid. Control Dyn. 16(6), 1169–1176 (1993)MATHCrossRefGoogle Scholar
  36. 11.36
    A. De Luca: Dynamic control of robots with joint elasticity, IEEE Int. Conf. Robotics Autom. (ICRA), Philadelphia (1988) pp. 152–158Google Scholar
  37. 11.37
    S. Nicosia, P. Tomei: On the feedback linearization of robots with elastic joints, 27th IEEE Conf. Decis. Control, Austin (1988) pp. 180–185Google Scholar
  38. 11.38
    A. De Luca, P. Lucibello: A general algorithm for dynamic feedback linearization of robots with elastic joints, IEEE Int. Conf. Robotics Autom. (ICRA), Leuven (1998) pp. 504–510Google Scholar
  39. 11.39
    J. Swevers, D. Torfs, M. Adams, J. De Schutter, H. Van Brussel: Comparison of control algorithms for flexible joint robots implemented on a KUKA IR 161/60 industrial robot, 5th Int. Conf. Adv. Robotics, Pisa (1991) pp. 120–125Google Scholar
  40. 11.40
    K. Khorasani, P.V. Kokotovic: Feedback linearization of a flexible manipulator near its rigid body manifold, Syst. Control Lett. 6, 187–192 (1985)MathSciNetMATHCrossRefGoogle Scholar
  41. 11.41
    M.W. Spong, K. Khorasani, P.V. Kokotovic: An integral manifold approach to the feedback control of flexible joint robots, IEEE J. Robotics Autom. 3(4), 291–300 (1987)CrossRefGoogle Scholar
  42. 11.42
    S. Nicosia, P. Tomei: Design of global tracking controllers for flexible-joint robots, J. Robotic Syst. 10(6), 835–846 (1993)MATHCrossRefGoogle Scholar
  43. 11.43
    B. Brogliato, R. Ortega, R. Lozano: Global tracking controllers for flexible-joint manipulators: A comparative study, Automatica 31(7), 941–956 (1995)MathSciNetMATHCrossRefGoogle Scholar
  44. 11.44
    M.W. Spong: Adaptive control of flexible joint manipulators, Syst. Control Lett. 13(1), 15–21 (1989)MathSciNetMATHCrossRefGoogle Scholar
  45. 11.45
    F. Ghorbel, J.Y. Hung, M.W. Spong: Adaptive control of flexible-joint manipulators, IEEE Control Syst. Mag. 9(7), 9–13 (1989)CrossRefGoogle Scholar
  46. 11.46
    R. Lozano, B. Brogliato: Adaptive control of robot manipulators with flexible joints, IEEE Trans. Autom. Control 37(2), 174–181 (1992)MathSciNetMATHCrossRefGoogle Scholar
  47. 11.47
    H. Sira-Ramirez, M.W. Spong: Variable structure control of flexible joint manipulators, Int. Robotics Autom. 3(2), 57–64 (1988)Google Scholar
  48. 11.48
    A. De Luca, G. Ulivi: Iterative learning control of robots with elastic joints, IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 1920–1926Google Scholar
  49. 11.49
    O. Dahl: Path constrained motion optimization for rigid and flexible joint robots, IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 223–229Google Scholar
  50. 11.50
    A. De Luca, L. Farina: Dynamic scaling of trajectories for robots with elastic joints, IEEE Int. Conf. Robotics Autom. (ICRA), Washington (2002) pp. 2436–2442Google Scholar
  51. 11.51
    S. Haddadin, M. Özparpucu, A. Albu-Schäffer: Optimal control for maximizing potential energy in a variable stiffness joint, IEEE 51st Conf. Decis. Control, Maui (2012) pp. 1199–1206Google Scholar
  52. 11.52
    M. Özparpucu, S. Haddadin: Optimal control of elastic joints with variable damping, 13th European Control Conf., Strasbourg (2014) pp. 2526–2533Google Scholar
  53. 11.53
    S. Nicosia, P. Tomei, A. Tornambè: A nonlinear observer for elastic robots, IEEE J. Robotics Autom. 4(1), 45–52 (1988)CrossRefGoogle Scholar
  54. 11.54
    S. Nicosia, P. Tomei: A method for the state estimation of elastic joint robots by global position measurements, Int. J. Adapt. Control Signal Process. 4(6), 475–486 (1990)MATHCrossRefGoogle Scholar
  55. 11.55
    A. De Luca, D. Schröder, M. Thümmel: An acceleration-based state observer for robot manipulators with elastic joints, IEEE Int. Conf. Robotics Autom. (ICRA), Rome (2007) pp. 3817–3823Google Scholar
  56. 11.56
    M.W. Spong: On the force control problem for flexible joint manipulators, IEEE Trans. Autom. Control 34(1), 107–111 (1989)MATHCrossRefGoogle Scholar
  57. 11.57
    J.K. Mills: Stability and control of elastic-joint robotic manipulators during constrained-motion tasks, IEEE Trans. Robotics Autom. 8(1), 119–126 (1992)CrossRefGoogle Scholar
  58. 11.58
    K.P. Jankowski, H.A. El Maraghy: Dynamic decoupling for hybrid control of rigid-/flexible-joint robots interacting with the environment, IEEE Trans. Robotics Autom. 8(5), 519–534 (1992)CrossRefGoogle Scholar
  59. 11.59
    T. Lin, A.A. Goldenberg: A unified approach to motion and force control of flexible joint robots, IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (1996) pp. 1115–1120Google Scholar
  60. 11.60
    A. Albu-Schäffer, C. Ott, G. Hirzinger: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots, Int. J. Robotics Res. 26(1), 23–39 (2007)MATHCrossRefGoogle Scholar
  61. 11.61
    W. Book, O. Maizza-Neto, D.E. Whitney: Feedback control of two beam, two joint systems with distributed flexibility, ASME J. Dyn. Syst. Meas. Control 97(4), 424–431 (1975)CrossRefGoogle Scholar
  62. 11.62
    W. Book: Characterization of strength and stiffness constraints on manipulator control. In: Theory and Practice of Robots and Manipulators, ed. by W. Book (Elsevier, Amsterdam 1977) pp. 37–45Google Scholar
  63. 11.63
    T.E. Alberts, W. Book, S. Dickerson: Experiments in augmenting active control of a flexible structure with passive damping, AIAA 24th Aerosp. Sci. Meet., Reno (1986)Google Scholar
  64. 11.64
    T. Bailey, J.E. Hubbard Jr.: Distributed piezoelectric-polymer active vibration control of a cantilever beam, J. Guid. Control Dyn. 8(5), 605–611 (1985)MATHCrossRefGoogle Scholar
  65. 11.65
    W. Book, V. Sangveraphunsiri, S. Le: The Bracing Strategy for Robot Operation, Jt. IFToMM-CISM Symp. Theory Robots Manip. (RoManSy), Udine (1984)Google Scholar
  66. 11.66
    W. Book: Analysis of massless elastic chains with servo controlled joints, ASME J. Dyn. Syst. Meas. Control 101(3), 187–192 (1979)MATHCrossRefGoogle Scholar
  67. 11.67
    E.C. Pestel, F.A. Leckie: Matrix Methods in Elastomechanics (McGraw-Hill, New York 1963)Google Scholar
  68. 11.68
    R. Krauss: Transfer Matrix Modeling, Ph.D. Thesis (School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 2006)Google Scholar
  69. 11.69
    W.J. Book: Modeling, Design and Control of Flexible Manipulator Arms, Ph.D. Thesis (Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 1974)Google Scholar
  70. 11.70
    W. Book: Recursive lagrangian dynamics of flexible manipulators, Int. J. Robotics Res. 3(3), 87–106 (1984)CrossRefGoogle Scholar
  71. 11.71
    W.J. Book, S.H. Lee: Vibration control of a large flexible manipulator by a small robotic arm, Proc. Am. Control Conf., Pittsburgh (1989) pp. 1377–1380Google Scholar
  72. 11.72
    J. Lew, S.-M. Moon: A simple active damping control for compliant base manipulators, IEEE/ASME Trans. Mechatron. 2, 707–714 (1995)Google Scholar
  73. 11.73
    W.J. Book, J.C. Loper: Inverse dynamics for commanding micromanipulator inertial forces to damp macromanipulator vibration, IEEE, Robot Soc. Int. Conf. Intell. Robots Syst., Kyongju (1999)Google Scholar
  74. 11.74
    I. Sharf: Active damping of a large flexible manipulator with a short-reach robot, Proc. Am. Control Conf., Seattle (1995) pp. 3329–3333Google Scholar
  75. 11.75
    L. George, W.J. Book: Inertial vibration damping control of a flexible base manipulator, IEEE/ASME Trans. Mechatron. 8(2), 268–271 (2003)CrossRefGoogle Scholar
  76. 11.76
    J.F. Calvert, D.J. Gimpel: Method and apparatus for control of system output in response to system input, U.S. Patent 2801351 (1957)Google Scholar
  77. 11.77
    O.J.M. Smith: Feedback Control Systems (McGraw-Hill, New York 1958)Google Scholar
  78. 11.78
    N. Singer, W.P. Seering: Preshaping command inputs to reduce system vibration, ASME J. Dyn. Syst. Meas. Control 112(1), 76–82 (1990)CrossRefGoogle Scholar
  79. 11.79
    W. Singhose, W. Seering, N. Singer: Residual vibration reduction using vector diagrams to generate shaped inputs, J. Mech. Des. 2, 654–659 (1994)CrossRefGoogle Scholar
  80. 11.80
    D.P. Magee, W.J. Book: The Application of Input Shaping to a System with Varying Parameters, Proc. 1992 Japan-USA Symp. Flex. Autom., San Francisco (1992) pp. 519–526Google Scholar
  81. 11.81
    D.P. Magee, W.J. Book: Optimal arbitrary time-delay (OAT) filter and method to minimize unwanted system dynamics, U.S. Patent 6078844 (2000)Google Scholar
  82. 11.82
    S. Rhim, W.J. Book: Noise effect on time-domain adaptive command shaping methods for flexible manipulator control, IEEE Trans. Control Syst. Technol. 9(1), 84–92 (2001)CrossRefGoogle Scholar
  83. 11.83
    D.-S. Kwon, W.J. Book: A time-domain inverse dynamic tracking control of a single-link flexible manipulator, J. Dyn. Syst. Meas. Control 116, 193–200 (1994)MATHCrossRefGoogle Scholar
  84. 11.84
    D.S. Kwon: An Inverse Dynamic Tracking Control for a Bracing Flexible Manipulator, Ph.D. Thesis (School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 1991)Google Scholar
  85. 11.85
    A. De Luca, G. Di Giovanni: Rest-to-rest motion of a one-link flexible arm, Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron., Como (2001) pp. 923–928Google Scholar
  86. 11.86
    A. De Luca, G. Di Giovanni: Rest-to-rest motion of a two-link robot with a flexible forearm, Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron., Como (2001) pp. 929–935Google Scholar
  87. 11.87
    A. De Luca, V. Caiano, D. Del Vescovo: Experiments on rest-to-rest motion of a flexible arm. In: Experimental Robotics VIII, Springer Tracts in Advanced Robotics, Vol. 5, ed. by B. Siciliano, P. Dario (Springer, Berlin, Heidelberg 2003) pp. 338–349CrossRefGoogle Scholar
  88. 11.88
    R.M. Murray, M. Rathinam, W. Sluis: Differential flatness of mechanical control systems: A catalog of prototype systems, Proc. ASME Int. Mech. Engr. Congr., San Francisco (1995)Google Scholar
  89. 11.89
    M. Fliess, P. Martin, P. Rouchon: Flatness and defect of nonlinear systems: Introductory theory and examples, Int. J. Control 61(6), 1327–1361 (1995)MATHCrossRefGoogle Scholar
  90. 11.90
    R.H. Cannon, E. Schmitz: Initial experiments on the end-point control of a flexible one-link robot, Int. J. Robotics Res. 3(3), 62–75 (1984)CrossRefGoogle Scholar
  91. 11.91
    A. Truckenbrot: Modeling and control of flexible manipulator structures, Proc. 4th CISM-IFToMM Symp. Theory Robots Manip. (RoManSy), Zaborow (1981) pp. 90–101Google Scholar
  92. 11.92
    G.G. Hastings, W.J. Book: Reconstruction and robust reduced-order observation of flexible variables, ASME Winter Ann. Meet., Anaheim (1986)Google Scholar
  93. 11.93
    B.S. Yuan, J.D. Huggins, W.J. Book: Small motion experiments with a large flexible arm with strain feedback, Proceedings of the 1989 Am. Control Conf., Pittsburgh (1989) pp. 2091–2095Google Scholar
  94. 11.94
    D. Wang, M. Vidyasagar: Passive control of a stiff flexible link, Int. J. Robotics Res. 11, 572–578 (1992)CrossRefGoogle Scholar
  95. 11.95
    K. Obergfell, W.J. Book: Control of flexible manipulators using vision and modal feedback, Proc. Int. Conf. Risk Assess. Manag. (ICRAM), Istanbul (1995)Google Scholar
  96. 11.96
    B. Post: Robust State Estimation for the Control of Flexible Robotic Manipulators, Ph.D. Thesis (School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 2013)Google Scholar
  97. 11.97
    B. Walcott, S. Zak: State observation of nonlinear uncertain dynamical system, IEEE Trans. Autom. Control 32, 166–170 (1987)MathSciNetMATHCrossRefGoogle Scholar
  98. 11.98
    B. Walcott, S. Zak: Observation of dynamical systems in the presence of bounded nonlinearities/uncertainties, Proc. IEEE Conf. Dec. Control 25, 961–966 (1986)Google Scholar
  99. 11.99
    N.G. Chalhoub, G.A. Kfoury: Development of a robust nonlinear observer for a single-link, flexible manipulator, Nonlin. Dyn. 39(3), 217–233 (2005)MATHCrossRefGoogle Scholar
  100. 11.100
    W.J. Book: Controlled motion in an elastic world, ASME J. Dyn. Syst. Meas. Control 2B, 252–261 (1993)MATHCrossRefGoogle Scholar
  101. 11.101
    C. Canudas-de-Wit, B. Siciliano, G. Bastin (Eds.): Theory of Robot Control (Springer, Berlin, Heidelberg 1996)MATHGoogle Scholar
  102. 11.102
    G. Hirzinger, N. Sporer, J. Butterfass, M. Grebenstein: Torque-controlled lightweight arms and articulated hands: Do we reach technological limits now?, Int. J. Robotics Res. 23(4/5), 331–340 (2004)CrossRefGoogle Scholar
  103. 11.103
    Camotion Inc.: http://www.camotion.com (Camotion Inc., Atlanta 2007)
  104. 11.104
    B. Rooks: High speed delivery and low cost from new ABB packaging robot, Ind. Robotics Int. J. 26(4), 267–275 (1999)CrossRefGoogle Scholar
  105. 11.105
    T. Trautt, E. Bayo: Inverse dynamics of non-minimum phase systems with non-zero initial conditions, Dyn. Control 7(1), 49–71 (1997)MathSciNetMATHCrossRefGoogle Scholar
  106. 11.106
    B. Siciliano, W. Book: A singular perturbation approach to control of lightweight flexible manipulators, Int. J. Robotics Res. 7(4), 79–90 (1988)CrossRefGoogle Scholar
  107. 11.107
    F. Ghorbel, M.W. Spong: Singular perturbation model of robots with elastic joints and elastic links constrained by a rigid environment, J. Intell. Robotics Syst. 22(2), 143–152 (1998)CrossRefGoogle Scholar
  108. 11.108
    J. Guldner, J. Shi, V. Utkin: Sliding Mode Control in Electromechanical Systems (Taylor, London 1999)Google Scholar
  109. 11.109
    J.-H. Ryu, D.-S. Kwon, B. Hannaford: Control of a flexible manipulator with noncollocated feedback: Time-domain passivity approach, IEEE Trans. Robotics 20(4), 776–780 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer, Control, and Management EngineeringSapienza University of RomeRomeItaly
  2. 2.G. W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations