Redundant Robots

  • Stefano Chiaverini
  • Giuseppe Oriolo
  • Anthony A. Maciejewski

Abstract

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different first-order methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e. g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e. g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

CLIK

closed-loop inverse kinematics

DLR

Deutsches Zentrum für Luft- und Raumfahrt

DOF

degree of freedom

NASA

National Aeronautics and Space Agency

SCARA

selective compliance assembly robot arm

SVD

singular value decomposition

TPBVP

two-point boundary value problem

References

  1. 10.1
    D.E. Whitney: Resolved motion rate control of manipulators and human prostheses, IEEE Trans. Man-Mach. Syst. 10(2), 47–53 (1969)CrossRefGoogle Scholar
  2. 10.2
    G.H. Golub, C. Reinsch: Singular value decomposition and least-squares solutions, Numer. Math. 14, 403–420 (1970)MathSciNetCrossRefMATHGoogle Scholar
  3. 10.3
    A.A. Maciejewski, C.A. Klein: The singular value decomposition: computation and applications to robotics, Int. J. Robotics Res. 8(6), 63–79 (1989)CrossRefGoogle Scholar
  4. 10.4
    T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robotics Res. 4(2), 3–9 (1985)CrossRefGoogle Scholar
  5. 10.5
    C.A. Klein, B.E. Blaho: Dexterity measures for the design and control of kinematically redundant manipulators, Int. J. Robotics Res. 6(2), 72–83 (1987)CrossRefGoogle Scholar
  6. 10.6
    A.A. Maciejewski, C.A. Klein: Numerical filtering for the operation of robotic manipulators through kinematically singular configurations, J. Robotics Syst. 5, 527–552 (1988)CrossRefGoogle Scholar
  7. 10.7
    S. Chiaverini: Estimate of the two smallest singular values of the Jacobian matrix: application to damped least-squares inverse kinematics, J. Robotics Syst. 10, 991–1008 (1993)CrossRefMATHGoogle Scholar
  8. 10.8
    O. Egeland, M. Ebdrup, S. Chiaverini: Sensory control in singular configurations – Application to visual servoing, IEEE Int. Workshop Intell. Motion Control, Istanbul (1990) pp. 401–405CrossRefGoogle Scholar
  9. 10.9
    Y. Nakamura, H. Hanafusa: Inverse kinematic solutions with singularity robustness for robot manipulator control, Trans. ASME J. Dyn. Syst. Meas., Control 108, 163–171 (1986)MATHGoogle Scholar
  10. 10.10
    D.E. Whitney: The mathematics of coordinated control of prosthetic arms and manipulators, Trans. ASME J. Dyn. Syst. Meas., Control 94, 303–309 (1972)Google Scholar
  11. 10.11
    T.L. Boullion, P.L. Odell: Generalized Inverse Matrices (Wiley, New York 1971)MATHGoogle Scholar
  12. 10.12
    C.R. Rao, S.K. Mitra: Generalized Inverse of Matrices and its Applications (Wiley, New York 1971)MATHGoogle Scholar
  13. 10.13
    A. Ben-Israel, T.N.E. Greville: Generalized Inverses: Theory and Applications (Wiley, New York 1974)MATHGoogle Scholar
  14. 10.14
    R.H. Taylor: Planning and execution of straight-line manipulator trajectories, IBM J. Res. Dev. 23, 424–436 (1979)CrossRefGoogle Scholar
  15. 10.15
    M. Sampei, K. Furuta: Robot control in the neighborhood of singular points, IEEE J. Robotics Autom. 4, 303–309 (1988)CrossRefGoogle Scholar
  16. 10.16
    E.W. Aboaf, R.P. Paul: Living with the singularity of robot wrists, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1713–1717Google Scholar
  17. 10.17
    S. Chiaverini, O. Egeland: A solution to the singularity problem for six-joint manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 644–649CrossRefGoogle Scholar
  18. 10.18
    S. Chiaverini, O. Egeland: An efficient pseudo-inverse solution to the inverse kinematic problem for six-joint manipulators, Model. Identif. Control 11(4), 201–222 (1990)MathSciNetCrossRefGoogle Scholar
  19. 10.19
    O. Khatib: A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE J. Robotics Autom. 3, 43–53 (1987)CrossRefGoogle Scholar
  20. 10.20
    C.W. Wampler: Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods, IEEE Trans. Syst. Man Cybern. 16, 93–101 (1986)CrossRefMATHGoogle Scholar
  21. 10.21
    S. Chiaverini, O. Egeland, R.K. Kanestrøm: Achieving user-defined accuracy with damped least-squares inverse kinematics, 5th Int. Conf. Adv. Robotics, Pisa (1991) pp. 672–677Google Scholar
  22. 10.22
    J.R. Sagli: Coordination of Motion in Manipulators with Redundant Degrees of Freedom, Ph.D. Thesis (Norwegian University of Science and Technology, Trondheim 1991)Google Scholar
  23. 10.23
    P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy, Int. J. Robotics Res. 10(4), 410–425 (1991)CrossRefGoogle Scholar
  24. 10.24
    B. Siciliano: A closed-loop inverse kinematic scheme for on-line joint-based robot control, Robotica 8, 231–243 (1990)CrossRefGoogle Scholar
  25. 10.25
    Z.R. Novaković, B. Siciliano: A new second-order inverse kinematics solution for redundant manipulators. In: Advances in Robot Kinematics, ed. by S. Stifter, J. Lenarčič (Springer, New York 1991) pp. 408–415Google Scholar
  26. 10.26
    A. Balestrino, G. De Maria, L. Sciavicco: Robust control of robotic manipulators, 9th IFAC World Cong., Budapest (1984) pp. 80–85Google Scholar
  27. 10.27
    W.A. Wolovich, H. Elliott: A computational technique for inverse kinematics, 23rd IEEE Conf. Decis. Control, Las Vegas (1984) pp. 1359–1363Google Scholar
  28. 10.28
    L. Sciavicco, B. Siciliano: A solution algorithm to the inverse kinematic problem for redundant manipulators, IEEE J. Robotics Autom. 4, 403–410 (1988)CrossRefGoogle Scholar
  29. 10.29
    J. Baillieul, J. Hollerbach, R.W. Brockett: Programming and control of kinematically redundant manipulators, 23rd IEEE Conf. Decis. Control, Las Vegas (1984) pp. 768–774Google Scholar
  30. 10.30
    A. Liégeois: Automatic supervisory control of the configuration and behavior of multibody mechanisms, IEEE Trans. Syst. Man Cybern. 7, 868–871 (1977)CrossRefMATHGoogle Scholar
  31. 10.31
    O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, IEEE Int. Conf. Robotics Autom. (ICRA), St. Louis (1985) pp. 500–505Google Scholar
  32. 10.32
    J.C. Latombe: Robot Motion Planning (Kluwer, Boston 1991)CrossRefMATHGoogle Scholar
  33. 10.33
    D.G. Luenberger: Linear and Nonlinear Programming (Addison-Wesley, Reading 1984)MATHGoogle Scholar
  34. 10.34
    A. De Luca, G. Oriolo: Issues in acceleration resolution of robot redundancy, 3rd IFAC Symp. Robot Control, Vienna (1991) pp. 665–670Google Scholar
  35. 10.35
    J. Baillieul: Kinematic programming alternatives for redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), St. Louis (1985) pp. 722–728Google Scholar
  36. 10.36
    P.H. Chang: A closed-form solution for inverse kinematics of robot manipulators with redundancy, IEEE J. Robotics Autom. 3, 393–403 (1987)CrossRefGoogle Scholar
  37. 10.37
    J. Baillieul: Avoiding obstacles and resolving kinematic redundancy, IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 1698–1704Google Scholar
  38. 10.38
    L. Sciavicco, B. Siciliano: Solving the inverse kinematic problem for robotic manipulators, 6th CISM-IFToMM Symp. Theory Pract. Robotics Manip., Kraków (1986) pp. 107–114Google Scholar
  39. 10.39
    L. Sciavicco, B. Siciliano: A dynamic solution to the inverse kinematic problem for redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1081–1087Google Scholar
  40. 10.40
    O. Egeland: Task-space tracking with redundant manipulators, IEEE J. Robotics Autom. 3, 471–475 (1987)CrossRefGoogle Scholar
  41. 10.41
    H. Seraji: Configuration control of redundant manipulators: theory and implementation, IEEE J. Robotics Autom. 5, 472–490 (1989)CrossRefGoogle Scholar
  42. 10.42
    J. Baillieul: A constraint oriented approach to inverse problems for kinematically redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1827–1833Google Scholar
  43. 10.43
    S.L. Chiu: Control of redundant manipulators for task compatibility, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1718–1724Google Scholar
  44. 10.44
    H. Seraji, R. Colbaugh: Improved configuration control for redundant robots, J. Robotics Syst. 7, 897–928 (1990)CrossRefMATHGoogle Scholar
  45. 10.45
    O. Egeland, J.R. Sagli, I. Spangelo, S. Chiaverini: A damped least-squares solution to redundancy resolution, IEEE Int. Conf. Robotics Autom. (ICRA), Sacramento (1991) pp. 945–950Google Scholar
  46. 10.46
    A.A. Maciejewski, C.A. Klein: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments, Int. J. Robotics Res. 4(3), 109–117 (1985)CrossRefGoogle Scholar
  47. 10.47
    Y. Nakamura, H. Hanafusa, T. Yoshikawa: Task-priority based redundancy control of robot manipulators, Int. J. Robotics Res. 6(2), 3–15 (1987)CrossRefGoogle Scholar
  48. 10.48
    H. Hanafusa, T. Yoshikawa, Y. Nakamura: Analysis and control of articulated robot arms with redundancy, IFAC 8th Trienn. World Congr., Kyoto (1981) pp. 78–83Google Scholar
  49. 10.49
    Y. Nakamura, H. Hanafusa: Task priority based redundancy control of robot manipulators. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 155–162Google Scholar
  50. 10.50
    S. Chiaverini: Task-priority redundancy resolution with robustness to algorithmic singularities, 4th IFAC Symp. Robot Control, Capri (1994) pp. 393–399Google Scholar
  51. 10.51
    S. Chiaverini: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators, IEEE Trans. Robotics Autom. 13, 398–410 (1997)CrossRefGoogle Scholar
  52. 10.52
    K. Kazerounian, Z. Wang: Global versus local optimization in redundancy resolution of robotic manipulators, Int. J. Robotics Res. 7(5), 312 (1988)CrossRefGoogle Scholar
  53. 10.53
    J.M. Hollerbach, K.C. Suh: Redundancy resolution of manipulators through torque optimization, IEEE J. Robotics Autom. 3, 308–316 (1987)CrossRefGoogle Scholar
  54. 10.54
    A.A. Maciejewski: Kinetic limitations on the use of redundancy in robotic manipulators, IEEE Trans. Robotics Autom. 7(2), 205–210 (1991)CrossRefGoogle Scholar
  55. 10.55
    J.M. Hollerbach, K.C. Suh: Local versus global torque optimization of redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 619–624Google Scholar
  56. 10.56
    T. Shamir, Y. Yomdin: Repeatability of redundant manipulators: Mathematical solution of the problem, IEEE Trans. Autom. Control 33, 1004–1009 (1988)MathSciNetCrossRefMATHGoogle Scholar
  57. 10.57
    R.G. Roberts, A.A. Maciejewski: Repeatable generalized inverse control strategies for kinematically redundant manipulators, IEEE Trans. Autom. Control 38(5), 689–699 (1993)MathSciNetCrossRefMATHGoogle Scholar
  58. 10.58
    B.S. Dhillon, A.R.M. Fashandi, K.L. Liu: Robot systems reliability and safety: A review, J. Qual. Maint. Eng. 8(3), 170–212 (2002)CrossRefGoogle Scholar
  59. 10.59
    M.L. Visinsky, J.R. Cavallaro, I.D. Walker: A dynamic fault tolerance framework for remote robots, IEEE Trans. Robotics Autom. 11(4), 477–490 (1995)CrossRefGoogle Scholar
  60. 10.60
    J.D. English, A.A. Maciejewski: Fault tolerance for kinematically redundant manipulators: Anticipating free-swinging joint failures, IEEE Trans. Robotics Autom. 14, 566–575 (1998)CrossRefGoogle Scholar
  61. 10.61
    P. Nieminen, S. Esque, A. Muhammad, J. Mattila, J. Väyrynen, M. Siuko, M. Vilenius: Water hydraulic manipulator for fail safe and fault tolerant remote handling operations at ITER, Fusion Eng. Des. 84(7), 1420–1424 (2009)CrossRefGoogle Scholar
  62. 10.62
    Y. Yi, J.E. McInroy, Y. Chen: Fault tolerance of parallel manipulators using task space and kinematic redundancy, IEEE Trans. Robotics 22(5), 1017–1021 (2006)CrossRefGoogle Scholar
  63. 10.63
    A.A. Maciejewski, R.G. Roberts: On the existence of an optimally failure tolerant 7R manipulator Jacobian, Appl. Math. Comp. Sci. 5(2), 343–357 (1995)MATHGoogle Scholar
  64. 10.64
    R.G. Roberts, A.A. Maciejewski: A local measure of fault tolerance for kinematically redundant manipulators, IEEE Trans. Robotics Autom. 12(4), 543–552 (1996)CrossRefGoogle Scholar
  65. 10.65
    C.J.J. Paredis, P.K. Khosla: Fault tolerant task execution through global trajectory planning, Rel. Eng. Syst. Saf. 53, 225–235 (1996)CrossRefGoogle Scholar
  66. 10.66
    C.L. Lewis, A.A. Maciejewski: Fault tolerant operation of kinematically redundant manipulators for locked joint failures, IEEE Trans. Robotics Autom. 13(4), 622–629 (1997)CrossRefGoogle Scholar
  67. 10.67
    R.S. Jamisola Jr., A.A. Maciejewski, R.G. Roberts: Failure tolerant path planning for kinematically redundant manipulators anticipating locked-joint failures, IEEE Trans. Robotics 22(4), 603–612 (2006)CrossRefGoogle Scholar
  68. 10.68
    K.N. Groom, A.A. Maciejewski, V. Balakrishnan: Real-time failure-tolerant control of kinematically redundant manipulators, IEEE Trans. Robotics Autom. 15(6), 1109–1116 (1999)CrossRefGoogle Scholar
  69. 10.69
    K.M. Ben-Gharbia, A.A. Maciejewski, R.G. Roberts: Kinematic design of redundant robotic manipulators for spatial positioning that are optimally fault tolerant, IEEE Trans. Robotics Autom. 29(5), 1300–1307 (2013)CrossRefGoogle Scholar
  70. 10.70
    J. Salisbury, J. Abramowitz: Design and control of a redundant mechanism for small motion, IEEE Int. Conf. Robotics Autom. (ICRA), St. Louis (1985) pp. 323–328Google Scholar
  71. 10.71
    J. Baillieul: Design of kinematically redundant mechanisms, 24th IEEE Conf. Decis. Control, Ft. Lauderdale (1985) pp. 18–21Google Scholar
  72. 10.72
    G.S. Chirikjian, J.W. Burdick: Design and experiments with a 30 DoF robot, IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 113–119Google Scholar
  73. 10.73
    J. Angeles: The design of isotropic manipulator architectures in the presence of redundancies, Int. J. Robotics Res. 11(3), 196–201 (1992)CrossRefGoogle Scholar
  74. 10.74
    A. Bowling, O. Khatib: Design of macro/mini manipulators for optimal dynamic performance, IEEE Int. Conf. Robotics Autom. (ICRA), Albuquerqe (1997) pp. 449–454CrossRefGoogle Scholar
  75. 10.75
    J.M. Hollerbach: Optimum kinematic design for a seven degree of freedom manipulator. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 216–222Google Scholar
  76. 10.76
    O. Egeland, J.R. Sagli, S. Hendseth, F. Wilhelmsen: Dynamic coordination in a manipulator with seven joints, IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 125–130Google Scholar
  77. 10.77
    S. Chiaverini, B. Siciliano, O. Egeland: Kinematic analysis and singularity avoidance for a seven-joint manipulator, Am. Control Conf., San Diego (1990) pp. 2300–2305Google Scholar
  78. 10.78
    D.R. Baker, C.W. Wampler: On the inverse kinematics of redundant manipulators, Int. J. Robotics Res. 7(2), 3–21 (1988)CrossRefGoogle Scholar
  79. 10.79
    J.W. Burdick: On the inverse kinematics of redundant manipulators: Characterization of the self-motion manifolds, IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 264–270Google Scholar
  80. 10.80
    S. Chiaverini, O. Egeland, R.K. Kanestrøm: Weighted damped least-squares in kinematic control of robotic manipulators, Adv. Robotics 7, 201–218 (1993)CrossRefGoogle Scholar
  81. 10.81
    M. Kirćanski, M. Vukobratović: Trajectory planning for redundant manipulators in presence of obstacles, 5th CISM-IFToMM Symp. Theor. Pract. Robots Manip., Udine (1984) pp. 43–58Google Scholar
  82. 10.82
    C.A. Klein: Use of redundancy in the design of robotic systems. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 207–214Google Scholar
  83. 10.83
    J. Baillieul: Kinematic redundancy and the control of robots with flexible components, IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 715–721Google Scholar
  84. 10.84
    I.D. Walker: The use of kinematic redundancy in reducing impact and contact effects in manipulation, IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 434–439CrossRefGoogle Scholar
  85. 10.85
    M.W. Gertz, J.O. Kim, P.K. Khosla: Exploiting redundancy to reduce impact force, IEEE/RSJ Int. Workshop Intell. Robots Syst., Osaka (1991) pp. 179–184CrossRefGoogle Scholar
  86. 10.86
    T. Yoshikawa: Dynamic manipulability of robot manipulators, J. Robotics Syst. 2(1), 113–124 (1985)Google Scholar
  87. 10.87
    G. Oriolo, M. Ottavi, M. Vendittelli: Probabilistic motion planning for redundant robots along given end-effector paths, IEEE/RSJ Int. Conf. Intell. Robots Syst., Lausanne (2002) pp. 1657–1662CrossRefGoogle Scholar
  88. 10.88
    D.N. Nenchev: Redundancy resolution through local optimization: A review, J. Robotics Syst. 6, 6 (1989)MATHGoogle Scholar
  89. 10.89
    A. De Luca, G. Oriolo: The reduced gradient method for solving redundancy in robot arms, Robotersysteme 7(2), 117–122 (1991)Google Scholar
  90. 10.90
    S. Seereeram, J.T. Wen: A global approach to path planning for redundant manipulators, IEEE Trans. Robotics Autom. 11(1), 152–160 (1995)CrossRefGoogle Scholar
  91. 10.91
    A. De Luca, G. Oriolo, B. Siciliano: Robot redundancy resolution at the acceleration level, Lab. Robotics Autom. 4(2), 97–106 (1992)Google Scholar
  92. 10.92
    O. Khatib: Inertial properties in robotics manipulation: An object-level framework, Int. J. Robotics Res. 14(1), 19–36 (1995)CrossRefGoogle Scholar
  93. 10.93
    C.A. Klein, C.H. Huang: Review of pseudoinverse control for use with kinematically redundant manipulators, IEEE Trans. Syst. Man Cybern. 13, 245–250 (1983)CrossRefGoogle Scholar
  94. 10.94
    R. Mukherjee: Design of holonomic loops for repeatability in redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Nagoya (1985) pp. 2785–2790Google Scholar
  95. 10.95
    A. De Luca, G. Oriolo: Nonholonomic behavior in redundant robots under kinematic control, IEEE Trans. Robotics Autom. 13(5), 776–782 (1997)CrossRefGoogle Scholar
  96. 10.96
    B. Bayle, J.Y. Fourquet, M. Renaud: Manipulability of wheeled-mobile manipulators: Application to motion generation, Int. J. Robotics Res. 22(7/8), 565–581 (2003)CrossRefGoogle Scholar
  97. 10.97
    A. De Luca, G. Oriolo, P.R. Giordano: Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006) pp. 1867–1873Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stefano Chiaverini
    • 1
  • Giuseppe Oriolo
    • 2
  • Anthony A. Maciejewski
    • 3
  1. 1.Department of Electrical and Information EngineeringUniversity of Cassino and Southern LazioCassinoItaly
  2. 2.Department of Computer, Control, and Management EngineeringUniversity of Rome “La Sapienza”RomeItaly
  3. 3.Department of Electrical and Computer EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations