Analysis of the PGPB Potential of Bacterial Endophytes Associated with Maize

  • Lorena Celador-Lera
  • Esther MenéndezEmail author
  • Jose D. Flores-Félix
  • Pedro F. Mateos
  • Raúl Rivas
Conference paper


Bacterial endophytes live inside plants for at least part of their life cycle, because plants are very attractive as nutrient reservoirs for such bacteria. Plants need the presence of those associated bacteria for their growth and adaptation to different ecosystems. This is the case of maize, which is a well-known cereal crop for hosting a great diversity of endophytic bacteria. Thus, microbes take advantage of the plant nutrients, whereas plants receive benefits from associated bacteria, such as nitrogen and phosphorous uptake. To study bacterial diversity, we isolated the endophytic bacteria from stalk and root of maize plants ( Zea mays) growing in a soil of Ciudad Rodrigo (NW Spain). Bacterial isolates were analyzed by RAPD fingerprinting, allowing the differentiation among strains of the same species. Our results showed the high diversity of isolates inside maize rhizosphere and endosphere, establishing many different RAPD types. However, despite the usefulness of RAPD profiles in bacterial diversity analysis, 16S rRNA gene sequencing was carried out and subsequently analyzed. A total of 25 different genera were isolated. Moreover, we determined the ability of these strains to promote plant growth, performing in vitro PGPB mechanism analysis: (i) phosphate solubilization, (ii) siderophores production, and (iii) IAA and/or precursors biosynthesis. Here, we report the infraspecific diversity of bacterial endophytes isolated from Z. mays, which is higher than we expected. Moreover, the analysis of in vitro PGPB mechanisms indicates that these strains can promote plant development, suggesting their possible application in biofertilization schemes.


Plant growth promotion Endophyte Zea mays RAPD Biodiversity 



This work was supported by Junta de Castilla y Leon, Spain (JCyL SA169 U 14 project)


  1. Alexander DB, Zuberer DA (1991) Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45CrossRefGoogle Scholar
  2. Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110(5):1235–1244CrossRefPubMedGoogle Scholar
  3. Arshad M, Hussain A, Javed M et al (1993) Effect of soil applied L-methionine on growth, nodulation and chemical composition of Albizia lebbeck L. Plant Soil 148(1):129–135CrossRefGoogle Scholar
  4. Banerjee A, Duflo E, Glennerster R et al (2010) The miracle of microfinance? Evidence from a randomized evaluation. Bread Working Paper, 278Google Scholar
  5. Battin TJ, Sloan WT, Kjelleberg S et al (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5(1):76–81CrossRefPubMedGoogle Scholar
  6. Behrendt U, Schumann P, Ulrich A (2008) Agrococcus versicolor sp. nov., an actinobacterium associated with the phyllosphere of potato plants. Int J Syst Evol Micr 58:2833–2838CrossRefGoogle Scholar
  7. Bulgari D, Casati P, Crepaldi P et al (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. App Environ Microbiol 77(14):5018–5022CrossRefGoogle Scholar
  8. Carrillo-Castañeda G, Munoz JJ, Peralta-Videa JR et al (2002) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814CrossRefGoogle Scholar
  9. Chelius MK, Triplett EW (2000) Diazotrophic endophytes associated with maize. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process, 1st edn. Horizon Scientific Press, Wymondham, UK, pp 779–791Google Scholar
  10. Chun J, Lee JH, Jung Y et al (2007) EzTaxon: a webbased tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  11. Compant S, Reiter B, Sessitsch A et al. (2004) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microb 71(4):1685–1693Google Scholar
  12. Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197CrossRefPubMedGoogle Scholar
  13. Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70(3):1787–1794Google Scholar
  14. Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. Plant Physiol Bioch 48:987–992CrossRefGoogle Scholar
  15. Duca D, Lorv J, Patten CL et al (2014) Indole-3-acetic acid in plant-microbe interactions. A Van Leeuw J Microb 106(1):85–125CrossRefGoogle Scholar
  16. Flores‐Félix JD, Menéndez E, Rivera LP et al. (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sc176(6):876–882Google Scholar
  17. García-Fraile P, Carro L, Robledo M et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7(5):e38122CrossRefPubMedPubMedCentralGoogle Scholar
  18. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205CrossRefGoogle Scholar
  19. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  20. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471CrossRefPubMedGoogle Scholar
  21. Idris R, Trifonova R, Puschenreiter M et al (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microb 70:2667–2677CrossRefGoogle Scholar
  22. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480CrossRefPubMedGoogle Scholar
  23. Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232CrossRefGoogle Scholar
  24. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes, 1st edn. Marcel Dekker Inc., New York, pp 199–233Google Scholar
  25. Li TY, Zeng HL, Ping Y, Lin H, Fan XL, Guo ZG, Zhang CF (2007) Construction of a stable expression vector for Leifsonia xyli subsp. cynodontis and its application in studying the effect of the bacterium as an endophytic bacterium in rice. FEMS Microbiol Lett 267(2):176–183Google Scholar
  26. Luo S, Wan Y, Xiao X et al (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644CrossRefPubMedGoogle Scholar
  27. MAGRAMA (2013) Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España, Madrid, EspañaGoogle Scholar
  28. Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23(2):109–117CrossRefPubMedGoogle Scholar
  29. Morrisey F, Dugan P, Koths JS (1975) Chitinase production by Arthrobacter sp. Lysing cells of Fusarium rosetum. Soil Biol Biochem 8:23–28CrossRefGoogle Scholar
  30. O’Hara GW, Goss TJ, Dilworth MJ et al (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55(8):1870–1876PubMedPubMedCentralGoogle Scholar
  31. Peix A, Rivas R, Santa-Regina I et al (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Micr 54:847–850CrossRefGoogle Scholar
  32. Pereira SIA, Castro PML (2014) Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ Sci Pollut R 21(24):14110–14123CrossRefGoogle Scholar
  33. Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium—a potential tool for sustainable soil health. J Biofertil Biopest 3:1–9Google Scholar
  34. Rajkumar M, Prasad MNV, Freitas H (2010) Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149CrossRefPubMedGoogle Scholar
  35. Rivas R, Velázquez E, Valverde A et al (2001) A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22:1086–1089CrossRefPubMedGoogle Scholar
  36. Rivas R, Velázquez E, Palomo JL et al (2002) Rapid identification of Clavibacter michiganensis subspecies sepedonicus using two primers random amplified polymorphic DNA (TP-RAPD) fingerprints. Eur J Plant pathology 108(2):179–184CrossRefGoogle Scholar
  37. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19(8):827–837CrossRefPubMedGoogle Scholar
  38. Ruiz E, Rodríguez L, Alonso-Azcaráte J et al (2009) Phytoextraction of metal polluted soils around a Pb–Zn mine by crop plants. Inter J Phytorem 4:360–384CrossRefGoogle Scholar
  39. Salisbury JL, Baron A, Surek B et al (1984) Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol 99(3):962–970CrossRefPubMedGoogle Scholar
  40. Salgado-Salazar C,  Cepero D (2005) Endophytic fungi in rose (Rosa hybrida) in Bogota, Colombia. Rev Iberoam Micol 22(2):99–101Google Scholar
  41. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Annal Biochem 160:47–56CrossRefGoogle Scholar
  42. Sun L, Qiu F, Zhang X et al (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424CrossRefPubMedGoogle Scholar
  43. Sun LN, Zhang YF, He LY et al (2010) Genetic diversity and characterization of heavy metalresistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technol 101:501–509CrossRefGoogle Scholar
  44. Sun H, He Y, Xiao Q et al (2013) Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr J Microbiol Res 7(16):1496–1504Google Scholar
  45. Taiz L, Zeiger E (2006) Fisiologia vegetal. Universitat Jaume IGoogle Scholar
  46. Thrall PH, Hochberg ME, Burdon JJ et al (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22(3):120–126CrossRefPubMedGoogle Scholar
  47. Vandeputte O, Öden S, Mol A et al (2005) Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71:1169–1177CrossRefPubMedPubMedCentralGoogle Scholar
  48. Velázquez E, Rodriguez-Barrueco C (eds) (2007) First international meeting on microbial phosphate solubilization, vol 102. Springer Science and Business MediaGoogle Scholar
  49. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141CrossRefPubMedGoogle Scholar
  50. Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications, Oxford, EnglandGoogle Scholar
  51. Whiting NS, de Souza PM, Terry N (2001) Rhizosphere bacteriamobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150CrossRefPubMedGoogle Scholar
  52. Wuana RA, Okieimen FE (2010) Phytoremediation potential of (Zea mays L.). A review. Afr J Gen Agric 6:275–287Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lorena Celador-Lera
    • 1
  • Esther Menéndez
    • 1
    Email author
  • Jose D. Flores-Félix
    • 1
  • Pedro F. Mateos
    • 1
    • 2
  • Raúl Rivas
    • 1
    • 2
  1. 1.Department of Microbiology and GeneticsUniversity of SalamancaSalamancaSpain
  2. 2.Associated Unit I+D University of Salamanca—CSIC ‘Plant-Microbe Interactions Group’SalamancaSpain

Personalised recommendations