Advertisement

Effective Colonization of Spinach Root Surface by Rhizobium

  • Alejandro Jiménez-Gómez
  • Esther MenéndezEmail author
  • José D. Flores-Félix
  • Paula García-Fraile
  • Pedro F. Mateos
  • Raúl Rivas
Conference paper

Abstract

Plant growth-promoting rhizobacteria are a group of bacteria able to promote plant growth and increase crop productivity. For a successful and effective bacteria–plant association, microorganism colonization and its arrangement and abundance on plant root surfaces are very important. Here, we analysed the ability of the strain PEPV12 identified as Rhizobium sp., to colonize spinach (Spinacia oleracea) root surfaces, and evaluated three parameters of in vitro plant growth promotion: (i) siderophore production, (ii) phosphate solubilization and (iii) indole acetic acid production. Moreover, we tested in vitro cellulose production and biofilm formation. Our results showed that this strain colonizes effectively and adheres to abiotic surfaces. Root colonization and adherence events were observed under fluorescence microscopy by using GFP-tagged PEPV12 strain, which was inoculated on spinach seedlings. Interestingly, we observed morphologic changes in root hairs, such as deformations and redirections at the tip in early stages of plant development of PEPV12 inoculated plants. Furthermore, we proceeded to evaluate in vitro plant development after inoculation of spinach seedlings with the strain of this study, showing significant differences in shoot length with respect to uninoculated plants. Our results showed that Rhizobium sp. PEPV12 actively and successfully colonizes spinach root surfaces, producing changes in root hairs and an increase in plant growth, suggesting its potentiality as a biofertilizer for Spinacia oleracea.

Keywords

Root colonization Rhizobium Spinacia oleracea Fluorescence microscopy Plant growth promotion 

References

  1. Alami Y, Achouak W, Marol C et al (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microb 66:3393–3398CrossRefGoogle Scholar
  2. Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45. doi: 10.1007/BF00369386 CrossRefGoogle Scholar
  3. Antoun H, Beauchamp CJ, Goussard N et al (1998) Potential of Rhizobium and Bradyrhizobium species as growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67CrossRefGoogle Scholar
  4. Avis TJ et al (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740. doi: 10.1016/j.soilbio.2008.02.013 CrossRefGoogle Scholar
  5. Bhardwaj D et al (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. doi: 10.1186/1475-2859-13-66 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonaldi M, Chen X, Kunova A, Pizzatti C, Saracchi M, Cortesi P (2015) Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Front Microbiol 6:25. doi: 10.3389/fmicb.2015.00025 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B et al (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506. doi: 10.1007/s00374-011-05562 CrossRefGoogle Scholar
  8. Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321. doi: 10.1007/BF00010460 CrossRefGoogle Scholar
  9. Cheng HP, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183–5191. PMCID: PMC107556Google Scholar
  10. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  11. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi: 10.1016/j.soilbio.2009.11.024 CrossRefGoogle Scholar
  12. Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36(3):232–244. doi: 10.3109/10408411003766806 CrossRefPubMedGoogle Scholar
  13. Flores-Félix JD, Menéndez E, Rivera LP et al (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci:1–7. doi: 10.1002/jpln.2013001161
  14. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56(2):195–206Google Scholar
  15. Gamalero E, Lingua G, Berta G, Lemanceau P (2003) Methods for studying root colonization by introduced beneficial bacteria. Agronomie 23:407–418. doi: 10.1051/Agro:2003014 CrossRefGoogle Scholar
  16. García-Fraile P, Carro L, Robledo M et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7(5):e38122. doi: 10.1371/journal.pone.0038122 CrossRefPubMedPubMedCentralGoogle Scholar
  17. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205. doi: 10.3934/bioeng.2015.3.183 CrossRefGoogle Scholar
  18. Janczarek M, Kutkowska J, Piersiak T, Skorupska A (2010) Rhizobium leguminosarum bv. Trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol 10:284. doi: 10.1186/1471-2180-10-284 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kamilova F, Kravchenko LV, Al Shaposhnikov et al (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 9:250–256. doi: 10.1094/MPMI-19-0250 CrossRefGoogle Scholar
  20. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480. doi: 10.1046/j.1365-2672.2003.02161.x CrossRefPubMedGoogle Scholar
  21. Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276(25):22715–22721CrossRefPubMedGoogle Scholar
  22. Krzyzanowska D, Obuchowski M, Bikowski M, Rychlowski M, Jafra S (2012) Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sensors 12:17608–17619. doi: 10.3390/S121217608 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mateos PF, Baker B, Philip-Hollingsworth S, Squartini A, Peruffo A, Nuti M, Dazzo F (1995) Direct in situ identification of cellulose microfibrils associated with Rhizobium leguminosarum biovar. Trifolii attached to the root epidermis of white clover. Can J Microbiol 41:202–207CrossRefGoogle Scholar
  24. Menéndez E, García-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. AIMS Bioengineering 2(3):163–182. doi: 10.3934/bioeng.2015.3.163 CrossRefGoogle Scholar
  25. Mishra RP, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389CrossRefPubMedGoogle Scholar
  26. Mulas D, García-Fraile P, Carro L et al (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43:2283–2293. doi: 10.1016/j.soilbio.2011.07.018 CrossRefGoogle Scholar
  27. Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc 15(2):327–337Google Scholar
  28. O’Hara GW, Goss TJ, Dilworth MJ, Glenn AR (1989) Maintenance of intracellular pH and acid-tolerance in Rhizobium meliloti. Appl Environ Microb 55:1870–1876Google Scholar
  29. O’Toole GA (1999) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol R 64:847–867Google Scholar
  30. Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martınez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33(1):103–110CrossRefGoogle Scholar
  31. Peix A, Rivas R, Santa-Regina I, Mateos PF, Martínez-Molina E, Rodriguez-Barrueco C, Velázquez E (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 54:847–850. doi: 10.1099/ijs.0.02966-0 CrossRefPubMedGoogle Scholar
  32. Perrine-Walker FM, Prayitno J, Rolfe BG et al (2007) Infection process and the interaction of rice roots with rhizobia. J Exp Bot 58(12):3343–3350. doi: 10.1093/jxb/erm181 CrossRefPubMedGoogle Scholar
  33. Perrine-Walker FM, Hynes MF, Rolfe BG et al (2009) Strain competition and agar affect the interaction of rhizobia with rice. Can J Microbiol 55(10):1217–1223. doi: 10.1139/W09-077 CrossRefPubMedGoogle Scholar
  34. Ramey BE, Koutsoudis M, Von Bodman SB, Fuqua C (2004) Biofilm formation in plant–microbe associations. Curr Opin Microbiol 7:602–609CrossRefPubMedGoogle Scholar
  35. Robledo M, Rivera LP, Jiménez-Zurdo JI, Rivas R, Dazzo FB, Velázquez E, Martínez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125CrossRefPubMedGoogle Scholar
  36. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56CrossRefPubMedGoogle Scholar
  37. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. App Environ Microb 43(4):777–780Google Scholar
  38. Vacheron J, Desbrosses G, Boffaud ML et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. doi: 10.3389/fpls.2013.00356 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Veliz-Vallejos DF, Van Noorden GE, Yuan M et al (2014) A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Plant Sci 5:551. doi: 10.3389/fpls.2014.00551 Google Scholar
  40. Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications, Oxford, pp 73–79. doi: 10.1002/jobm.19720120524
  41. Wang ET, Chen WX (2004) Estimation of biotic and abiotic factors that affect migration of rhizobia. In: Biological resources and migration. Springer, pp 167–161. doi: 10.1007/978-3-662-06083-4
  42. Wielvo J, Podlesna A, Kidal D et al (2015) The diversity of pea microsymbionts in various types of soils and their effects on plant host productivity. Microbes Environ 30(3):254–261. doi: 10.1264/jsme2.ME14141 CrossRefGoogle Scholar
  43. Williams A, Wilkinson A, Krehenbrink M et al (2008) Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J Bacteriol 190(13):4706–4715CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xie SS, Wu HJ, Zang HY et al (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 27(7):655–663. doi: 10.1094/MPMI-01-14-0010-R CrossRefPubMedGoogle Scholar
  45. Yuan J, Zhang N, Huang Q et al (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:13438. doi: 10.1038/srep13438 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alejandro Jiménez-Gómez
    • 1
  • Esther Menéndez
    • 1
    Email author
  • José D. Flores-Félix
    • 1
  • Paula García-Fraile
    • 2
  • Pedro F. Mateos
    • 1
    • 3
  • Raúl Rivas
    • 1
    • 3
  1. 1.Department of Microbiology and GeneticsUniversity of SalamancaSalamancaSpain
  2. 2.Institute of Microbiology ASCRAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  3. 3.Associated Unit I+D University of Salamanca—CSIC Plant-Microbe Interactions GroupSalamancaSpain

Personalised recommendations