Advertisement

Vitamin D and Endothelial Function in Chronic Kidney Disease

  • Mugurel Apetrii
  • Adrian Covic
Chapter

Abstract

The endothelium is a highly active organ with numerous functions regarding endothelium-dependent vasodilation, balance of inflammation and hemostasis and finally endothelial cell repair and angiogenesis. Vitamin D deficit has been linked to endothelial dysfunction, two conditions encountered early in chronic kidney disease (CKD). Vitamin D has direct effects on the endothelium: endothelial cells are capable of activating 25(OH)D to 1,25(OH)2D3, which acts locally to regulate the vascular tone, to prevent vascular inflammation and oxidative stress and to promote cell repair and survival. Vitamin D also indirectly regulates endothelial function: various conditions alter the normal functioning of the endothelium in CKD, and most of them are also aggravated by the abnormal vitamin D metabolism. In this regard, vitamin D deficit in CKD favors the development and/or perpetuation of metabolic abnormalities (hyperglycemia, dyslipidemia), secondary hyperparathyroidism, chronic inflammation and also the activation of the renin-angiotensin system, conditions that trigger endothelial dysfunction. Also, CKD-associated perturbations of the vitamin D-FGF-23-klotho axis additionally promote endothelial dysfunction. Therefore, vitamin D therapy in CKD is requisite for ameliorating endothelial dysfunction, the major initiator of CVD.

Keywords

Vitamin D Endothelial dysfunction Endothelium-dependent vasodilation Chronic kidney disease Cardiovascular diseases Atherosclerosis Inflammation Oxidative stress Nitric oxide Renin-angiotensin system 

References

  1. 1.
    Hajhosseiny R, Khavandi K, Goldsmith DJ. Cardiovascular disease in chronic kidney disease: untying the Gordian knot. Int J Clin Pract. 2013;67:14–31.CrossRefPubMedGoogle Scholar
  2. 2.
    McCullough PA, Steigerwalt S, Tolia K, Chen SC, Li S, Norris KC, Whaley-Connell A. Cardiovascular disease in chronic kidney disease: data from the Kidney Early Evaluation Program (KEEP). Curr Diab Rep. 2011;11:47–55.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Moody WE, Edwards N, Madhani M, Chue CD, Steeds RP, Ferro CJ, Townend JN. Endothelial dysfunction and cardiovascular disease in early-stage chronic kidney disease: cause or association? Atherosclerosis. 2012;223:86–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Stam F, et al. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J Am Soc Nephrol. 2006;17(2):537–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88(2):491s–9.PubMedGoogle Scholar
  6. 6.
    Chonchol M, Kendrick J, Targher G. Extra-skeletal effects of vitamin D deficiency in chronic kidney disease. Ann Med. 2011;43(4):273–82.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Malyszko J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin Chim Acta. 2010;411:1412–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Seals DR, Jablonski K, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci. 2011;120:357–75.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dalan R, Liew H, Tan WKA, Chew DEK, Leow MKS. Vitamin D and the endothelium: basic, translational and clinical research updates. IJC Metab Endocr. 2014;4:4–17.CrossRefGoogle Scholar
  11. 11.
    Verma S, Anderson T. Fundamentals of endothelial function for the clinical cardiologist. Circulation. 2002;105:546–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Goligorsky MS. Pathogenesis of endothelial cell dysfunction in chronic kidney disease: a retrospective and what the future may hold. Kidney Res Clin Pract. 2015;34:76–82.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Andrukhova O, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014;28(1):53–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Uberti F, et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab. 2014;99(4):1367–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Wong MS, et al. Chronic treatment with vitamin D lowers arterial blood pressure and reduces endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2010;299(4):H1226–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhong W, et al. Activation of vitamin D receptor promotes VEGF and CuZn-SOD expression in endothelial cells. J Steroid Biochem Mol Biol. 2014;140:56–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Tarcin O, et al. Effect of vitamin D deficiency and replacement on endothelial function in asymptomatic subjects. J Clin Endocrinol Metab. 2009;94(10):4023–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Jablonski KL, et al. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension. 2011;57(1):63–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Sokol SI, et al. The effects of vitamin D repletion on endothelial function and inflammation in patients with coronary artery disease. Vasc Med. 2012;17(6):394–404.CrossRefPubMedGoogle Scholar
  20. 20.
    Witham MD, et al. Effect of short-term vitamin D supplementation on markers of vascular health in South Asian women living in the UK – a randomised controlled trial. Atherosclerosis. 2013;230(2):293–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Pittarella P, et al. NO-dependent proliferation and migration induced by Vitamin D in HUVEC. J Steroid Biochem Mol Biol. 2015;149:35–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Recio-Mayoral A, Banerjee D, Streather C, Kaski JC. Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease – a cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis. 2011;216:446–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu-Wong JR, Li X, Chen YW. Different vitamin D receptor agonists exhibit differential effects on endothelial function and aortic gene expression in 5/6 nephrectomized rats. J Steroid Biochem Mol Biol. 2015;148:202–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Yilmaz MI, et al. Longitudinal analysis of vascular function and biomarkers of metabolic bone disorders before and after renal transplantation. Am J Nephrol. 2013;37(2):126–34.CrossRefPubMedGoogle Scholar
  25. 25.
    London GM, et al. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol. 2007;18(2):613–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu-Wong JR, Noonan W, Nakane M, Brooks KA, Segreti JA, Polakowski JS, Cox B. Vitamin d receptor activation mitigates the impact of uremia on endothelial function in the 5/6 nephrectomized rats. Int J Endocrinol. 2010;2010:625852.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Talmor-Barkan Y, Bernheim J, Green J, Benchetrit S, Rashid G. Calcitriol counteracts endothelial cell pro-inflammatory processes in a chronic kidney disease-like environment. J Steroid Biochem Mol Biol. 2011;124:19–24.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang QY, Jiang C, Sun C, Tang TF, Jin B, Cao DW, He JS, Zhang M. Hypovitaminosis D is associated with endothelial dysfunction in patients with non-dialysis chronic kidney disease. J Nephrol. 2015;28:471–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Chitalia N, Recio-Mayoral A, Kaski JC, Banerjee D. Vitamin D deficiency and endothelial dysfunction in non-dialysis chronic kidney disease patients. Atherosclerosis. 2012;220:265–8.CrossRefPubMedGoogle Scholar
  30. 30.
    London GM, Guérin A, Verbeke FH, Pannier B, Boutouyrie P, Marchais SJ, Metivier F. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol. 2007;18:613–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Ott C, Raff U, Schneider MP, Titze SI, Schmieder RE. 25-hydroxyvitamin D insufficiency is associated with impaired renal endothelial function and both are improved with rosuvastatin treatment. Clin Res Cardiol. 2013;102:299–304.CrossRefPubMedGoogle Scholar
  32. 32.
    Dreyer G, Tucker A, Dreyer G, Harwood SM, Pearse RM, Raftery MJ, Yaqoob MM. Ergocalciferol and microcirculatory function in chronic kidney disease and concomitant vitamin d deficiency: an exploratory, double blind, randomised controlled trial. PLoS One. 2014;9:e99461.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chitalia N, Ismail T, Tooth L, Boa F, Hampson G, Goldsmith D, Kaski JC, Banerjee D. Impact of vitamin D supplementation on arterial vasomotion, stiffness and endothelial biomarkers in chronic kidney disease patients. PLoS One. 2014;9:e91363.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zoccali C, Curatola G, Panuccio V, Tripepi R, Pizzini P, Versace M, Bolignano D, Cutrupi S, Politi R, Tripepi G, Ghiadoni L, Thadhani R, Mallamaci F. Paricalcitol and endothelial function in chronic kidney disease trial. Hypertension. 2014;64:1005–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Alborzi P, Patel N, Peterson C, Bills JE, Bekele DM, Bunaye Z, Light RP, Agarwal R. Paricalcitol reduces albuminuria and inflammation in chronic kidney disease: a randomized double-blind pilot trial. Hypertension. 2008;64:1005–11.Google Scholar
  36. 36.
    Thethi TK, Bajwa M, Ghanim H, Jo C, Weir M, Goldfine AB, Umpierrez G, Desouza C, Dandona P, Fang-Hollingsworth Y, Raghavan V, Fonseca VA. Effect of paricalcitol on endothelial function and inflammation in type 2 diabetes and chronic kidney disease. J Diabetes Complications. 2015;29:433–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yiu Y, Chan Y, Yiu KH, Siu CW, Li SW, Wong LY, Lee SW, Tam S, Wong EW, Cheung BM, Tse HF. Vitamin D deficiency is associated with depletion of circulating endothelial progenitor cells and endothelial dysfunction in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96:E830–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Talmor Y, Golan E, Benchetrit S, Bernheim J, Klein O, Green J, Rashid G. Calcitriol blunts the deleterious impact of advanced glycation end products on endothelial cells. Am J Physiol Renal Physiol. 2008;294:F1059–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, Proctor BM, Petty M, Chen Z, Schechtman KB, Bernal-Mizrachi L, Bernal-Mizrachi C. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation. 2009;120:687–98.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yiu YF, Yiu K, Siu CW, Chan YH, Li SW, Wong LY, Lee SW, Tam S, Wong EW, Lau CP, Cheung BM, Tse HF. Randomized controlled trial of vitamin D supplement on endothelial function in patients with type 2 diabetes. Atherosclerosis. 2013;227:140–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, Markovic M, Kuebler WM, Erben RG. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014;28:53–64.CrossRefPubMedGoogle Scholar
  42. 42.
    Vaidya A, Forman J. Vitamin D and vascular disease: the current and future status of vitamin D therapy in hypertension and kidney disease. Curr Hypertens Rep. 2012;14:111–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dong J, Wong S, Lau CW, Lee HK, Ng CF, Zhang L, Yao X, Chen ZY, Vanhoutte PM, Huang Y. Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J. 2012;33:2980–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Yuan W, Pan W, Kong J, Zheng W, Szeto FL, Wong KE, Cohen R, Klopot A, Zhang Z, Li YC. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem. 2007;282:29821–30.CrossRefPubMedGoogle Scholar
  45. 45.
    Yang YM, Huang A, Kaley G, Sun D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol. 2009;297:H1829–36.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Feletou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol. 2011;164:894–912.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wong MS, Delansorne R, Man RY, Vanhoutte PM. Vitamin D derivatives acutely reduce endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2008;295:H289–96.CrossRefPubMedGoogle Scholar
  48. 48.
    Nitta K. Clinical assessment and management of dyslipidemia in patients with chronic kidney disease. Clin Exp Nephrol. 2012;16:522–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015;6:209–17.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jorde R, Grimnes G. Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Prog Lipid Res. 2011;50:303–12.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang H, Xia N, Peng D. Influence of vitamin D supplementation on plasma lipid profiles: a meta-analysis of randomized controlled trials. Lipids Health Dis. 2012;11:42.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Yuste C, et al. The effect of some medications given to CKD patients on vitamin D levels. Nefrologia. 2015;35(2):150–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203:325–30.CrossRefPubMedGoogle Scholar
  54. 54.
    Querfeld U. Vitamin D and inflammation. Pediatr Nephrol. 2013;28:605–10.CrossRefPubMedGoogle Scholar
  55. 55.
    Jablonski KL, Chonchol M, Pierce GL, Walker AE, Seals DR. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension. 2011;57:63–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Kalkwarf HJ, Denburg M, Strife CF, Zemel BS, Foerster DL, Wetzsteon RJ, Leonard MB. Vitamin D deficiency is common in children and adolescents with chronic kidney disease. Kidney Int. 2012;81:690–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Donate-Correa J, Domínguez-Pimentel V, Méndez-Pérez ML, Muros-de-Fuentes M, Mora-Fernández C, Martín-Núñez E, Cazaña-Pérez V, Navarro-González JF. Selective vitamin D receptor activation as anti-inflammatory target in chronic kidney disease. Mediators Inflamm. 2014;2014:670475.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Böhm M, Nickenig G. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004;94:534–41.CrossRefPubMedGoogle Scholar
  59. 59.
    Elewa U, Sanchez-Niño NM, Martin-Cleary C, Fernandez-Fernandez B, Egido J, Ortiz A. Cardiovascular risk biomarkers in CKD: the inflammation link and the road less traveled. Int Urol Nephrol. 2012;44:1731–44.CrossRefPubMedGoogle Scholar
  60. 60.
    Ajuebor MN, Hogaboam C, Kunkel SL, Proudfoot AE, Wallace JL. The chemokine RANTES is a crucial mediator of the progression from acute to chronic colitis in the rat. J Immunol. 2001;166:552–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Björkman MP, Sorva A, Tilvis RS. Elevated serum parathyroid hormone predicts impaired survival prognosis in a general aged population. Eur J Endocrinol. 2008;158:749–53.CrossRefPubMedGoogle Scholar
  62. 62.
    Soubassi LP, Chiras T, Papadakis ED, Poulos GD, Chaniotis DI, Tsapakidis IP, Soubassi SP, Zerefos SN, Zerefos NS, Valis DA. Incidence and risk factors of coronary heart disease in elderly patients on chronic hemodialysis. Int Urol Nephrol. 2006;38:795–800.CrossRefPubMedGoogle Scholar
  63. 63.
    Ekmekci A, Abaci N, Colak Ozbey N, Agayev A, Aksakal N, Oflaz H, Erginel-Unaltuna N, Erbil Y. Endothelial function and endothelial nitric oxide synthase intron 4a/b polymorphism in primary hyperparathyroidism. J Endocrinol Invest. 2009;32:611–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Carrelli AL, Walker M, Di Tullio MR, Homma S, Zhang C, McMahon DJ, Silverberg SJ. Endothelial function in mild primary hyperparathyroidism. Clin Endocrinol (Oxf). 2013;78:204–9.CrossRefGoogle Scholar
  65. 65.
    Vaziri ND, Ni Z, Wang XQ, Oveisi F, Zhou XJ. Downregulation of nitric oxide synthase in chronic renal insufficiency: role of excess PTH. Am J Physiol. 1998;274:F642–9.PubMedGoogle Scholar
  66. 66.
    Chen C, Mao H, Yu X, Sun B, Zeng M, Zhao X, Qian J, Liu J, Xing C. (Abstract) Effect of secondary hyperparathyroidism serum on endothelial cells and intervention with Klotho. Mol Med Rep. 2015;12:1983–90.PubMedGoogle Scholar
  67. 67.
    Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates endothelial expression of atherosclerotic parameters through protein kinase pathways. Am J Physiol Renal Physiol. 2007;292:F1215–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Juppner H, Wolf M, Salusky I. FGF-23: more than a regulator of renal phosphate handling? J Bone Miner Res. 2010;25:2091–7.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, Ogata E, Segawa H, Miyamoto K, Fukushima N. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280:2543–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Nishi H, Nii-Kono T, Nakanishi S, Yamazaki Y, Yamashita T, Fukumoto S, Ikeda K, Fujimori A, Fukagawa M. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism. Nephron Clin Pract. 2005;101:c94–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Wetmore JB, Liu S, Krebill R, Menard R, Quarles LD. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin J Am Soc Nephrol. 2010;5:110–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Dusso A, González E, Martin KJ. Vitamin D in chronic kidney disease. Best Pract Res Clin Endocrinol Metab. 2011;25:647–55.CrossRefPubMedGoogle Scholar
  73. 73.
    Hu P, Xuan Q, Hu B, Lu L, Wang J, Qin YH. Fibroblast growth factor-23 helps explain the biphasic cardiovascular effects of vitamin D in chronic kidney disease. Int J Biol Sci. 2012;8:663–71.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mirza MA, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205:385–90.CrossRefPubMedGoogle Scholar
  75. 75.
    Balci M, Kirkpantur A, Gulbay M, Gurbuz OA. Plasma fibroblast growth factor-23 levels are independently associated with carotid artery atherosclerosis in maintenance hemodialysis patients. Hemodial Int. 2010;14:425–32.CrossRefPubMedGoogle Scholar
  76. 76.
    De Backer GG. New risk markers for cardiovascular prevention. Curr Atheroscler Rep. 2014;16:427.CrossRefPubMedGoogle Scholar
  77. 77.
    Kurosu H, Kuro-o M. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol. 2009;299:72–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Ikushima M, Rakugi H, Ishikawa K, Maekawa Y, Yamamoto K, Ohta J, Chihara Y, Kida I, Ogihara T. Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun. 2006;339:827–32.CrossRefPubMedGoogle Scholar
  79. 79.
    de Borst MH, Vervloet M, ter Wee PM, Navis G. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol. 2011;22:1603–9.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Saito Y, Yamagishi T, Nakamura T, Ohyama Y, Aizawa H, Suga T, Matsumura Y, Masuda H, Kurabayashi M, Kuro-o M, Nabeshima Y, Nagai R. Klotho protein protects against endothelial dysfunction. Biochem Biophys Res Commun. 1998;248:324–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nephrology UnitDr CI Parhon University HospitalIasiRomania
  2. 2.University “Grigore T. Popa”IasiRomania

Personalised recommendations