Algorithmic Approaches for a Dependable Smart Grid

  • Wolfgang BeinEmail author
  • Bharat B. Madan
  • Doina Bein
  • Dara Nyknahad
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 448)


We explore options for integrating sustainable and renewable energy into the existing power grid, or even create a new power grid model. We present various theoretical concepts necessary to meet the challenges of a smart grid. We first present a supply and demand model of the smart grid to compute the average number of conventional power generator required to meet demand during the high consumption hours. The model will be developed using Fluid Stochastic Petri Net (FSPN) approach. We propose to model the situations that need decisions to throttle down the energy supplied by the traditional power plants using game-theoretic online competitive models. We also present in this paper the power-down model which has shown to be competitive in the worst case scenarios and we lay down the ground work for addressing the multi-state dynamic power management problem.


Power grid Renewable energy Sustainable energy Petri Nets Power down problem Online algorithm Competitive analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balantrapu, S.: Load Forecasting in Smart Grid (2013). (available online)
  2. 2.
    Borges, C.E., Penya, Y.K., Fernandez, I.: Evaluating Combined Load Forecasting in Large Power Systems and Smart Grids. IEEE IEEE Transactions on Industrial Informatics 9(2), 1570–1577 (2013)CrossRefGoogle Scholar
  3. 3.
    McDonald, J., McGranaghan, M.: Strategic R&D Opportunities for the Smart Grid (2013). (available online)
  4. 4.
    Karlin, A., Manasse, M., McGeoch, L., Owicki, S.: Randomized competitive algorithms for non-uniform problems. In: Proceedings of the 1st Symposium on Discrete Algorithms (SODA), pp. 301–309 (1990)Google Scholar
  5. 5.
    Irani, S., Shukla, S., Gupta, R.: Online Strategies for Dynamic Power Management with Multiple Power-Saving States. ACM Trans. Embedded Computing Systems 2(3), 325–346 (2003)CrossRefGoogle Scholar
  6. 6.
    National Science Board Building a Sustainable Energy Future: U.S. Actions for an Effective Energy Economy Transformation (2009)Google Scholar
  7. 7.
    Pruhs, K.: Green computing algorithmics. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 3–4 (2011a)Google Scholar
  8. 8.
    Irani, S., Pruhs, K.R.: Algorithmic problems in power management. SIGACT News 36(2), 63–76 (2005)CrossRefGoogle Scholar
  9. 9.
    Pruhs, K.: Introduction to special issue on theoretical aspects of green computing. Sustainable Computing: Informatics and Systems 1(3), 165–166 (2011)Google Scholar
  10. 10.
    Goth, G.: Chipping away at greenhouse gases. Communications of the ACM 54(2), 13–15 (2011)CrossRefGoogle Scholar
  11. 11.
    Mitchell, R.L.: Power struggle: how IT managers cope with the data center power demands. Computerworld (2006)Google Scholar
  12. 12.
    Bushby, S.T.: NIST Smart Grid Interoperability Program (2015). (available online)
  13. 13.
  14. 14.
    Trivedi, K.: Probability and Statistics with Reliability, Queueing, and Computer Science Applications, 2nd edn. John Wiley (2001)Google Scholar
  15. 15.
    Horton, G., Kulkarni, V.D., Nicol, D.M., Trivedi, K.S.: Fluid stochastic Petri Nets: Theory, applications, and solution techniques. European Journal of Operational Research 105(1), 184–201 (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Gribaudo, M., Sereno, M., Bobbio, A., Horvath, A.: Fluid Stochastic Petri Nets augmented with Flush-out Arcs: Modeling and Analsys. Discrete Event Dynamic Systems 11(1&2), 97–117 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–579 (1989)CrossRefGoogle Scholar
  18. 18.
    Albers, S.: Energy efficient algorithms. Communications of the ACM 53(5), 86–96 (2010)CrossRefGoogle Scholar
  19. 19.
    Augustine, J., Irani, S., Swamy, C.: Optimal power-down strategies. SIAM Journal on Computing 37(5), 1499–1516 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Baghzouz, Y.: Evaluation of an energy storage system on a distribution feeder with distributed PV systems. In: CIRED, Paper No. 0123, Lyon, France (2010)Google Scholar
  21. 21.
    Karlin, A., Manasse, M., McGeoch, L., Owicki, S.: Competitive randomized algorithms for nonuniform problems. Algorithmica 11, 542–571 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Karlin, A., Manasse, M., Rudolph, L., Sleator, D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), 1 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bein, W., Hatta, N., Hernandez-Cons, N., Ito, H., Kasahara, S., Kawahara, J.: An online algorithm optimally self-tuning to congestion for power management problems. In: Proceedings of the 9th Workshop on Approximation and Online Algorithms (WAOA 2011), pp. 35–48 (2012)Google Scholar
  25. 25.
    Andro-Vasko, J., Bein, W., Ito, H., Nyknahad, D.: Evaluation of online power-down algorithms. In: Proceedings of the 12th International Conference on Information Technology (ITNG) (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wolfgang Bein
    • 1
    Email author
  • Bharat B. Madan
    • 2
  • Doina Bein
    • 3
  • Dara Nyknahad
    • 1
  1. 1.Department of Computer ScienceUniversity of Nevada Las VegasLas VegasUSA
  2. 2.Modeling, Simulation & Visualization EngineeringOld Dominion UniversityNorfolkUSA
  3. 3.Department of Computer ScienceCalifornia State University, FullertonFullertonUSA

Personalised recommendations