Advertisement

Performance Indicators Analysis in Software Processes Using Semi-supervised Learning with Information Visualization

  • Leandro BodoEmail author
  • Hilda Carvalho de Oliveira
  • Fabricio Aparecido Breve
  • Danilo Medeiros Eler
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 448)

Abstract

Software development process requires judicious quality control, using performance indicators to support decision-making in the different processes chains. This paper recommends the use of machine learning with the semi-supervised algorithms to analyze these indicators. In this context, this paper proposes the use of visualization techniques of multidimensional information to support the labeling process of samples, increasing the reliability of the labeled indicators (group or individual). The experiments show analysis from real indicators data of a software development company and use the algorithm bioinspired Particle Competition and Cooperation. The information visualization techniques used are: Least Square Projection, Classical Multidimensional Scaling and Parallel Coordinates. Those techniques help to correct the labeling process performed by specialists (labelers), enabling the identification of mistakes in order to improve the data accuracy for application of the semi-supervised algorithm.

Keywords

Software processes Software quality Performance indicators Machine learning Information visualization MPS-SW BSC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rezende, A.D.: Engenharia de software e sistemas de informação, 3rd edn. Brasport, Rio de Janeiro (2005)Google Scholar
  2. 2.
    Boyd, L.H., Cox, J.F.A.: Cause-and-effect approach to analyzing performance measures. Production and Inventory Management Journal 38(3), 25–32 (1997)Google Scholar
  3. 3.
    Bodo, L., Oliveira, H.C., Breve, F.A., Eler, D.M.: Semi-supervised learning applied to performance indicators in software engineering processes. In: International Conference on Software Engineering Research and Practice (SERP 2015), Las Vegas, EUA, pp. 255–261 (2015)Google Scholar
  4. 4.
    SOFTEX - Associação para Promoção da Excelência do Software Brasileiro. MPS.BR Melhoria de processo do software brasileiro: Guia de Implementação – Parte 9: Implementação do MR-MPS em organizações do tipo Fábrica de Software (2012). http://www.softex.br/wp-content/uploads/2013/07/MPS.BR_Guia_de_Implementacao_Parte_9_20111.pdf. Acesso em: January 20, 2013
  5. 5.
    Tejada, E., Minghim, R., Nonato, L.G.: On improved projection techniques to support visual exploration of multidimensional Data Sets. Information Visualizarion 2(4), 218–231 (2003)CrossRefGoogle Scholar
  6. 6.
    Breve, F.A.: Aprendizado de máquina utilizando dinâmica espaço-temporal em redes complexas. 2010. 165 f. Tese (Doutorado) - Curso de Ciências de Computação e Matemática Computacional, Departamento de ICMC-USP, Universidade de São Paulo, São Carlos (2010)Google Scholar
  7. 7.
    Breve, F.A., Zhao, L., Quiles, M.G., Pedrycz, W., Liu, J.: Particle competition and cooperation in networks for semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering, [s.i] (2009)Google Scholar
  8. 8.
    Melo, A.C., Silva, A.L., Marte, C.L., Ferreira, M.R., Sassi, R.J., Ferreira, R.P.: Aplicação de técnicas da inteligência artificial para obtenção de indicadores de desempenho como medida de qualidade em rodovias cocessionadas. In: 7º Congresso Brasileiro de Rodovias e Concessões (CBR&C), 2011, Foz do Iguaçu. 3º Salão de Inovação ABCR (Associação Brasileira de Concessionárias de Rodovias) (2011)Google Scholar
  9. 9.
    Neto, S.B., Nagano, M.S., Moraes, M.B.C.: Utilização de redes neurais artificiais para avaliação socioeconômica: uma aplicação em cooperativas. R. Adm, São Paulo 41(1), 59–68 (2006)Google Scholar
  10. 10.
    Paulovich, F.V., Minghim, R.: Mapeamento de dados multi-dimensionais - integrando mineração e visualização. In: Congresso da Sociedade Brasileira de Computação (CSBC), Bento Gonçalves, pp. 9–10 (2009)Google Scholar
  11. 11.
    Paiva, J.G.S., Cruz, L.F., Pedrini, H., Telles, G.P., Minghim, R.: Improved Similarity Trees and their Application to Visual Data Classification. IEEE Transactions on Visualization and Computer Graphics 17(12), 2459–2468 (2011)CrossRefGoogle Scholar
  12. 12.
    Nascimento, H.A.D., Ferreira, C.B.R.: Visualização de informações - Uma abordagem prática. XXV Congresso da Socuedade Brasileira de Computação, pp. 1262–1312 (2005)Google Scholar
  13. 13.
    Eler, D.M., Nakazaki, M.Y., Paulovich, F.V., Santos, D.P., Andery, G.F., Oliveira, M.C.F., Neto, J.B., Minghim, R.: Visual analysis of image collections. The Visual Computer 25(10), 923–937 (2009)CrossRefGoogle Scholar
  14. 14.
    Oliveira, R.A.P., Silva, L.F., Eler, D.M.: Hybrid visualization: a new approach to display instances relationship and attributes behaviour in a single view. In: 19th International Conference on Information Visualization (2015) (to appear)Google Scholar
  15. 15.
    Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least Square Projection: a fast high precision multidimensional projection technique and its application to document mapping. IEEE Transactions on Visualization and Computer Graphics 14(3), 564–575 (2008)CrossRefGoogle Scholar
  16. 16.
    Warren, T.: Multidimensional scaling of similarity. Psychometrika 30(4), 379–393 (1965)CrossRefGoogle Scholar
  17. 17.
    Birchfield, S.T., Subramanya, A.: Microphone Array Position Calibration by Basis-Point Classical Multidimensional Scaling. IEEE Transactions on Speech and Audio Processing 13(5), 1025–1034 (2005)CrossRefGoogle Scholar
  18. 18.
    Kalinowski, M., Weber, K., Franco, N., Barroso, E., Duarte, V., Zanetti, D., Santos, G.: Results of 10 years of software process improvement in Brazil based on the MPS-SW model. In: 9th International Conference on the Quality of Information and Communications Technology. IEEE (2014)Google Scholar
  19. 19.
    Kaplan, R., Norton, D.P.: The Balanced Scorecard – Measures that Drive Performance. Harvard Business Review, pp. 71–79, January–February 1992Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Leandro Bodo
    • 1
    • 3
    Email author
  • Hilda Carvalho de Oliveira
    • 1
    • 3
  • Fabricio Aparecido Breve
    • 1
    • 3
  • Danilo Medeiros Eler
    • 2
    • 4
  1. 1.Department of Statistics, Applied Mathematics and Computer ScienceUnesp - Universidade Estadual PaulistaSão PauloBrazil
  2. 2.Department of Mathematics and Computer ScienceUnesp - Universidade Estadual PaulistaSão PauloBrazil
  3. 3.Unesp - Universidade Estadual PaulistaRio ClaroBrazil
  4. 4.Unesp - Universidade Estadual PaulistaPresidente PrudenteBrazil

Personalised recommendations