Advertisement

The Response of Chloroplast Proteome to Abiotic Stress

  • Fen Ning
  • Wei WangEmail author
Chapter

Abstract

The chloroplast is a typical plant organelle in plant cells, which is mainly responsible for photosynthesis as well as other essential functions. The chloroplast has gained considerable attention due to its intricate biochemical pathways for indispensable metabolite functions. New technologies, in combination with increasing amounts of plant genome data, have opened up experimental possibilities to identify a more complete set of chloroplast proteins (the chloroplast proteome), both the whole chloroplast and its main subcellular compartments. A great effort has been made to study chloroplast proteome changes under abiotic stresses for better understanding of photosynthesis and identifying the stress-responsive proteins. Abiotic stress is likely to cause a reduction in CO2 fixation and lead to the forming of excess reactive oxygen species (ROS) that impair the functions of chloroplast proteins involved in photosynthesis. In this chapter, we summarize recent significant achievements in research on chloroplast proteome changes under abiotic stress, hoping to provide insights on the intrinsic mechanism of abiotic stress response in plants.

Keywords

Abiotic Stress Salt Stress Drought Stress Heat Stress Tall Fescue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bruley C, Dupierris V, Salvi D et al (2012) AT_CHLORO: A chloroplast protein database dedicated to sub-plastidial localization. Front Plant Sci 3(4):279–286Google Scholar
  2. 2.
    Saravanavel R, Ranganathan R, Anantharaman P (2011) Effect of sodium chloride on photosynthetic pigments and photosynthetic characteristics of Avicennia officinalis seedlings. Recent Res Sci Technol 3(4):177–180Google Scholar
  3. 3.
    Uberegui E, Hall M, Lorenzo Ó et al (2015) An Arabidopsis soluble chloroplast proteomic analysis reveals the participation of the Executer pathway in response to increased light conditions. J Exp Bot 66(7):2067–2077CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51(2):163–190CrossRefGoogle Scholar
  5. 5.
    Agrawal GK, Bourguignon J, Rolland N et al (2011) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30(5):772–853PubMedGoogle Scholar
  6. 6.
    van Wijk KJ, Baginsky S (2011) Plastid proteomics in higher plants: current state and future goals. Plant Physiol 155(4):1578–1588CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19(1):47–56CrossRefPubMedGoogle Scholar
  8. 8.
    Ferro M, Brugière S, Salvi D et al (2010) AT_CHLORO: A comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zybailov B, Rutschow H, Friso G et al (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3(4):e1994CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lundquist PK, Poliakov A, Bhuiyan NH et al (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genomewide coexpression analysis. Plant Physiol 158(3):1172–1192CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sun QZB, Majeran W, Friso G et al (2009) PPDB, the plant proteomics database at cornell. Nucleic Acids Res 37(Database issue): 969–974Google Scholar
  12. 12.
    Heazlewood JL, Verboom RE, Tonti-Filippini J et al (2007) SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res 35(suppl 1):213–218CrossRefGoogle Scholar
  13. 13.
    Kleffmann T, Hirschhoffmann M, Gruissem W et al (2006) Plprot: A comprehensive proteome database for different plastid types. Plant Cell Physiol 47(3):432–436CrossRefPubMedGoogle Scholar
  14. 14.
    Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K et al (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155(1):259–270CrossRefPubMedGoogle Scholar
  15. 15.
    Goksoyr J (1967) Evolution of eucaryotic cells. Nature 214(5093):1161CrossRefPubMedGoogle Scholar
  16. 16.
    Jarvis P, Soll J (2001) Toc, Tic, and chloroplast protein import. BBA-MOL Cell Res 1541 (s 1–2): 64–79Google Scholar
  17. 17.
    Rahnama A, Poustini K, Tavakkol-Afshari R et al (2010) Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. Int J Biol Life Sci 6(4):216–221Google Scholar
  18. 18.
    Medici LO, Azevedo RA, Canellas LP et al (2007) Stomatal conductance of maize under water and nitrogen deficits. Pesquisa Agropecuária Brasileira 42(4):599–601CrossRefGoogle Scholar
  19. 19.
    Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot-London 103(4):551–560CrossRefGoogle Scholar
  20. 20.
    Kosmala A, Perlikowski D, Pawłowicz I et al (2012) Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. J Exp Bot 63(17):6161–6172CrossRefPubMedGoogle Scholar
  21. 21.
    Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plantarum 138(4):430–439CrossRefGoogle Scholar
  22. 22.
    Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59(14):3781–3801CrossRefPubMedGoogle Scholar
  23. 23.
    Caruso G, Cavaliere C, Guarino C et al (2008) Identification of changes in Triticum durum L. Leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrome try. Anal Bioanal Chem 391(1):381–390CrossRefPubMedGoogle Scholar
  24. 24.
    Zörb C, Herbst R, Forreiter C et al (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9(17):4209–4220CrossRefPubMedGoogle Scholar
  25. 25.
    Aghaei K, Ehsanpour AA, Shah AH et al (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36(1):91–98CrossRefPubMedGoogle Scholar
  26. 26.
    Hu X, Wu X, Li C et al (2012) Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS ONE 7(11):488Google Scholar
  27. 27.
    Kamal AH, Cho K, Choi JS et al (2013) The wheat chloroplastic proteome. J Proteomics 93(19):326–342CrossRefPubMedGoogle Scholar
  28. 28.
    Kamal AH, Cho K, Kim DE et al (2012) Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep 39(9):9059–9074CrossRefPubMedGoogle Scholar
  29. 29.
    Wang R, Chen S, Deng L et al (2007) Leaf photosynthesis, luorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees-Struct Func 21(5):581–591CrossRefGoogle Scholar
  30. 30.
    Kamal AH, Cho K, Choi JS et al (2012) Patterns of protein expression in water-stressed wheat chloroplasts. Biol Plant 57(2):305–312CrossRefGoogle Scholar
  31. 31.
    Wang D, Luthe DS (2003) Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol 133(1):319–327CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim KH, Alam I, Kim YG et al (2012) Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett 34(2):371–377CrossRefPubMedGoogle Scholar
  33. 33.
    Hu X, Yang Y, Gong F et al (2015) Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). J Proteomics 115:81–92CrossRefPubMedGoogle Scholar
  34. 34.
    Schafer G, Kardinahl S (2003) Iron superoxide dismutases: structure and function of an archaic enzyme. Biochem Soc T 31(6):1130–1134CrossRefGoogle Scholar
  35. 35.
    Khanna-Chopra R, Jajoo A, Semwal VK (2012) Chloroplasts and mitochondria have multiple heat tolerant isozymes of SOD and APX in leaf and inflorescence in Chenopodium album. Biochem Bioph Res Co 412(4):522–525CrossRefGoogle Scholar
  36. 36.
    Sainz M, Díaz P, Monza J et al (2010) Heat stress results in loss of chloroplast Cu/Zn superoxide diasmutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicas. Physiol Plant 140(1):46–56CrossRefPubMedGoogle Scholar
  37. 37.
    Ruelland E, Vaultier MN, Zachowski A et al (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150CrossRefGoogle Scholar
  38. 38.
    Goulas E, Schubert M, Kieselbach T et al (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short-and long-term exposure to low temperature. Plant J 47(5):720–734CrossRefPubMedGoogle Scholar
  39. 39.
    Reiland S, Messerli G, Baerenfaller K et al (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150(2):889–903CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kupsch C, Ruwe H, Gusewski S et al (2012) Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell 24(10):4266–4280CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kirchhoff H (2014) Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts. Philos T Roy Soc 369(1640):1925–1953CrossRefGoogle Scholar
  42. 42.
    Lintala M, Allahverdiyeva Y, Kangasjärvi S (2009) Comparative analysis of leaf-type ferredoxin-NADP+ oxidoreductase isoforms in Arabidopsis thaliana. Plant J 57(6):1103–1115CrossRefPubMedGoogle Scholar
  43. 43.
    Buchert F, Forreiter C (2010) Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo. FEBS Lett 584(1):147–152CrossRefPubMedGoogle Scholar
  44. 44.
    Buchert F, Schober Y (2012) Römpp a reactive oxygen species affect ATP hydrolysis by targeting a highly conserved amino acid cluster in the thylakoid ATP synthase γ subunit. BBA-Bioenergetics 1817(1):2038–2048CrossRefPubMedGoogle Scholar
  45. 45.
    Kohzuma K, Dal Bosco C, Meurer J (2013) Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions. J Biol Chem 288(18):13156–13163CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2 A comparative proteomics study. Plant Physiol 141(2):685–701CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dühring U, Irrgang KD, Lunser K et al (2006) Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. BBA-Bioenergetics 1757(1):3–11CrossRefPubMedGoogle Scholar
  48. 48.
    Ranieri A, Giuntini D, Ferraro F et al (2001) Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiol Bioch 39(11):999–1008CrossRefGoogle Scholar
  49. 49.
    Ahsan N, Nanjo Y, Sawada H et al (2010) Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics 10(14):2605–2619CrossRefPubMedGoogle Scholar
  50. 50.
    Bohler S, Bagard M, Oufir M et al (2007) A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7(10):1584–1599CrossRefPubMedGoogle Scholar
  51. 51.
    Bohler S, Sergeant K, Hoffmann L et al (2011) A difference gel electrophoresis study on thylakoids isolated from poplar leaves reveals a negative impact of ozone exposure on membrane proteins. J Proteome Res 10(7):3003–3011CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life ScienceHenan Agricultural UniversityZhengzhouChina

Personalised recommendations